From: Andrew Lorimer Date: Thu, 3 Jan 2019 02:56:05 +0000 (+1100) Subject: Merge branch 'master' of ssh://charles/tank/andrew/school/notes X-Git-Tag: yr12~288 X-Git-Url: https://git.lorimer.id.au/notes.git/diff_plain/3817bcdc33d972532ed8fabb75aed04c11421235?ds=inline;hp=-c Merge branch 'master' of ssh://charles/tank/andrew/school/notes --- 3817bcdc33d972532ed8fabb75aed04c11421235 diff --combined methods/polynomials.md index 0542afc,c312123..b80ea63 --- a/methods/polynomials.md +++ b/methods/polynomials.md @@@ -4,13 -4,47 +4,47 @@@ #### Quadratics **Quadratics:** $x^2 + bx + c = (x+m)(x+n)$ where $mn=c$, $m+n=b$ -**Difference of squares:** $a^2 - b=^2 = (a - b)(a + b)$ +**Difference of squares:** $a^2 - b^2 = (a - b)(a + b)$ **Perfect squares:** $a^2 \pm 2ab + b^2 = (a \pm b^2)$ **Completing the square (monic):** $x^2+bx+c=(x+{b\over2})^2+c-{b^2\over4}$ **Completing the square (non-monic):** $ax^2+bx+c=a(x-{b\over2a})^2+c-{b^2\over4a}$ - **Quadratic formula:** $x={{-b\pm\sqrt{b^2-4ac}}\over2a}$ where $\Delta=b^2-4ac$ + **Quadratic formula:** $x={{-b\pm\sqrt{b^2-4ac}}\over2a}$ where $\Delta=b^2-4ac$ (if $\Delta$ is a perfect square, rational roots) #### Cubics **Difference of cubes:** $a^3 - b^3 = (a-b)(a^2 + ab + b^2)$ **Sum of cubes:** $a^3 + b^3 = (a+b)(a^2 - ab + b^2)$ **Perfect cubes:** $a^3 \pm 3a^2b + 3ab^2 \pm b^3 = (a \pm b)^3$ + + ## Linear and quadratic graphs + + $$y=mx+c, \quad {x \over a} + {y \over b}=1$$ + + Parallel lines - $m_1 = m_2$ + Perpendicular lines - $m_1 \times m_2 = -1$ + + + ## Cubic graphs + + $$y=a(x-b)^3 + c$$ + + - $m=0$ at *stationary point of inflection* + - in form $y=(x-a)^2(x-b)$, local max at $x=a$, local min at $x=b$ + - in form $y=a(x-b)(x-c)(x-d)$: $x$-intercepts at $b, c, d$ + + + ## Quartic graphs + + $$y=ax^4$$ + + $$=a(x-b)(x-c)(x-d)(x-e)$$ + + $$=ax^4+cd^2 (c \ge 0)$$ + + $$=ax^2(x-b)(x-c)$$ + + $$=a(x-b)^2(x-c)^2$$ + + $$=a(x-b)(x-c)^3$$ + + where + - $x$-intercepts at $x=b,c,d,e$