From: Andrew Lorimer Date: Wed, 13 Mar 2019 07:10:07 +0000 (+1100) Subject: [spec] graphics for reciprocal circular functions X-Git-Tag: yr12~210 X-Git-Url: https://git.lorimer.id.au/notes.git/diff_plain/394d40a01334eb57a2b01c63167d4299b7107dc1 [spec] graphics for reciprocal circular functions --- diff --git a/spec/circ.md b/spec/circ.md index 8f3fcec..9d7dfbf 100644 --- a/spec/circ.md +++ b/spec/circ.md @@ -1,9 +1,16 @@ # Circular functions +Period of $a\sin(bx)$ is ${2\pi} \over b$ + +Period of $a\tan(nx)$ is $\pi \over n$ +Asymptotes at $x={2k+1)\pi \over 2n} \> \vert \> k \in \mathbb{Z}$ + ## Reciprocal functions ### Cosecant +![](graphics/csc.png) + $$\operatorname{cosec} \theta = {1 \over \sin \theta} \> \vert \> \sin \theta \ne 0$$ - **Domain** $= \mathbb{R} \setminus {n\pi : n \in \mathbb{Z}}$ @@ -14,6 +21,8 @@ $$\operatorname{cosec} \theta = {1 \over \sin \theta} \> \vert \> \sin \theta \n ### Secant +!()[graphics/sec.png] + $$\operatorname{sec} \theta = {1 \over \cos \theta} \> \vert \> \cos \theta \ne 0$$ - **Domain** $= \mathbb{R} \setminus \{{{(2n + 1) \pi} \over 2 } : n \in \mathbb{Z}\}$ @@ -24,6 +33,8 @@ $$\operatorname{sec} \theta = {1 \over \cos \theta} \> \vert \> \cos \theta \ne ### Cotangent +!()[graphics/cot.png] + $$\operatorname{cot} \theta = {{\cos \theta} \over {\sin \theta}} \> \vert \> \sin \theta \ne 0$$ - **Domain** $= \mathbb{R} \setminus \{n \pi: n \in \mathbb{Z}\}$ diff --git a/spec/graphics/cot.png b/spec/graphics/cot.png new file mode 100644 index 0000000..411fa46 Binary files /dev/null and b/spec/graphics/cot.png differ diff --git a/spec/graphics/csc.png b/spec/graphics/csc.png new file mode 100644 index 0000000..f68e4ab Binary files /dev/null and b/spec/graphics/csc.png differ diff --git a/spec/graphics/sec.png b/spec/graphics/sec.png new file mode 100644 index 0000000..a0a568b Binary files /dev/null and b/spec/graphics/sec.png differ