From: Andrew Lorimer Date: Mon, 18 Feb 2019 03:56:38 +0000 (+1100) Subject: complex conjugate X-Git-Tag: yr12~251 X-Git-Url: https://git.lorimer.id.au/notes.git/diff_plain/47385e8e6477197a86b27dee64a4cd305b871d47 complex conjugate --- diff --git a/spec/complex.md b/spec/complex.md index 10eba3f..e7760be 100755 --- a/spec/complex.md +++ b/spec/complex.md @@ -111,9 +111,11 @@ $z^2+a^2=z^2-(ai)^2=(z+ai)(z-ai)$ General form: $z=r \operatorname{cis} \theta$ -$= r\operatorname{cos}\theta+r\operatorname{sin}\theta i$ +$= r(\operatorname{cos}\theta+i \operatorname{sin}\theta)$ + +$z=a+bi$ +$z=r\operatorname{cis}\theta$ -where - $z=a+bi$ - $r$ is the distance from origin, given by Pythagoras ($r=\sqrt{x^2+y^2}$) @@ -122,12 +124,16 @@ where Note each complex number has multiple polar representations: $z=r \operatorname{cis} \theta = r \operatorname{cis} (\theta+2 n\pi$) where $n$ is integer number of revolutions +### Conjugate in polar form + +$$(r \operatorname{cis} \theta)^{-1} = r\operatorname{cis} (- \theta)$$ + ### Multiplication and division in polar form $z_1z_2=r_1r_2\operatorname{cis}(\theta_1+\theta_2)$ (multiply moduli, add angles) ${z_1 \over z_2} = {r_1 \over r_2} \operatorname{cis}(\theta_1-\theta_2)$ (divide moduli, subtract angles) -## de Moivres' Theorum +## de Moivres' Theorem -$(r\operatorname{cis}\theta)^n=r^n\operatorname{cis}(n\theta)$ +$(r\operatorname{cis}\theta)^n=r^n\operatorname{cis}(n\theta)$ where $n \in \mathbb{Z}$