From: Andrew Lorimer Date: Thu, 5 Sep 2019 02:59:13 +0000 (+1000) Subject: [spec] p-values table and one/two-tail tests X-Git-Tag: yr12~42 X-Git-Url: https://git.lorimer.id.au/notes.git/diff_plain/491a90406aee585f59bab0bcaaf5f71c0fe3ca67?hp=8a20d60a219ab30904b84df216f13593806fe236 [spec] p-values table and one/two-tail tests --- diff --git a/spec/statistics.pdf b/spec/statistics.pdf index 9a63860..6e08307 100644 Binary files a/spec/statistics.pdf and b/spec/statistics.pdf differ diff --git a/spec/statistics.tex b/spec/statistics.tex index da1ec9b..d7e7723 100644 --- a/spec/statistics.tex +++ b/spec/statistics.tex @@ -256,13 +256,26 @@ \subsection*{\(p\)-value} - Probability of observing a value of the sample statistic as significant as the one observed, assuming null hypothesis is true. - % table of p-values for strength of evidence + \begin{align*} + p &= \Pr(\overline{X} \lessgtr \mu(H_1)) \\ + &= 2 \cdot \Pr(\overline{X} <> \mu(H_1) | \mu = 8) + \end{align*} - \subsection*{Distribution of sample mean} + Probability of observing a value of the sample statistic as significant as the one observed, assuming null hypothesis is true. - If \(X \sim \operatorname{N}(\mu, \sigma)\), then distribution of sample mean \(\overline{X}\) is also normal with \(\overline{X} \sim \operatorname{N}(\mu, \frac{\sigma}{\sqrt{n}}\). + \vspace{0.5em} + \begin{tabularx}{23em}{|l|X|} + \hline + \rowcolor{cas} + \(\boldsymbol{p}\) & \textbf{Conclusion} \\ + \hline + \(> 0.05\) & insufficient evidence against \(H_0\) \\ + \(< 0.05\) (5\%) & good evidence against \(H_0\) \\ + \(< 0.01\) (1\%) & strong evidence against \(H_0\) \\ + \(< 0.001\) (0.1\%) & very strong evidence against \(H_0\) \\ + \hline + \end{tabularx} \subsection*{Statistical significance} @@ -287,4 +300,46 @@ \end{description} \end{cas} + \subsection*{One-tail and two-tail tests} + + \subsubsection*{One tail} + + \begin{itemize} + \item \(\mu\) has changed in one direction + \item State ``\(H_1: \mu \lessgtr \) known population mean'' + \end{itemize} + + \subsubsection*{Two tail} + + \begin{itemize} + \item Direction of \(\Delta \mu\) is ambiguous + \item State ``\(H_1: \mu \ne\) known population mean'' + \end{itemize} + + For two tail tests: + \begin{align*} + p\text{-value} &= \Pr(|\overline{X} - \mu| \ge |\overline{x}_0 - \mu|) \\ + &= \left( |Z| \ge \left|\dfrac{\overline{x}_0 - \mu}{\sigma \div \sqrt{n}} \right| \right) + \end{align*} + + \subsection*{Modulus notation for two tail} + + \(\Pr(|\overline{X} - \mu| \ge a) \implies\) ``the probability that the distance between \(\overline{\mu}\) and \(\mu\) is \(\ge a\)'' + + \subsection*{Inverse normal} + + \begin{cas} + \verb;invNormCdf("L", ;\(\alpha\)\verb;, ;\(\dfrac{\sigma}{n^\alpha}\)\verb;, ;\(\mu\)\verb;); + \end{cas} + + \subsection*{Errors} + + \begin{description}[labelwidth=2.5cm, labelindent=0.5cm] + \item [Type I error] \(H_0\) is rejected when it is \textbf{true} + \item [Type II error] \(H_0\) is \textbf{not} rejected when it is \textbf{false} + \end{description} + +% \subsection*{Using c.i. to find \(p\)} +% need more here + \end{document}