From: Andrew Lorimer Date: Sat, 24 Aug 2019 04:33:48 +0000 (+1000) Subject: [methods] fill gaps in statistics notes X-Git-Tag: yr12~57 X-Git-Url: https://git.lorimer.id.au/notes.git/diff_plain/5753a4ea89655a60374b4bc423bc2cd461bf28c1 [methods] fill gaps in statistics notes --- diff --git a/methods/statistics.pdf b/methods/statistics.pdf index 0929ba0..7a81019 100644 Binary files a/methods/statistics.pdf and b/methods/statistics.pdf differ diff --git a/methods/statistics.tex b/methods/statistics.tex index 8ac24bf..1ad360e 100644 --- a/methods/statistics.tex +++ b/methods/statistics.tex @@ -69,7 +69,8 @@ \begin{align*} \sigma^2=\operatorname{Var}(x) &= \sum_{i=1}^n p_i (x_i-\mu)^2 \\ &= \sum (x-\mu)^2 \times \Pr(X=x) \\ - &= \sum x^2 \times p(x) - \mu^2 + &= \sum x^2 \times p(x) - \mu^2 \\ + &= \operatorname{E}(X^2) - [\operatorname{E}(X)]^2 \end{align*} \item \textbf{Standard deviation $\sigma$} - measure of spread in the original magnitude of the data. Found by taking square root of the variance: \begin{align*} @@ -90,6 +91,9 @@ E(X+Y) &= E(X) + E(Y) \tag{for two random variables} \end{align*} + \subsubsection*{Variance theorems} + + \[ \operatorname{Var}(aX \pm bY \pm c) = a^2 \operatorname{Var}(X) + b^2 \operatorname{Var}(Y) \] \section{Binomial Theorem}