From: Andrew Lorimer Date: Mon, 15 Oct 2018 06:23:51 +0000 (+1100) Subject: adjustments to cheatsheet after LM & PTTT practice exams X-Git-Tag: yr11~23 X-Git-Url: https://git.lorimer.id.au/notes.git/diff_plain/58cc743499540db9956396bc98bd88c11a3f124a adjustments to cheatsheet after LM & PTTT practice exams --- diff --git a/physics/final.pdf b/physics/final.pdf index db09fd3..904bb01 100644 Binary files a/physics/final.pdf and b/physics/final.pdf differ diff --git a/physics/final.tex b/physics/final.tex index 4628ed0..64240ea 100644 --- a/physics/final.tex +++ b/physics/final.tex @@ -120,7 +120,7 @@ % ----------------------- \subsection*{Hooke's law} - $F=-kx$ + $F=-kx$ (intercepts origin) $\text{elastic potential energy} = {1 \over 2}kx^2$ @@ -212,9 +212,9 @@ \subsection*{Non-contact forces} \begin{itemize} - {\item electric fields (dipoles \& monopoles)} - {\item magnetic fields (dipoles only)} - {\item gravitational fields (monopoles only)} + {\item electric (dipoles \& monopoles)} + {\item magnetic (dipoles only)} + {\item gravitational (monopoles only, $F_g=0$ at mid, attractive only)} \end{itemize} \vspace{1em} @@ -244,9 +244,9 @@ % ----------------------- \subsection*{Satellites} - \[v=\sqrt{Gm_{\operatorname{planet}} \over r} = \sqrt{gr} = {{2 \pi r} \over T}\] + \[v=\sqrt{GM \over r} = \sqrt{gr} = {{2 \pi r} \over T}\] - \[T={\sqrt{4 \pi^2 r^3} \over {GM_\text{planet}}}\tag{period}\] + \[T={\sqrt{4 \pi^2 r^3 \over {GM}}}\tag{period}\] \[r = \sqrt[3]{{GMT^2}\over{4\pi^2}}\tag{radius}\] @@ -271,13 +271,13 @@ % ----------------------- \subsection*{Electric fields} - \[F=qE \tag{$E$ = strength} \] + \[F=qE(=ma) \tag{strength} \] \[F=k{{q_1q_2}\over r^2}\tag{force between $q_{1,2}$} \] \[E=k{q \over r^2} \tag{field on point charge} \] \[E={V \over d} \tag{field between plates}\] \[F=BInl \tag{force on a coil} \] \[\Phi = B_{\perp}A\tag{magnetic flux} \] - \[\mathcal{E} = -N{{\Delta \Phi}\over{\Delta t}} \tag{induced emf} \] + \[\mathcal{E} = -N{{\Delta \Phi}\over{\Delta t}} = Blv\tag{induced emf} \] \[{V_p \over V_s}={N_p \over N_s}={I_s \over I_p} \tag{xfmr coil ratios} \] \textbf{Lenz's law:} $I_{\operatorname{emf}}$ opposes $\Delta \Phi$ \\ @@ -298,7 +298,7 @@ \textbf{Flux-time graphs:} $m \times n = \operatorname{emf}.$ If $f$ increases, ampl. \& $f$ of $\mathcal{E}$ increase - \textbf{Transformers:} core strengthens \& focuses $\Phi$ + \textbf{Xfmr} core strengthens \& focuses $\Phi$ % ----------------------- \subsection*{Particle acceleration} @@ -310,7 +310,6 @@ \[W={1\over2}mv^2=qV \tag{field or points}\] \[v=\sqrt{{2qV} \over {m}}\tag{velocity of particle}\] - % ----------------------- \subsection*{Power transmission} @@ -380,7 +379,7 @@ \includegraphics[width=4.5cm]{graphics/poissons-spot.png} \\ Poissons's spot supports wave theory (circular diffraction) - \textbf{Standing waves} - constructive int. at resonant freq + \textbf{Standing waves} - constructive int. at resonant freq. Rebound from ends. \textbf{Coherent } - identical frequency, phase, direction (ie strong & directional). e.g. laser @@ -409,7 +408,8 @@ % ----------------------- \subsection*{Polarisation} - \includegraphics[height=3.5cm]{graphics/polarisation.png} + \includegraphics[height=3.5cm]{graphics/polarisation.png} \\ + Reduces total amplitude % ----------------------- \subsection*{Diffraction} @@ -458,9 +458,10 @@ \subsection*{De Broglie's theory} - \[ \lambda = {h \over \rho} = {h \over mv} \] + \[ \lambda = {h \over \rho} = {h \over mv} = {h \over {m \sqrt{2W \over m}}}\] \[ \rho = {hf \over c} = {h \over \lambda} = mv, \quad E = \rho c \] \[ v = \sqrt{2E_K \div m} \] + \begin{itemize} \item cannot confirm with double-slit (slit $< r_{\operatorname{proton}}$) \item confirmed by e- and x-ray patterns @@ -513,6 +514,7 @@ \subsubsection*{Stopping potential $V_0$ for min $I$} $$V_0=h_{\text{eV}}(f-f_0)$$ + Opposes induced photocurrent \subsubsection*{Graph features} @@ -555,6 +557,7 @@ $f \cdot V$ & ${h \over q}$ & $f_0$ & $-\phi \over q$ & \item predicts delay between incidence and ejection \item speed depends on medium \item supported by bright spot in centre + \item $\lambda = {hc \over E}$ \end{itemize} \subsubsection*{particle model} @@ -567,6 +570,7 @@ $f \cdot V$ & ${h \over q}$ & $f_0$ & $-\phi \over q$ & \item light exerts force \item light bent by gravity \item quantised energy + \item $\lambda = {h \over \rho}$ \end{itemize} % +++++++++++++++++++++++