From: Andrew Lorimer Date: Sun, 29 Jul 2018 11:25:36 +0000 (+1000) Subject: Merge branch 'master' of ssh://charles/tank/andrew/school/notes X-Git-Tag: yr11~81 X-Git-Url: https://git.lorimer.id.au/notes.git/diff_plain/5e2fc0ca19ac4e497696ecc4b9768da48a66e4fc Merge branch 'master' of ssh://charles/tank/andrew/school/notes locuses (spec), equilibrium for circ fn's (methods - merge w/ruslan), solvent eq's (chem) --- 5e2fc0ca19ac4e497696ecc4b9768da48a66e4fc diff --cc chem/water.md index 9635ed6,9635ed6..3b1ccf9 --- a/chem/water.md +++ b/chem/water.md @@@ -73,3 -73,3 +73,4 @@@ ## Concentration - amount of solute per volume of solvent - e.g. g / L - relative terms - "concentrated" or "dilute" ++- mg / L = ppm = $\mu$g / g diff --cc methods/circ-functions.md index a4b06c0,a48b106..3bbe1c2 --- a/methods/circ-functions.md +++ b/methods/circ-functions.md @@@ -24,15 -22,52 +24,67 @@@ Range is $[-b+c, b+c]$ Graph of $\cos(x)$ starts at $(0,1)$. Graph of $\sin(x)$ starts at $(0,0)$. ++<<<<<<< HEAD +**Mean / equilibrium:** line that the graph oscillates around ($y=d$) + +## Solving trig equations + +1. Solve domain for $n\theta$ +2. Find solutions for $n\theta$ +3. Divide solutions by $n$ + +$\sin2\theta={\sqrt{3}\over2}, \quad \theta \in[0, 2\pi] \quad(\therefore 2\theta \in [0,4\pi])$ +$2\theta=\sin^{-1}{\sqrt{3} \over 2}$ +$2\theta={\pi\over 3}, {2\pi \over 3}, {7\pi \over 3}, {8\pi \over 3}$ +$\therefore \theta = {\pi \over 6}, {\pi \over 3}, {7 \pi \over 6}, {4\pi \over 3}$ ++======= + ### Amplitude + + Amplitude of $a$ means graph oscillates between $+a$ and $-a$ in $y$-axis + + $a=0$ produces straight line + $a\lt0$ inverts the phase ($\sin$ becomes $\cos$, vice vera) + + ### Period + + Period $T$ is ${2 \pi}\over b$ + $b=0$ produces straight line + $b\lt0$ inverts the phase + + ### Phase + + $c$ moves the graph left-right in the $x$ axis. + If $c=T={{2\pi}\over b}$, the graph has no actual phase shift. + + ## Symmetry + + $$\sin(\theta+{\pi\over 2})=\sin\theta$$ + $$\sin(\theta+\pi)=-\sin\theta$$ + + $$\cos(\theta+{\pi \over 2})=-\cos\theta$$ + $$\cos(\theta+\pi)=-cos(\theta+{3\pi \over 2})=\cos(-\theta)$$ + + ## Pythagorean identity + + $$\cos^2\theta+\sin^2\theta=1$$ + + ## Complementary relationships + + $$\sin({\pi \over 2} - \theta)=\cos\theta$$ + $$\cos({\pi \over 2} - \theta)=\sin\theta$$ + + $$\sin\theta=-\cos(\theta+{\pi \over 2})$$ + $$\cos\theta=\sin(\theta+{\pi \over 2})$$ + + ## $tan$ graph + + $$y=a\tan(nx)$$ + + where + $a$ is $x$-dilation (period) + $n$ is $y$-dilation ($\equiv$ amplitude) + period $T$ is $\pi \over n$ + range is $R$ + roots at $x={k\pi \over n}$ + asymptotes at $x={{(2k+1)\pi}\over 2},\quad k \in \mathbb{Z}$ ++>>>>>>> 924c0548b3e7564d4015e879c56a46a5606807fe diff --cc spec/graphing.md index 3e889a0,3e889a0..6cd013e --- a/spec/graphing.md +++ b/spec/graphing.md @@@ -91,7 -91,7 +91,8 @@@ $$|(F_2P - F_1P )| = k$ Cartesian equation for hyperbolas ($a$ and $b$ are dilation factors): $${(x-h)^2 \over a^2} - {(y-k)^2 \over b^2} = 1$$ --Asymptotes at $y-k=\pm {b \over a}(x-h$) ++Asymptotes at $y=\pm {b \over a}(x-h)+k$ ++To make hyperbola up/down rather than left/right, swap $x$ and $y$ ## Parametric equations