From: Andrew Lorimer Date: Sun, 29 Jul 2018 11:25:36 +0000 (+1000) Subject: Merge branch 'master' of ssh://charles/tank/andrew/school/notes X-Git-Tag: yr11~81 X-Git-Url: https://git.lorimer.id.au/notes.git/diff_plain/5e2fc0ca19ac4e497696ecc4b9768da48a66e4fc?hp=1cb56c1fb7d4d43d4d519a4ad8c09378cbc1bbaf Merge branch 'master' of ssh://charles/tank/andrew/school/notes locuses (spec), equilibrium for circ fn's (methods - merge w/ruslan), solvent eq's (chem) --- diff --git a/chem/water.md b/chem/water.md index 9635ed6..3b1ccf9 100644 --- a/chem/water.md +++ b/chem/water.md @@ -73,3 +73,4 @@ ## Concentration - amount of solute per volume of solvent - e.g. g / L - relative terms - "concentrated" or "dilute" +- mg / L = ppm = $\mu$g / g diff --git a/methods/circ-functions.md b/methods/circ-functions.md index a4b06c0..3bbe1c2 100644 --- a/methods/circ-functions.md +++ b/methods/circ-functions.md @@ -14,16 +14,17 @@ $$f(x)=a \sin(bx-c)+d$$ $$f(x)=a \cos(bx-c)+d$$ where -$a$ is the amplitude -$b$ is the $x$-dilation -$c$ is the $y$-shift +$a$ is the $y$-dilation (amplitude) +$b$ is the $x$-dilation (period) +$c$ is the $x$-shift (phase) +$d$ is the $y$-shift (equilibrium position) -Period is ${2 \pi} \over b$ Domain is $\mathbb{R}$ Range is $[-b+c, b+c]$; Graph of $\cos(x)$ starts at $(0,1)$. Graph of $\sin(x)$ starts at $(0,0)$. +<<<<<<< HEAD **Mean / equilibrium:** line that the graph oscillates around ($y=d$) ## Solving trig equations @@ -36,3 +37,54 @@ $\sin2\theta={\sqrt{3}\over2}, \quad \theta \in[0, 2\pi] \quad(\therefore 2\thet $2\theta=\sin^{-1}{\sqrt{3} \over 2}$ $2\theta={\pi\over 3}, {2\pi \over 3}, {7\pi \over 3}, {8\pi \over 3}$ $\therefore \theta = {\pi \over 6}, {\pi \over 3}, {7 \pi \over 6}, {4\pi \over 3}$ +======= +### Amplitude + +Amplitude of $a$ means graph oscillates between $+a$ and $-a$ in $y$-axis + +$a=0$ produces straight line +$a\lt0$ inverts the phase ($\sin$ becomes $\cos$, vice vera) + +### Period + +Period $T$ is ${2 \pi}\over b$ +$b=0$ produces straight line +$b\lt0$ inverts the phase + +### Phase + +$c$ moves the graph left-right in the $x$ axis. +If $c=T={{2\pi}\over b}$, the graph has no actual phase shift. + +## Symmetry + +$$\sin(\theta+{\pi\over 2})=\sin\theta$$ +$$\sin(\theta+\pi)=-\sin\theta$$ + +$$\cos(\theta+{\pi \over 2})=-\cos\theta$$ +$$\cos(\theta+\pi)=-cos(\theta+{3\pi \over 2})=\cos(-\theta)$$ + +## Pythagorean identity + +$$\cos^2\theta+\sin^2\theta=1$$ + +## Complementary relationships + +$$\sin({\pi \over 2} - \theta)=\cos\theta$$ +$$\cos({\pi \over 2} - \theta)=\sin\theta$$ + +$$\sin\theta=-\cos(\theta+{\pi \over 2})$$ +$$\cos\theta=\sin(\theta+{\pi \over 2})$$ + +## $tan$ graph + +$$y=a\tan(nx)$$ + +where +$a$ is $x$-dilation (period) +$n$ is $y$-dilation ($\equiv$ amplitude) +period $T$ is $\pi \over n$ +range is $R$ +roots at $x={k\pi \over n}$ +asymptotes at $x={{(2k+1)\pi}\over 2},\quad k \in \mathbb{Z}$ +>>>>>>> 924c0548b3e7564d4015e879c56a46a5606807fe diff --git a/spec/graphing.md b/spec/graphing.md index 3e889a0..6cd013e 100644 --- a/spec/graphing.md +++ b/spec/graphing.md @@ -91,7 +91,8 @@ $$|(F_2P - F_1P )| = k$$ Cartesian equation for hyperbolas ($a$ and $b$ are dilation factors): $${(x-h)^2 \over a^2} - {(y-k)^2 \over b^2} = 1$$ -Asymptotes at $y-k=\pm {b \over a}(x-h$) +Asymptotes at $y=\pm {b \over a}(x-h)+k$ +To make hyperbola up/down rather than left/right, swap $x$ and $y$ ## Parametric equations