From: Andrew Lorimer Date: Wed, 29 Aug 2018 06:37:45 +0000 (+1000) Subject: antidifferentiating applications, start kinematics & light/matter ref X-Git-Tag: yr11~55 X-Git-Url: https://git.lorimer.id.au/notes.git/diff_plain/5fbda7af797976c32f344854e49ecd298c9769c2 antidifferentiating applications, start kinematics & light/matter ref --- diff --git a/physics/light-matter-ref.md b/physics/light-matter-ref.md new file mode 100644 index 0000000..386c83c --- /dev/null +++ b/physics/light-matter-ref.md @@ -0,0 +1,15 @@ +--- +geometry: margin=2cm +columns: 2 +graphics: yes +author: Andrew Lorimer +--- + +\pagenumbering{gobble} + +# Light and Matter + +$$E=hf={hc \over \lambda}$$ + +$$ 1 \operatorname{eV} = 1.6 \times 10^{-19} \operatorname{J}$$ + diff --git a/physics/light-matter.md b/physics/light-matter.md index c14d998..6eed91f 100644 --- a/physics/light-matter.md +++ b/physics/light-matter.md @@ -149,7 +149,7 @@ $$\sigma E \sigma t \ge {h \over 4 \pi}$$ where $\sigma n$ is the uncertainty of $n$ -**$\sigma E$ and $\sigma t$ are inversely proportional$** +**$\sigma E$ and $\sigma t$ are inversely proportional** Therefore, position and velocity cannot simultaneously be known with 100% certainty. diff --git a/spec/calculus.md b/spec/calculus.md index f68b829..ddd9011 100644 --- a/spec/calculus.md +++ b/spec/calculus.md @@ -192,8 +192,8 @@ $\int k f(x) dx = k \int f(x) dx$ | $f(x)$ | $\int f(x) \cdot dx$ | | ------------------------------- | ---------------------------- | -| $k$ (constant) | $kx + c$ | -| $x^n$ | ${1 \over {n+1}}x^{n+1} + c$ | +| $k$ (constant) | $kx + c$ | +| $x^n$ | ${1 \over {n+1}}x^{n+1} + c$ | | $a x^{-n}$ | $a \cdot \log_e x + c$ | | $e^{kx}$ | ${1 \over k} e^{kx} + c$ | | $e^k$ | $e^kx + c$ | @@ -213,4 +213,18 @@ $\int k f(x) dx = k \int f(x) dx$ To find stationary points of a function, substitute $x$ value of given point into derivative. Solve for ${dy \over dx}=0$. Integrate to find original function. +## Kinematics + +$${dV \over dt} = {\operatorname{change in volume} \over \operatorname{respect to time}}$$ + +` |->--diff-->--| |-->--diff-->--| +displacement velocity acceleration + |--<-antidiff-<---| |--<-antidiff-<-|` + +**displacement $x$** - change in position +**velocity $v$** - change in displacement +**acceleration $a$** - change in velocity + +$$v_{\operatorname{avg}}={\Delta x \over \Delta t}={{x_2 - x_1} \over {t_2 - t_1}}$$ +$$\operatorname{speed}_{\operatorname{avg}}={\Delta v \over \Delta t}$$