From: Andrew Lorimer Date: Tue, 11 Sep 2018 09:16:39 +0000 (+1000) Subject: finish calculus reference sheet X-Git-Tag: yr11~40 X-Git-Url: https://git.lorimer.id.au/notes.git/diff_plain/681cbfda10f2e1bed5cbef8dd853ccd3c7f90ba8 finish calculus reference sheet --- diff --git a/spec/calculus-ref.md b/spec/calculus-ref.md index 88ad371..eba250f 100644 --- a/spec/calculus-ref.md +++ b/spec/calculus-ref.md @@ -4,8 +4,11 @@ geometry: margin=2cm graphics: yes tables: yes author: Andrew Lorimer +classoption: twocolumn + --- + # Spec - Calculus ## Gradients @@ -33,11 +36,13 @@ $$f^\prime(x)=\lim_{h \rightarrow 0}{{f(x+h)-f(x)} \over h}$$ ## Derivatives + + | $f(x)$ | $f^\prime(x)$ | -| ------ | ------------- | +| --- | --- | | $kx^n$ | $knx^{n-1}$ | | $g(x) + h(x)$ | $g^\prime (x) + h^\prime (x)$ | -| $c$ | $0$ | +| $c$ | $0$ | | ${u \over v}$ | ${{v{du \over dx} - u{dv \over dx}} \over v^2}$ | | $uv$ | $u{dv \over dx} + v{du \over dx}$ | | $f \circ g$ | ${dy \over du} \cdot {du \over dx}$ | @@ -50,6 +55,8 @@ $$f^\prime(x)=\lim_{h \rightarrow 0}{{f(x+h)-f(x)} \over h}$$ + + ## Product rule for $y=uv$ $${dy \over dx} = u{dv \over dx} + v{du \over dx}$$ @@ -65,7 +72,7 @@ $$\int f(x) dx = F(x) + c$$ - area enclosed by curves | $f(x)$ | $\int f(x) \cdot dx$ | -| --------------- | ------------------ | +| ----|--- | | $k$ (constant) | $kx + c$ | | $x^n$ | ${1 \over {n+1}}x^{n+1} + c$ | | $a x^{-n}$ | $a \cdot \log_e x + c$ | @@ -92,9 +99,12 @@ $$\int_a^b f(x) \cdot dx = [F(x)]_a^b=F(b)-F(a)_{}$$ **acceleration $a$** - change in velocity **speed** - magnitude of velocity + + | | no | | - | -- | | $v=u+at$ | $s$ | | $s=ut + {1 \over 2} at^2$ | $v$ | | $v^2 = u^2 + 2as$ | $t$ | | $s= {1 \over 2}(u+v)t$ | $a$ | + diff --git a/spec/calculus-ref.pdf b/spec/calculus-ref.pdf index d2ede04..cb652fa 100644 Binary files a/spec/calculus-ref.pdf and b/spec/calculus-ref.pdf differ