From: Andrew Lorimer Date: Sun, 17 Mar 2019 07:57:10 +0000 (+1100) Subject: [spec] format images for circular functions notes X-Git-Tag: yr12~200 X-Git-Url: https://git.lorimer.id.au/notes.git/diff_plain/8780abdfebf194ee8a5fd8d67738852a3007fc05?ds=inline [spec] format images for circular functions notes --- diff --git a/spec/circ.md b/spec/circ.md index a5dae02..da26542 100644 --- a/spec/circ.md +++ b/spec/circ.md @@ -1,3 +1,10 @@ +--- +geometry: margin=1.9cm +columns: 2 +graphics: yes +author: Andrew Lorimer +--- + # Circular functions Period of $a\sin(bx)$ is ${2\pi} \over b$ @@ -18,10 +25,9 @@ $$\operatorname{cosec} \theta = {1 \over \sin \theta} \> \vert \> \sin \theta \n - **Turning points** at $\theta = {{(2n + 1)\pi} \over 2} \> \vert \> n \in \mathbb{Z}$ - **Asymptotes** at $\theta = n\pi \> \vert \> n \in \mathbb{Z}$ - ### Secant -!()[graphics/sec.png] +![](graphics/sec.png) $$\operatorname{sec} \theta = {1 \over \cos \theta} \> \vert \> \cos \theta \ne 0$$ @@ -30,10 +36,9 @@ $$\operatorname{sec} \theta = {1 \over \cos \theta} \> \vert \> \cos \theta \ne - **Turning points** at $\theta = n\pi \> \vert \> n \in \mathbb{Z}$ - **Asymptotes** at $\theta = {{(2n + 1) \pi} \over 2} \> \vert \> n \in \mathbb{Z}$ - ### Cotangent -!()[graphics/cot.png] +![](graphics/cot.png) $$\operatorname{cot} \theta = {{\cos \theta} \over {\sin \theta}} \> \vert \> \sin \theta \ne 0$$ diff --git a/spec/circ.pdf b/spec/circ.pdf index bb10a7f..9c51bfa 100644 Binary files a/spec/circ.pdf and b/spec/circ.pdf differ