From: Andrew Lorimer Date: Thu, 2 Aug 2018 06:51:36 +0000 (+1000) Subject: add more on polar graphing X-Git-Tag: yr11~78 X-Git-Url: https://git.lorimer.id.au/notes.git/diff_plain/8a67af4d02d05e3b50fb3159cb24669d995484d4?ds=inline add more on polar graphing --- diff --git a/spec/graphing.md b/spec/graphing.md index 39b748d..6829ab1 100644 --- a/spec/graphing.md +++ b/spec/graphing.md @@ -91,6 +91,9 @@ $$|(F_2P - F_1P )| = k$$ Cartesian equation for hyperbolas ($a$ and $b$ are dilation factors): $${(x-h)^2 \over a^2} - {(y-k)^2 \over b^2} = 1$$ +Distance between vertices is $2a$ +Vertices given by $(h \pm a, k)$ + Asymptotes at $y=\pm {b \over a}(x-h)+k$ To make hyperbola up/down rather than left/right, swap $x$ and $y$ @@ -121,6 +124,19 @@ $$r=a$$ Horizontal: $r={n \over \sin \theta}$ Vertical: $r={n \over \cos \theta}$ +### Cardioids + +$$r=a(n+ \cos\theta)$$ + +### Roses + +$$r=\cos(k\theta)$$ + +where +If $k$ is odd, half of the petals will overlap (hence there are $n$ petals) +If $k$ is even, petals will not overlap (hence $2n$ petals) + + ### Solving polar graphs solve in terms of $r$ @@ -138,11 +154,3 @@ e.g. $r=6\cos \theta\quad$ *(multiple by $r$)* $r^2=6r\cos\theta$ $x^2+y^2=6x$ complete the square - -## Other graphs - -### Cardioids - -$$ - -### Roses