From: Andrew Lorimer Date: Thu, 23 May 2019 08:39:06 +0000 (+1000) Subject: [spec] start collating notes for SAC X-Git-Tag: yr12~124 X-Git-Url: https://git.lorimer.id.au/notes.git/diff_plain/8f6c1394e89e16de8bfb071165a8ec1367d1da4e?ds=sidebyside [spec] start collating notes for SAC --- diff --git a/spec/spec-collated.md b/spec/spec-collated.md new file mode 100644 index 0000000..cb7a9e2 --- /dev/null +++ b/spec/spec-collated.md @@ -0,0 +1,896 @@ +--- +header-includes: +- \usepackage{harpoon} +- \usepackage{amsmath} +- \pagenumbering{gobble} +--- + +# Complex & Imaginary Numbers + +## Imaginary numbers + +$$i^2 = -1 \quad \therefore i = \sqrt {-1}$$ + +### Simplifying negative surds + +\begin{equation}\begin{split}\sqrt{-2} & = \sqrt{-1 \times 2} \\ & = \sqrt{2}i\end{split}\end{equation} + + +## Complex numbers + +$$\mathbb{C} = \{a+bi : a, b \in \mathbb{R} \}$$ + +General form: $z=a+bi$ +$\operatorname{Re}(z) = a, \quad \operatorname{Im}(z) = b$ + +### Addition + +If $z_1 = a+bi$ and $z_2=c+di$, then + +$$z_1+z_2 = (a+c)+(b+d)i$$ + +### Subtraction + +If $z_1=a+bi$ and $z_2=c+di$, then + +$$z_1−z_2=(a−c)+(b−d)i$$ + +### Multiplication by a real constant + +If $z=a+bi$ and $k \in \mathbb{R}$, then + +$$kz=ka+kbi$$ + +### Powers of $i$ + +- $i^{4n} = 1$ +- $i^{4n+1} = i$ +- $i^{4n+2} = -1$ +- $i^{4n+3} = -i$ + +For $i^n$, find remainder $r$ when $n \div 4$. Then $i^n = i^r$. + +### Multiplying complex expressions + +If $z_1 = a+bi$ and $z_2=c+di$, then + +$$z_1 \times z_2 = (ac-bd)+(ad+bc)i$$ + +### Conjugates + +$$\overline{z} = a \mp bi$$ + +##### Properties + +- $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$ +- $\overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}$ +- $\overline{kz} = k \overline{z}, \text{ for } k \in \mathbb{R}$ +- $z \overline{z} = = (a+bi)(a-bi) = a^2+b^2 = |z|^2$ +- $z + \overline{z} = 2 \operatorname{Re}(z)$ + +### Modulus + +Distance from origin. + +$$|{z}|=\sqrt{a^2+b^2} \quad \therefore z \overline{z} = |z|^2$$ + +###### Properties + +- $|z_1 z_2| = |z_1| |z_2|$ +- $|{z_1 \over z_2}| = {|z_1| \over |z_2|}$ +- $|z_1 + z_2| \le |z_1 + |z_2|$ + +### Multiplicative inverse + +\begin{equation}\begin{split}z^{-1} & = {1 \over z} \\ & = {{a-bi} \over {a^2+B^2}} \\ & = {\overline{z} \over {|z|^2}}\end{split}\end{equation} + +### Dividing complex numbers + +$${{z_1} \over {z_2}} = {{z_1\ {z_2}^{-1}}} = {{z_1 \overline{z_2}} \over {{|z_2|}^2}} \quad \text{(multiplicative inverse)}$$ + +In practice, rationalise denominator: + +$${z_1 \over z_2} = {{(a+bi)(c-di)} \over {c^2+d^2}}$$ + +## Argand planes + +- Geometric representation of $\mathbb{C}$ +- horizontal $= \operatorname{Re}(z)$; vertical $= \operatorname{Im}(z)$ +- Multiplication by $i$ results in an anticlockwise rotation of $\pi \over 2$ + +\vfil \break + +## Complex polynomials + +**Include $\pm$ for all solutions, including imaginary** + +### Sum of two squares (quadratics) + +$$z^2+a^2=z^2-(ai)^2=(z+ai)(z-ai)$$ + +Complete the square to get to this point. + +#### Dividing complex polynomials + +$P(z) \div D(z)$ gives quotient $Q(z)$ and remainder $R(z)$: + +$$P(z) = D(z)Q(z) + R(z)$$ + +#### Remainder theorem + +Let $\alpha \in \mathbb{C}$. Remainder of $P(z) \div (z - \alpha)$ is $P(\alpha)$ + +#### Factor theorem + +If $a+bi$ is a solution to $P(z)=0$, then: + +- $P(a+bi)=0$ +- $z-(a+bi)$ is a factor of $P(z)$ + +#### Sum of two cubes + +$$a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)$$ + +## Conjugate root theorem + +If $a+bi$ is a solution to $P(z)=0$, then the conjugate $\overline{z}=a-bi$ is also a solution. + +## Polar form + +\begin{equation}\begin{split}z & =r \operatorname{cis} \theta \\ & = r(\operatorname{cos}\theta+i \operatorname{sin}\theta) \\ & = a + bi \end{split}\end{equation} + +- $r=|z|=\sqrt{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2}$ +- $\theta=\operatorname{arg}(z)$ (on CAS: `arg(a+bi)`) +- **principal argument** is $\operatorname{Arg}(z) \in (-\pi, \pi]$ (note capital $\operatorname{Arg}$) + +Each complex number has multiple polar representations: +$z=r \operatorname{cis} \theta = r \operatorname{cis} (\theta+2 n\pi$) with $n \in \mathbb{Z}$ revolutions + +### Conjugate in polar form + +$$(r \operatorname{cis} \theta)^{-1} = r\operatorname{cis} (- \theta)$$ + +Reflection of $z$ across horizontal axis. + +### Multiplication and division in polar form + +$$z_1z_2=r_1r_2\operatorname{cis}(\theta_1+\theta_2)$$ + +$${z_1 \over z_2} = {r_1 \over r_2} \operatorname{cis}(\theta_1-\theta_2)$$ + +## de Moivres' Theorem + +$$(r\operatorname{cis}\theta)^n=r^n\operatorname{cis}(n\theta) \text{ where } n \in \mathbb{Z}$$ + +## Roots of complex numbers + +$n$th roots of $z = r \operatorname{cis} \theta$ are + +$$z={r^{1 \over n}} \operatorname{cis}({{\theta + 2 k \pi} \over n})$$ + +Same modulus for all solutions. Arguments are separated by ${2 \pi} \over n$ + +The solutions of $z^n=a \text{ where } a \in \mathbb{C}$ lie on circle + +$$x^2 + y^2 = (|a|^{1 \over n})^2$$ + +## Sketching complex graphs + +### Straight line + +- $\operatorname{Re}(z) = c$ or $\operatorname{Im}(z) = c$ (perpendicular bisector) +- $\operatorname{Arg}(z) = \theta$ +- $|z+a|=|z+bi|$ where $m={a \over b}$ +- $|z+a|=|z+b| \longrightarrow 2(a-b)x=b^2-a^2$ + +### Circle + +$|z-z_1|^2 = c^2 |z_2+2|^2$ or $|z-(a + bi)| = c$ + +### Locus + +$\operatorname{Arg}(z) < \theta$ + +# Vectors + +- **vector:** a directed line segment +- arrow indicates direction +- length indicates magnitude +- notated as $\vec{a}, \widetilde{A}, \overrightharp{a}$ +- column notation: $\begin{bmatrix} + x \\ y + \end{bmatrix}$ +- vectors with equal magnitude and direction are equivalent + + +![](graphics/vectors-intro.png){#id .class width=20%} + +## Vector addition + +$\boldsymbol{u} + \boldsymbol{v}$ can be represented by drawing each vector head to tail then joining the lines. +Addition is commutative (parallelogram) + +## Scalar multiplication + +For $k \in \mathbb{R}^+$, $k\boldsymbol{u}$ has the same direction as $\boldsymbol{u}$ but length is multiplied by a factor of $k$. + +When multiplied by $k < 0$, direction is reversed and length is multplied by $k$. + +## Vector subtraction + +To find $\boldsymbol{u} - \boldsymbol{v}$, add $\boldsymbol{-v}$ to $\boldsymbol{u}$ + +## Parallel vectors + +Same or opposite direction + +$$\boldsymbol{u} || \boldsymbol{v} \iff \boldsymbol{u} = k \boldsymbol{v} \text{ where } k \in \mathbb{R} \setminus \{0\}$$ + +## Position vectors + +Vectors may describe a position relative to $O$. + +For a point $A$, the position vector is $\overrightharp{OA}$ + +\vfill\eject + +## Linear combinations of non-parallel vectors + +If two non-zero vectors $\boldsymbol{a}$ and $\boldsymbol{b}$ are not parallel, then: + +$$m\boldsymbol{a} + n\boldsymbol{b} = p \boldsymbol{a} + q \boldsymbol{b}\quad \therefore \quad m = p, \> n = q$$ + +![](graphics/parallelogram-vectors.jpg){#id .class width=20%} +![](graphics/vector-subtraction.jpg){#id .class width=10%} + +## Column vector notation + +A vector between points $A(x_1,y_1), \> B(x_2,y_2)$ can be represented as $\begin{bmatrix}x_2-x_1\\ y_2-y_1 \end{bmatrix}$ + +## Component notation + +A vector $\boldsymbol{u} = \begin{bmatrix}x\\ y \end{bmatrix}$ can be written as $\boldsymbol{u} = x\boldsymbol{i} + y\boldsymbol{j}$. +$\boldsymbol{u}$ is the sum of two components $x\boldsymbol{i}$ and $y\boldsymbol{j}$ +Magnitude of vector $\boldsymbol{u} = x\boldsymbol{i} + y\boldsymbol{j}$ is denoted by $|u|=\sqrt{x^2+y^2}$ + +Basic algebra applies: +$(x\boldsymbol{i} + y\boldsymbol{j}) + (m\boldsymbol{i} + n\boldsymbol{j}) = (x + m)\boldsymbol{i} + (y+n)\boldsymbol{j}$ +Two vectors equal if and only if their components are equal. + +## Unit vector $|\hat{\boldsymbol{a}}|=1$ + +\begin{equation}\begin{split}\hat{\boldsymbol{a}} & = {1 \over {|\boldsymbol{a}|}}\boldsymbol{a} \\ & = \boldsymbol{a} \cdot {|\boldsymbol{a}|}\end{split}\end{equation} + +## Scalar/dot product $\boldsymbol{a} \cdot \boldsymbol{b}$ + +$$\boldsymbol{a} \cdot \boldsymbol{b} = a_1 b_1 + a_2 b_2$$ + +**on CAS:** `dotP([a b c], [d e f])` + +## Scalar product properties + +1. $k(\boldsymbol{a\cdot b})=(k\boldsymbol{a})\cdot \boldsymbol{b}=\boldsymbol{a}\cdot (k{b})$ +2. $\boldsymbol{a \cdot 0}=0$ +3. $\boldsymbol{a \cdot (b + c)}=\boldsymbol{a \cdot b + a \cdot c}$ +4. $\boldsymbol{i \cdot i} = \boldsymbol{j \cdot j} = \boldsymbol{k \cdot k}= 1$ +5. If $\boldsymbol{a} \cdot \boldsymbol{b} = 0$, $\boldsymbol{a}$ and $\boldsymbol{b}$ are perpendicular +6. $\boldsymbol{a \cdot a} = |\boldsymbol{a}|^2 = a^2$ + +For parallel vectors $\boldsymbol{a}$ and $\boldsymbol{b}$: +$$\boldsymbol{a \cdot b}=\begin{cases} +|\boldsymbol{a}||\boldsymbol{b}| \hspace{2.8em} \text{if same direction}\\ +-|\boldsymbol{a}||\boldsymbol{b}| \hspace{2em} \text{if opposite directions} +\end{cases}$$ + +## Geometric scalar products + +$$\boldsymbol{a} \cdot \boldsymbol{b} = |\boldsymbol{a}| |\boldsymbol{b}| \cos \theta$$ + +where $0 \le \theta \le \pi$ + +## Perpendicular vectors + +If $\boldsymbol{a} \cdot \boldsymbol{b} = 0$, then $\boldsymbol{a} \perp \boldsymbol{b}$ (since $\cos 90 = 0$) + +## Finding angle between vectors + +**positive direction** + +$$\cos \theta = {{\boldsymbol{a} \cdot \boldsymbol{b}} \over {|\boldsymbol{a}| |\boldsymbol{b}|}} = {{a_1 b_1 + a_2 b_2} \over {|\boldsymbol{a}| |\boldsymbol{b}|}}$$ + +**on CAS:** `angle([a b c], [a b c])` (Action -> Vector -> Angle) + +## Angle between vector and axis + +Direction of a vector can be given by the angles it makes with $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$ directions. + +For $\boldsymbol{a} = a_1 \boldsymbol{i} + a_2 \boldsymbol{j} + a_3 \boldsymbol{k}$ which makes angles $\alpha, \beta, \gamma$ with positive direction of $x, y, z$ axes: +$$\cos \alpha = {a_1 \over |\boldsymbol{a}|}, \quad \cos \beta = {a_2 \over |\boldsymbol{a}|}, \quad \cos \gamma = {a_3 \over |\boldsymbol{a}|}$$ + +**on CAS:** `angle([a b c], [1 0 0])` for angle between $a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}$ and $x$-axis + +## Vector projections + +Vector resolute of $\boldsymbol{a}$ in direction of $\boldsymbol{b}$ is magnitude of $\boldsymbol{a}$ in direction of $\boldsymbol{b}$: + +$$\boldsymbol{u}={{\boldsymbol{a}\cdot\boldsymbol{b}}\over |\boldsymbol{b}|^2}\boldsymbol{b}=\left({\boldsymbol{a}\cdot{\boldsymbol{b} \over |\boldsymbol{b}|}}\right)\left({\boldsymbol{b} \over |\boldsymbol{b}|}\right)=(\boldsymbol{a} \cdot \hat{\boldsymbol{b}})\hat{\boldsymbol{b}}$$ + +## Scalar resolute of $\boldsymbol{a}$ on $\boldsymbol{b}$ + +$$r_s = |\boldsymbol{u}| = \boldsymbol{a} \cdot \hat{\boldsymbol{b}}$$ + +## Vector resolute of $\boldsymbol{a} \perp \boldsymbol{b}$ + +$$\boldsymbol{w} = \boldsymbol{a} - \boldsymbol{u} \> \text{ where } \boldsymbol{u} \text{ is projection } \boldsymbol{a} \text{ on } \boldsymbol{b}$$ + +## Vector proofs + +### Concurrent lines + +$\ge$ 3 lines intersect at a single point + +### Collinear points + +$\ge$ 3 points lie on the same line +$\implies \vec{OC} = \lambda \vec{OA} + \mu \vec{OB}$ where $\lambda + \mu = 1$. If $C$ is between $\vec{AB}$, then $0 < \mu < 1$ +Points $A, B, C$ are collinear iff $\vec{AC}=m\vec{AB} \text{ where } m \ne 0$ + +### Useful vector properties + +- If $\boldsymbol{a}$ and $\boldsymbol{b}$ are parallel, then $\boldsymbol{b}=k\boldsymbol{a}$ for some $k \in \mathbb{R} \setminus \{0\}$ +- If $\boldsymbol{a}$ and $\boldsymbol{b}$ are parallel with at least one point in common, then they lie on the same straight line +- Two vectors $\boldsymbol{a}$ and $\boldsymbol{b}$ are perpendicular if $\boldsymbol{a} \cdot \boldsymbol{b}=0$ +- $\boldsymbol{a} \cdot \boldsymbol{a} = |\boldsymbol{a}|^2$ + +## Linear dependence + +Vectors $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ are linearly dependent if they are non-parallel and: + +$$k\boldsymbol{a}+l\boldsymbol{b}+m\boldsymbol{c} = 0$$ +$$\therefore \boldsymbol{c} = m\boldsymbol{a} + n\boldsymbol{b} \quad \text{(simultaneous)}$$ + +$\boldsymbol{a}, \boldsymbol{b},$ and $\boldsymbol{c}$ are linearly independent if no vector in the set is expressible as a linear combination of other vectors in set, or if they are parallel. + +Vector $\boldsymbol{w}$ is a linear combination of vectors $\boldsymbol{v_1}, \boldsymbol{v_2}, \boldsymbol{v_3}$ + +## Three-dimensional vectors + +Right-hand rule for axes: $z$ is up or out of page. + +i![](graphics/vectors-3d.png) + +## Parametric vectors + +Parametric equation of line through point $(x_0, y_0, z_0)$ and parallel to $a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}$ is: + +\begin{equation}\begin{cases}x = x_o + a \cdot t \\ y = y_0 + b \cdot t \\ z = z_0 + c \cdot t\end{cases}\end{equation} + +# Circular functions + +Period of $a\sin(bx)$ is ${2\pi} \over b$ + +Period of $a\tan(nx)$ is $\pi \over n$ +Asymptotes at $x={2k+1)\pi \over 2n} \> \vert \> k \in \mathbb{Z}$ + +## Reciprocal functions + +### Cosecant + +![](graphics/csc.png) + +$$\operatorname{cosec} \theta = {1 \over \sin \theta} \> \vert \> \sin \theta \ne 0$$ + +- **Domain** $= \mathbb{R} \setminus {n\pi : n \in \mathbb{Z}}$ +- **Range** $= \mathbb{R} \setminus (-1, 1)$ +- **Turning points** at $\theta = {{(2n + 1)\pi} \over 2} \> \vert \> n \in \mathbb{Z}$ +- **Asymptotes** at $\theta = n\pi \> \vert \> n \in \mathbb{Z}$ + +### Secant + +![](graphics/sec.png) + +$$\operatorname{sec} \theta = {1 \over \cos \theta} \> \vert \> \cos \theta \ne 0$$ + +- **Domain** $= \mathbb{R} \setminus \{{{(2n + 1) \pi} \over 2 } : n \in \mathbb{Z}\}$ +- **Range** $= \mathbb{R} \setminus (-1, 1)$ +- **Turning points** at $\theta = n\pi \> \vert \> n \in \mathbb{Z}$ +- **Asymptotes** at $\theta = {{(2n + 1) \pi} \over 2} \> \vert \> n \in \mathbb{Z}$ + +### Cotangent + +![](graphics/cot.png) + +$$\operatorname{cot} \theta = {{\cos \theta} \over {\sin \theta}} \> \vert \> \sin \theta \ne 0$$ + +- **Domain** $= \mathbb{R} \setminus \{n \pi: n \in \mathbb{Z}\}$ +- **Range** $= \mathbb{R}$ +- **Asymptotes** at $\theta = n\pi \> \vert \> n \in \mathbb{Z}$ + +### Symmetry properties + +\begin{equation}\begin{split} + \operatorname{sec} (\pi \pm x) & = -\operatorname{sec} x \\ + \operatorname{sec} (-x) & = \operatorname{sec} x \\ + \operatorname{cosec} (\pi \pm x) & = \mp \operatorname{cosec} x \\ + \operatorname{cosec} (-x) & = - \operatorname{cosec} x \\ + \operatorname{cot} (\pi \pm x) & = \pm \operatorname{cot} x \\ + \operatorname{cot} (-x) & = - \operatorname{cot} x +\end{split}\end{equation} + +### Complementary properties + +\begin{equation}\begin{split} + \operatorname{sec} \left({\pi \over 2} - x\right) & = \operatorname{cosec} x \\ + \operatorname{cosec} \left({\pi \over 2} - x\right) & = \operatorname{sec} x \\ + \operatorname{cot} \left({\pi \over 2} - x\right) & = \tan x \\ + \tan \left({\pi \over 2} - x\right) & = \operatorname{cot} x +\end{split}\end{equation} + +### Pythagorean identities + +\begin{equation}\begin{split} + 1 + \operatorname{cot}^2 x & = \operatorname{cosec}^2 x, \quad \text{where } \sin x \ne 0 \\ + 1 + \tan^2 x & = \operatorname{sec}^2 x, \quad \text{where } \cos x \ne 0 +\end{split}\end{equation} + +## Compound angle formulas + +$$\cos(x \pm y) = \cos x + \cos y \mp \sin x \sin y$$ +$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$ +$$\tan(x \pm y) = {{\tan x \pm \tan y} \over {1 \mp \tan x \tan y}}$$ + +## Double angle formulas + +\begin{equation}\begin{split} + \cos 2x &= \cos^2 x - \sin^2 x \\ + & = 1 - 2\sin^2 x \\ + & = 2 \cos^2 x -1 +\end{split}\end{equation} + +$$\sin 2x = 2 \sin x \cos x$$ + +$$\tan 2x = {{2 \tan x} \over {1 - \tan^2 x}}$$ + +## Inverse circular functions + +Inverse functions: $f(f^{-1}(x)) = x, \quad f(f^{-1}(x)) = x$ +Must be 1:1 to find inverse (reflection in $y=x$ + +Domain is restricted to make functions 1:1. + +### $\arcsin$ + +$$\sin^{-1}: [-1, 1] \rightarrow \mathbb{R}, \quad \sin^{-1} x = y, \quad \text{where } \sin y = x \text{ and } y \in [{-\pi \over 2}, {\pi \over 2}]$$ + +### $\arcos$ + +$$\cos^{-1} \rightarrow \mathbb{R}, \quad \cos^{-1} x = y, \quad \text{where } \cos y = x \text{ and } y \in [0, \pi]$$ + +### $\arctan$ + +$$\tan^{-1}: \mathbb{R} \rightarrow \mathbb{R}, \quad \tan^{-1} x = y, \quad \text{where } \tan y = x \text{ and } y \in \left(-{\pi \over 2}, {\pi \over 2}\right)$$ +# Differential calculus + +## Limits + +$$\lim_{x \rightarrow a}f(x)$$ + +$L^-$ - limit from below + +$L^+$ - limit from above + +$\lim_{x \to a} f(x)$ - limit of a point + +- Limit exists if $L^-=L^+$ +- If limit exists, point does not. + +Limits can be solved using normal techniques (if div 0, factorise) + +## Limit theorems + +1. For constant function $f(x)=k$, $\lim_{x \rightarrow a} f(x) = k$ +2. $\lim_{x \rightarrow a} (f(x) \pm g(x)) = F \pm G$ +3. $\lim_{x \rightarrow a} (f(x) \times g(x)) = F \times G$ +4. ${\lim_{x \rightarrow a} {f(x) \over g(x)}} = {F \over G}, G \ne 0$ + +Corollary: $\lim_{x \rightarrow a} c \times f(x)=cF$ where $c=$ constant + +## Solving limits for $x\rightarrow\infty$ + +Factorise so that all values of $x$ are in denominators. + +e.g. + +$$\lim_{x \rightarrow \infty}{{2x+3} \over {x-2}}={{2+{3 \over x}} \over {1-{2 \over x}}}={2 \over 1} = 2$$ + + +## Continuous functions + +A function is continuous if $L^-=L^+=f(x)$ for all values of $x$. + +## Gradients of secants and tangents + +Secant (chord) - line joining two points on curve + +Tangent - line that intersects curve at one point + +given $P(x,y) \quad Q(x+\delta x, y + \delta y)$: +gradient of chord joining $P$ and $Q$ is ${m_{PQ}}={\operatorname{rise} \over \operatorname{run}} = {\delta y \over \delta x}$ + +As $Q \rightarrow P, \delta x \rightarrow 0$. Chord becomes tangent (two infinitesimal points are equal). + +Can also be used with functions, where $h=\delta x$. + +## First principles derivative + +$$f^\prime(x) = \lim_{\delta x \rightarrow 0}{\delta y \over \delta x}={dy \over dx}$$ + +$$m_{\tan}=\lim_{h \rightarrow 0}f^\prime(x)$$ + + + +$$m_{\vec{PQ}}=f^\prime(x)$$ + +first principles derivative: +$${m_{\text{tangent at }P} =\lim_{h \rightarrow 0}}{{f(x+h)-f(x)}\over h}$$ + +## Gradient at a point + +Given point $P(a, b)$ and function $f(x)$, the gradient is $f^\prime(a)$ + + +## Derivatives of $x^n$ + +$${d(ax^n) \over dx}=anx^{n-1}$$ + +If $x=$ constant, derivative is $0$ + +If $y=ax^n$, derivative is $a\times nx^{n-1}$ + +If $f(x)={1 \over x}=x^{-1}, \quad f^\prime(x)=-1x^{-2}={-1 \over x^2}$ + +If $f(x)=^5\sqrt{x}=x^{1 \over 5}, \quad f^\prime(x)={1 \over 5}x^{-4/5}={1 \over 5 \times ^5\sqrt{x^4}}$ + +If $f(x)=(x-b)^2, \quad f^\prime(x)=2(x-b)$ + +$$f^\prime(x)=\lim_{h \rightarrow 0}{{f(x+h)-f(x)} \over h}$$ + +## Derivatives of $u \pm v$ + +$${dy \over dx}={du \over dx} \pm {dv \over dx}$$ +where $u$ and $v$ are functions of $x$ + +## Euler's number as a limit + +$$\lim_{h \rightarrow 0} {{e^h-1} \over h}=1$$ + +## Chain rule for $(f\circ g)$ + +If $f(x) = h(g(x)) = (h \circ g)(x)$: + +$$f^\prime(x) = h^\prime(g(x)) \cdot g^\prime(x)$$ + +If $y=h(u)$ and $u=g(x)$: + +$${dy \over dx} = {dy \over du} \cdot {du \over dx}$$ +$${d((ax+b)^n) \over dx} = {d(ax+b) \over dx} \cdot n \cdot (ax+b)^{n-1}$$ + +Used with only one expression. + +e.g. $y=(x^2+5)^7$ - Cannot reasonably expand +Let $u-x^2+5$ (inner expression) +${du \over dx} = 2x$ +$y=u^7$ +${dy \over du} = 7u^6$ + +## Product rule for $y=uv$ + +$${dy \over dx} = u{dv \over dx} + v{du \over dx}$$ + +## Quotient rule for $y={u \over v}$ + +$${dy \over dx} = {{v{du \over dx} - u{dv \over dx}} \over v^2}$$ + +$$f^\prime(x)={{v(x)u^\prime(x)-u(x)v^\prime(x)} \over [v(x)]^2}$$ + +## Logarithms + +$$\log_b (x) = n \quad \operatorname{where} \hspace{0.5em} b^n=x$$ + +Wikipedia: + +> the logarithm of a given number $x$ is the exponent to which another fixed number, the base $b$, must be raised, to produce that number $x$ + +### Logarithmic identities + +$\log_b (xy)=\log_b x + \log_b y$ +$\log_b x^n = n \log_b x$ +$\log_b y^{x^n} = x^n \log_b y$ + +### Index identities + +$b^{m+n}=b^m \cdot b^n$ +$(b^m)^n=b^{m \cdot n}$ +$(b \cdot c)^n = b^n \cdot c^n$ +${a^m \div a^n} = {a^{m-n}}$ + +### $e$ as a logarithm + +$$\operatorname{if} y=e^x, \quad \operatorname{then} x=\log_e y$$ +$$\ln x = \log_e x$$ + +### Differentiating logarithms +$${d(\log_e x)\over dx} = x^{-1} = {1 \over x}$$ + +## Derivative rules + +| $f(x)$ | $f^\prime(x)$ | +| ------ | ------------- | +| $\sin x$ | $\cos x$ | +| $\sin ax$ | $a\cos ax$ | +| $\cos x$ | $-\sin x$ | +| $\cos ax$ | $-a \sin ax$ | +| $\tan f(x)$ | $f^2(x) \sec^2f(x)$ | +| $e^x$ | $e^x$ | +| $e^{ax}$ | $ae^{ax}$ | +| $ax^{nx}$ | $an \cdot e^{nx}$ | +| $\log_e x$ | $1 \over x$ | +| $\log_e {ax}$ | $1 \over x$ | +| $\log_e f(x)$ | $f^\prime (x) \over f(x)$ | +| $\sin(f(x))$ | $f^\prime(x) \cdot \cos(f(x))$ | +| $\sin^{-1} x$ | $1 \over {\sqrt{1-x^2}}$ | +| $\cos^{-1} x$ | $-1 \over {sqrt{1-x^2}}$ | +| $\tan^{-1} x$ | $1 \over {1 + x^2}$ | + +## Reciprocal derivatives + +$${1 \over {dy \over dx}} = {dx \over dy}$$ + +## Differentiating $x=f(y)$ + +Find $dx \over dy$. Then ${dx \over dy} = {1 \over {dy \over dx}} \implies {dy \over dx} = {1 \over {dx \over dy}}$. + +$${dy \over dx} = {1 \over {dx \over dy}}$$ + +## Second derivative + +$$f(x) \longrightarrow f^\prime (x) \longrightarrow f^{\prime\prime}(x)$$ + +$$\therefore y \longrightarrow {dy \over dx} \longrightarrow {d({dy \over dx}) \over dx} \longrightarrow {d^2 y \over dx^2}$$ + +Order of polynomial $n$th derivative decrements each time the derivative is taken + +### Points of Inflection + +*Stationary point* - point of zero gradient (i.e. $f^\prime(x)=0$) +*Point of inflection* - point of maximum $|$gradient$|$ (i.e. $f^{\prime\prime} = 0$) + +* if $f^\prime (a) = 0$ and $f^{\prime\prime}(a) > 0$, then point $(a, f(a))$ is a local min (curve is concave up) +* if $f^\prime (a) = 0$ and $f^{\prime\prime} (a) < 0$, then point $(a, f(a))$ is local max (curve is concave down) +* if $f^{\prime\prime}(a) = 0$, then point $(a, f(a))$ is a point of inflection + + if also $f^\prime(a)=0$, then it is a stationary point of inflection + +![](graphics/second-derivatives.png) + +## Implicit Differentiation + +**On CAS:** Action $\rightarrow$ Calculation $\rightarrow$ `impDiff(y^2+ax=5, x, y)`. Returns $y^\prime= \dots$. + +Used for differentiating circles etc. + +If $p$ and $q$ are expressions in $x$ and $y$ such that $p=q$, for all $x$ nd $y$, then: + +$${dp \over dx} = {dq \over dx} \quad \text{and} \quad {dp \over dy} = {dq \over dy}$$ + +## Integration + +$$\int f(x) \cdot dx = F(x) + c \quad \text{where } F^\prime(x) = f(x)$$ + +$$\int x^n \cdot dx = {x^{n+1} \over n+1} + c$$ + +- area enclosed by curves +- $+c$ should be shown on each step without $\int$ + +### Integral laws + +$\int f(x) + g(x) dx = \int f(x) dx + \int g(x) dx$ +$\int k f(x) dx = k \int f(x) dx$ + +| $f(x)$ | $\int f(x) \cdot dx$ | +| ------------------------------- | ---------------------------- | +| $k$ (constant) | $kx + c$ | +| $x^n$ | ${x^{n+1} \over {n+1}} + c$ | +| $a x^{-n}$ | $a \cdot \log_e x + c$ | +| ${1 \over {ax+b}}$ | ${1 \over a} \log_e (ax+b) + c$ | +| $(ax+b)^n$ | ${1 \over {a(n+1)}}(ax+b)^{n-1} + c$ | +| $e^{kx}$ | ${1 \over k} e^{kx} + c$ | +| $e^k$ | $e^kx + c$ | +| $\sin kx$ | $-{1 \over k} \cos (kx) + c$ | +| $\cos kx$ | ${1 \over k} \sin (kx) + c$ | +| $\sec^2 kx$ | ${1 \over k} \tan(kx) + c$ | +| $1 \over \sqrt{a^2-x^2}$ | $\sin^{-1} {x \over a} + c \>\vert\> a>0$ | +| $-1 \over \sqrt{a^2-x^2}$ | $\cos^{-1} {x \over a} + c \>\vert\> a>0$ | +| $a \over {a^2-x^2}$ | $\tan^{-1} {x \over a} + c$ | +| ${f^\prime (x)} \over {f(x)}$ | $\log_e f(x) + c$ | +| $g^\prime(x)\cdot f^\prime(g(x)$ | $f(g(x))$ (chain rule)| +| $f(x) \cdot g(x)$ | $\int [f^\prime(x) \cdot g(x)] dx + \int [g^\prime(x) f(x)] dx$ | + +Note $\sin^{-1} {x \over a} + \cos^{-1} {x \over a}$ is constant for all $x \in (-a, a)$. + +### Definite integrals + +$$\int_a^b f(x) \cdot dx = [F(x)]_a^b=F(b)-F(a)$$ + +- Signed area enclosed by: $\> y=f(x), \quad y=0, \quad x=a, \quad x=b$. +- *Integrand* is $f$. +- $F(x)$ may be any integral, i.e. $c$ is inconsequential + +#### Properties + +$$\int^b_a f(x) \> dx = \int^c_a f(x) \> dx + \int^b_c f(x) \> dx$$ + +$$\int^a_a f(x) \> dx = 0$$ + +$$\int^b_a k \cdot f(x) \> dx = k \int^b_a f(x) \> dx$$ + +$$\int^b_a f(x) \pm g(x) \> dx = \int^b_a f(x) \> dx \pm \int^b_a g(x) \> dx$$ + +$$\int^b_a f(x) \> dx = - \int^a_b f(x) \> dx$$ + +### Integration by substitution + +$$\int f(u) {du \over dx} \cdot dx = \int f(u) \cdot du$$ + +Note $f(u)$ must be one-to-one $\implies$ one $x$ value for each $y$ value + +e.g. for $y=\int(2x+1)\sqrt{x+4} \cdot dx$: +let $u=x+4$ +$\implies {du \over dx} = 1$ +$\implies x = u - 4$ +then $y=\int (2(u-4)+1)u^{1 \over 2} \cdot du$ +Solve as a normal integral + +#### Definite integrals by substitution + +For $\int^b_a f(x) {du \over dx} \cdot dx$, evaluate new $a$ and $b$ for $f(u) \cdot du$. + +### Trigonometric integration + +$$\sin^m x \cos^n x \cdot dx$$ + +**$m$ is odd:** +$m=2k+1$ where $k \in \mathbb{Z}$ +$\implies \sin^{2k+1} x = (\sin^2 z)^k \sin x = (1 - \cos^2 x)^k \sin x$ +Substitute $u=\cos x$ + +**$n$ is odd:** +$n=2k+1$ where $k \in \mathbb{Z}$ +$\implies \cos^{2k+1} x = (\cos^2 x)^k \cos x = (1-\sin^2 x)^k \cos x$ +Subbstitute $u=\sin x$ + +**$m$ and $n$ are even:** +Use identities: + +- $\sin^2x={1 \over 2}(1-\cos 2x)$ +- $\cos^2x={1 \over 2}(1+\cos 2x)$ +- $\sin 2x = 2 \sin x \cos x$ + +## Partial fractions + +On CAS: Action $\rightarrow$ Transformation $\rightarrow$ `expand/combine` +or Interactive $\rightarrow$ Transformation $\rightarrow$ `expand` $\rightarrow$ Partial + +## Graphing integrals on CAS + +In main: Interactive $\rightarrow$ Calculation $\rightarrow$ $\int$ ($\rightarrow$ Definite) +Restrictions: `Define f(x)=...` $\rightarrow$ `f(x)|x>1` (e.g.) + +## Applications of antidifferentiation + +- $x$-intercepts of $y=f(x)$ identify $x$-coordinates of stationary points on $y=F(x)$ +- nature of stationary points is determined by sign of $y=f(x)$ on either side of its $x$-intercepts +- if $f(x)$ is a polynomial of degree $n$, then $F(x)$ has degree $n+1$ + +To find stationary points of a function, substitute $x$ value of given point into derivative. Solve for ${dy \over dx}=0$. Integrate to find original function. + +## Solids of revolution + +Approximate as sum of infinitesimally-thick cylinders + +### Rotation about $x$-axis + +\begin{align*} + V &= \int^{x=b}_{x-a} \pi y^2 \> dx \\ + &= \pi \int^b_a (f(x))^2 \> dx +\end{align*} + +### Rotation about $y$-axis + +\begin{align*} + V &= \int^{y=b}_{y=a} \pi x^2 \> dy \\ + &= \pi \int^b_a (f(y))^2 \> dy +\end{align*} + +### Regions not bound by $y=0$ + +$$V = \pi \int^b_a f(x)^2 - g(x)^2 \> dx$$ +where $f(x) > g(x)$ + +## Length of a curve + +$$L = \int^b_a \sqrt{1 + ({dy \over dx})^2} \> dx \quad \text{(Cartesian)}$$ + +$$L = \int^b_a \sqrt{{dx \over dt} + ({dy \over dt})^2} \> dt \quad \text{(parametric)}$$ + +Evaluate on CAS. Or use Interactive $\rightarrow$ Calculation $\rightarrow$ Line $\rightarrow$ `arcLen`. + +## Rates + +### Related rates + +$${da \over db} \quad \text{(change in } a \text{ with respect to } b)$$ + +### Gradient at a point on parametric curve + +$${dy \over dx} = {{dy \over dt} \div {dx \over dt}} \> \vert \> {dx \over dt} \ne 0$$ + +$${d^2 \over dx^2} = {d(y^\prime) \over dx} = {{dy^\prime \over dt} \div {dx \over dt}} \> \vert \> y^\prime = {dy \over dx}$$ + +## Rational functions + +$$f(x) = {P(x) \over Q(x)} \quad \text{where } P, Q \text{ are polynomial functions}$$ + +### Addition of ordinates + +- when two graphs have the same ordinate, $y$-coordinate is double the ordinate +- when two graphs have opposite ordinates, $y$-coordinate is 0 i.e. ($x$-intercept) +- when one of the ordinates is 0, the resulting ordinate is equal to the other ordinate + +## Fundamental theorem of calculus + +If $f$ is continuous on $[a, b]$, then + +$$\int^b_a f(x) \> dx = F(b) - F(a)$$ + +where $F$ is any antiderivative of $f$ + +## Differential equations + +One or more derivatives + +**Order** - highest power inside derivative +**Degree** - highest power of highest derivative +e.g. ${\left(dy^2 \over d^2 x\right)}^3$: order 2, degree 3 + +### Verifying solutions + +Start with $y=\dots$, and differentiate. Substitute into original equation. + +### Function of the dependent variable + +If ${dy \over dx}=g(y)$, then ${dx \over dy} = 1 \div {dy \over dx} = {1 \over g(y)}$. Integrate both sides to solve equation. Only add $c$ on one side. Express $e^c$ as $A$. + +### Mixing problems + +$$\left({dm \over dt}\right)_\Sigma = \left({dm \over dt}\right)_{\text{in}} - \left({dm \over dt}\)_{\text{out}}$$ + +### Separation of variables + +If ${dy \over dx}=f(x)g(y)$, then: + +$$\int f(x) \> dx = \int {1 \over g(y)} \> dy$$ + +### Using definite integrals to solve DEs + +Used for situations where solutions to ${dy \over dx} = f(x)$ is not required. + +In some cases, it may not be possible to obtain an exact solution. + +Approximate solutions can be found by numerically evaluating a definite integral. + +### Using Euler's method to solve a differential equation + +$${{f(x+h) - f(x)} \over h } \approx f^\prime (x) \quad \text{for small } h$$ + +$$\implies f(x+h) \approx f(x) + hf^\prime(x)$$ + diff --git a/spec/spec-collated.pdf b/spec/spec-collated.pdf new file mode 100644 index 0000000..4eafe0c Binary files /dev/null and b/spec/spec-collated.pdf differ diff --git a/spec/spec-collated.tex b/spec/spec-collated.tex new file mode 100644 index 0000000..30f96df --- /dev/null +++ b/spec/spec-collated.tex @@ -0,0 +1,1325 @@ +\documentclass[]{article} +\usepackage{lmodern} +\usepackage{amssymb,amsmath} +\usepackage{ifxetex,ifluatex} +\usepackage{fixltx2e} % provides \textsubscript +\ifnum 0\ifxetex 1\fi\ifluatex 1\fi=0 % if pdftex + \usepackage[T1]{fontenc} + \usepackage[utf8]{inputenc} +\else % if luatex or xelatex + \ifxetex + \usepackage{mathspec} + \else + \usepackage{fontspec} + \fi + \defaultfontfeatures{Ligatures=TeX,Scale=MatchLowercase} +\fi +% use upquote if available, for straight quotes in verbatim environments +\IfFileExists{upquote.sty}{\usepackage{upquote}}{} +% use microtype if available +\IfFileExists{microtype.sty}{% +\usepackage[]{microtype} +\UseMicrotypeSet[protrusion]{basicmath} % disable protrusion for tt fonts +}{} +\PassOptionsToPackage{hyphens}{url} % url is loaded by hyperref +\usepackage[unicode=true]{hyperref} +\hypersetup{ + pdfborder={0 0 0}, + breaklinks=true} +\urlstyle{same} % don't use monospace font for urls +\usepackage{longtable,booktabs} +% Fix footnotes in tables (requires footnote package) +\IfFileExists{footnote.sty}{\usepackage{footnote}\makesavenoteenv{long table}}{} +\usepackage{graphicx,grffile} +\makeatletter +\def\maxwidth{\ifdim\Gin@nat@width>\linewidth\linewidth\else\Gin@nat@width\fi} +\def\maxheight{\ifdim\Gin@nat@height>\textheight\textheight\else\Gin@nat@height\fi} +\makeatother +% Scale images if necessary, so that they will not overflow the page +% margins by default, and it is still possible to overwrite the defaults +% using explicit options in \includegraphics[width, height, ...]{} +\setkeys{Gin}{width=\maxwidth,height=\maxheight,keepaspectratio} +\IfFileExists{parskip.sty}{% +\usepackage{parskip} +}{% else +\setlength{\parindent}{0pt} +\setlength{\parskip}{6pt plus 2pt minus 1pt} +} +\setlength{\emergencystretch}{3em} % prevent overfull lines +\providecommand{\tightlist}{% + \setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}} +\setcounter{secnumdepth}{0} +% Redefines (sub)paragraphs to behave more like sections +\ifx\paragraph\undefined\else +\let\oldparagraph\paragraph +\renewcommand{\paragraph}[1]{\oldparagraph{#1}\mbox{}} +\fi +\ifx\subparagraph\undefined\else +\let\oldsubparagraph\subparagraph +\renewcommand{\subparagraph}[1]{\oldsubparagraph{#1}\mbox{}} +\fi + +% set default figure placement to htbp +\makeatletter +\def\fps@figure{htbp} +\makeatother + +\usepackage{harpoon}% +\pagenumbering{gobble} +\usepackage{fancyhdr} + +\title{Year 12 Specialist} +\author{Andrew Lorimer} +\date{2019} + +\begin{document} + +\pagestyle{fancy} +\fancyhead[LO,LE]{Year 12 Specialist} +\fancyhead[CO,CE]{Andrew Lorimmer} +\maketitle + +\section{Complex \& Imaginary Numbers}\label{complex-imaginary-numbers} + +\subsection{Imaginary numbers}\label{imaginary-numbers} + +\[i^2 = -1 \quad \therefore i = \sqrt {-1}\] + +\subsubsection{Simplifying negative +surds}\label{simplifying-negative-surds} + +\begin{equation}\begin{split}\sqrt{-2} & = \sqrt{-1 \times 2} \\ & = \sqrt{2}i\end{split}\end{equation} + +\subsection{Complex numbers}\label{complex-numbers} + +\[\mathbb{C} = \{a+bi : a, b \in \mathbb{R} \}\] + +General form: \(z=a+bi\)\\ +\(\operatorname{Re}(z) = a, \quad \operatorname{Im}(z) = b\) + +\subsubsection{Addition}\label{addition} + +If \(z_1 = a+bi\) and \(z_2=c+di\), then + +\[z_1+z_2 = (a+c)+(b+d)i\] + +\subsubsection{Subtraction}\label{subtraction} + +If \(z_1=a+bi\) and \(z_2=c+di\), then + +\[z_1 - z_2=(a−c)+(b−d)i\] + +\subsubsection{Multiplication by a real +constant}\label{multiplication-by-a-real-constant} + +If \(z=a+bi\) and \(k \in \mathbb{R}\), then + +\[kz=ka+kbi\] + +\subsubsection{\texorpdfstring{Powers of +\(i\)}{Powers of i}}\label{powers-of-i} + +\begin{itemize} +\tightlist +\item + \(i^{4n} = 1\) +\item + \(i^{4n+1} = i\) +\item + \(i^{4n+2} = -1\) +\item + \(i^{4n+3} = -i\) +\end{itemize} + +For \(i^n\), find remainder \(r\) when \(n \div 4\). Then \(i^n = i^r\). + +\subsubsection{Multiplying complex +expressions}\label{multiplying-complex-expressions} + +If \(z_1 = a+bi\) and \(z_2=c+di\), then + +\[z_1 \times z_2 = (ac-bd)+(ad+bc)i\] + +\subsubsection{Conjugates}\label{conjugates} + +\[\overline{z} = a \mp bi\] + +\subparagraph{Properties}\label{properties} + +\begin{itemize} +\tightlist +\item + \(\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}\) +\item + \(\overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}\) +\item + \(\overline{kz} = k \overline{z}, \text{ for } k \in \mathbb{R}\) +\item + \(z \overline{z} = = (a+bi)(a-bi) = a^2+b^2 = |z|^2\) +\item + \(z + \overline{z} = 2 \operatorname{Re}(z)\) +\end{itemize} + +\subsubsection{Modulus}\label{modulus} + +Distance from origin. + +\[|{z}|=\sqrt{a^2+b^2} \quad \therefore z \overline{z} = |z|^2\] + +Properties + +\begin{itemize} +\tightlist +\item + \(|z_1 z_2| = |z_1| |z_2|\) +\item + \(|{z_1 \over z_2}| = {|z_1| \over |z_2|}\) +\item + \(|z_1 + z_2| \le |z_1 + |z_2|\) +\end{itemize} + +\subsubsection{Multiplicative inverse}\label{multiplicative-inverse} + +\begin{equation}\begin{split}z^{-1} & = {1 \over z} \\ & = {{a-bi} \over {a^2+B^2}} \\ & = {\overline{z} \over {|z|^2}}\end{split}\end{equation} + +\subsubsection{Dividing complex numbers}\label{dividing-complex-numbers} + +\[{{z_1} \over {z_2}} = {{z_1\ {z_2}^{-1}}} = {{z_1 \overline{z_2}} \over {{|z_2|}^2}} \quad \text{(multiplicative inverse)}\] + +In practice, rationalise denominator: + +\[{z_1 \over z_2} = {{(a+bi)(c-di)} \over {c^2+d^2}}\] + +\subsection{Argand planes}\label{argand-planes} + +\begin{itemize} +\tightlist +\item + Geometric representation of \(\mathbb{C}\) +\item + horizontal \(= \operatorname{Re}(z)\); vertical + \(= \operatorname{Im}(z)\) +\item + Multiplication by \(i\) results in an anticlockwise rotation of + \(\pi \over 2\) +\end{itemize} + +\vfil \break + +\subsection{Complex polynomials}\label{complex-polynomials} + +\textbf{Include \(\pm\) for all solutions, including imaginary} + +\subsubsection{Sum of two squares +(quadratics)}\label{sum-of-two-squares-quadratics} + +\[z^2+a^2=z^2-(ai)^2=(z+ai)(z-ai)\] + +Complete the square to get to this point. + +\paragraph{Dividing complex +polynomials}\label{dividing-complex-polynomials} + +\(P(z) \div D(z)\) gives quotient \(Q(z)\) and remainder \(R(z)\): + +\[P(z) = D(z)Q(z) + R(z)\] + +\paragraph{Remainder theorem}\label{remainder-theorem} + +Let \(\alpha \in \mathbb{C}\). Remainder of \(P(z) \div (z - \alpha)\) +is \(P(\alpha)\) + +\paragraph{Factor theorem}\label{factor-theorem} + +If \(a+bi\) is a solution to \(P(z)=0\), then: + +\begin{itemize} +\tightlist +\item + \(P(a+bi)=0\) +\item + \(z-(a+bi)\) is a factor of \(P(z)\) +\end{itemize} + +\paragraph{Sum of two cubes}\label{sum-of-two-cubes} + +\[a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)\] + +\subsection{Conjugate root theorem}\label{conjugate-root-theorem} + +If \(a+bi\) is a solution to \(P(z)=0\), then the conjugate +\(\overline{z}=a-bi\) is also a solution. + +\subsection{Polar form}\label{polar-form} + +\begin{equation}\begin{split}z & =r \operatorname{cis} \theta \\ & = r(\operatorname{cos}\theta+i \operatorname{sin}\theta) \\ & = a + bi \end{split}\end{equation} + +\begin{itemize} +\tightlist +\item + \(r=|z|=\sqrt{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2}\) +\item + \(\theta=\operatorname{arg}(z)\) (on CAS: \texttt{arg(a+bi)}) +\item + \textbf{principal argument} is + \(\operatorname{Arg}(z) \in (-\pi, \pi]\) (note capital + \(\operatorname{Arg}\)) +\end{itemize} + +Each complex number has multiple polar representations:\\ +\(z=r \operatorname{cis} \theta = r \operatorname{cis} (\theta+2 n\pi\)) +with \(n \in \mathbb{Z}\) revolutions + +\subsubsection{Conjugate in polar form}\label{conjugate-in-polar-form} + +\[(r \operatorname{cis} \theta)^{-1} = r\operatorname{cis} (- \theta)\] + +Reflection of \(z\) across horizontal axis. + +\subsubsection{Multiplication and division in polar +form}\label{multiplication-and-division-in-polar-form} + +\[z_1z_2=r_1r_2\operatorname{cis}(\theta_1+\theta_2)\] + +\[{z_1 \over z_2} = {r_1 \over r_2} \operatorname{cis}(\theta_1-\theta_2)\] + +\subsection{de Moivres' Theorem}\label{de-moivres-theorem} + +\[(r\operatorname{cis}\theta)^n=r^n\operatorname{cis}(n\theta) \text{ where } n \in \mathbb{Z}\] + +\subsection{Roots of complex numbers}\label{roots-of-complex-numbers} + +\(n\)th roots of \(z = r \operatorname{cis} \theta\) are + +\[z={r^{1 \over n}} \operatorname{cis}({{\theta + 2 k \pi} \over n})\] + +Same modulus for all solutions. Arguments are separated by +\({2 \pi} \over n\) + +The solutions of \(z^n=a \text{ where } a \in \mathbb{C}\) lie on circle + +\[x^2 + y^2 = (|a|^{1 \over n})^2\] + +\subsection{Sketching complex graphs}\label{sketching-complex-graphs} + +\subsubsection{Straight line}\label{straight-line} + +\begin{itemize} +\tightlist +\item + \(\operatorname{Re}(z) = c\) or \(\operatorname{Im}(z) = c\) + (perpendicular bisector) +\item + \(\operatorname{Arg}(z) = \theta\) +\item + \(|z+a|=|z+bi|\) where \(m={a \over b}\) +\item + \(|z+a|=|z+b| \longrightarrow 2(a-b)x=b^2-a^2\) +\end{itemize} + +\subsubsection{Circle}\label{circle} + +\(|z-z_1|^2 = c^2 |z_2+2|^2\) or \(|z-(a + bi)| = c\) + +\subsubsection{Locus}\label{locus} + +\(\operatorname{Arg}(z) < \theta\) + +\section{Vectors}\label{vectors} + +\begin{itemize} +\tightlist +\item + \textbf{vector:} a directed line segment\\ +\item + arrow indicates direction +\item + length indicates magnitude +\item + column notation: \(\begin{bmatrix} x \\ y \end{bmatrix}\) +\item + vectors with equal magnitude and direction are equivalent +\end{itemize} + +\begin{figure} +\centering +\includegraphics[width=0.20000\textwidth]{graphics/vectors-intro.png} +\caption{}\label{id} +\end{figure} + +\subsection{Vector addition}\label{vector-addition} + +\(\boldsymbol{u} + \boldsymbol{v}\) can be represented by drawing each +vector head to tail then joining the lines.\\ +Addition is commutative (parallelogram) + +\subsection{Scalar multiplication}\label{scalar-multiplication} + +For \(k \in \mathbb{R}^+\), \(k\boldsymbol{u}\) has the same direction +as \(\boldsymbol{u}\) but length is multiplied by a factor of \(k\). + +When multiplied by \(k < 0\), direction is reversed and length is +multplied by \(k\). + +\subsection{Vector subtraction}\label{vector-subtraction} + +To find \(\boldsymbol{u} - \boldsymbol{v}\), add \(\boldsymbol{-v}\) to +\(\boldsymbol{u}\) + +\subsection{Parallel vectors}\label{parallel-vectors} + +Same or opposite direction + +\[\boldsymbol{u} || \boldsymbol{v} \iff \boldsymbol{u} = k \boldsymbol{v} \text{ where } k \in \mathbb{R} \setminus \{0\}\] + +\subsection{Position vectors}\label{position-vectors} + +Vectors may describe a position relative to \(O\). + +For a point \(A\), the position vector is \overrightharp{OA} + +\vfill\eject + +\subsection{Linear combinations of non-parallel +vectors}\label{linear-combinations-of-non-parallel-vectors} + +If two non-zero vectors \(\boldsymbol{a}\) and \(\boldsymbol{b}\) are +not parallel, then: + +\[m\boldsymbol{a} + n\boldsymbol{b} = p \boldsymbol{a} + q \boldsymbol{b}\quad \therefore \quad m = p, \> n = q\] + +\includegraphics[width=0.20000\textwidth]{graphics/parallelogram-vectors.jpg} +\includegraphics[width=0.10000\textwidth]{graphics/vector-subtraction.jpg} + +\subsection{Column vector notation}\label{column-vector-notation} + +A vector between points \(A(x_1,y_1), \> B(x_2,y_2)\) can be represented +as \(\begin{bmatrix}x_2-x_1\\ y_2-y_1 \end{bmatrix}\) + +\subsection{Component notation}\label{component-notation} + +A vector \(\boldsymbol{u} = \begin{bmatrix}x\\ y \end{bmatrix}\) can be +written as \(\boldsymbol{u} = x\boldsymbol{i} + y\boldsymbol{j}\).\\ +\(\boldsymbol{u}\) is the sum of two components \(x\boldsymbol{i}\) and +\(y\boldsymbol{j}\)\\ +Magnitude of vector +\(\boldsymbol{u} = x\boldsymbol{i} + y\boldsymbol{j}\) is denoted by +\(|u|=\sqrt{x^2+y^2}\) + +Basic algebra applies:\\ +\((x\boldsymbol{i} + y\boldsymbol{j}) + (m\boldsymbol{i} + n\boldsymbol{j}) = (x + m)\boldsymbol{i} + (y+n)\boldsymbol{j}\)\\ +Two vectors equal if and only if their components are equal. + +\subsection{\texorpdfstring{Unit vector +\(|\hat{\boldsymbol{a}}|=1\)}{Unit vector \textbar{}\textbackslash{}hat\{\textbackslash{}boldsymbol\{a\}\}\textbar{}=1}}\label{unit-vector-hatboldsymbola1} + +\begin{equation}\begin{split}\hat{\boldsymbol{a}} & = {1 \over {|\boldsymbol{a}|}}\boldsymbol{a} \\ & = \boldsymbol{a} \cdot {|\boldsymbol{a}|}\end{split}\end{equation} + +\subsection{\texorpdfstring{Scalar/dot product +\(\boldsymbol{a} \cdot \boldsymbol{b}\)}{Scalar/dot product \textbackslash{}boldsymbol\{a\} \textbackslash{}cdot \textbackslash{}boldsymbol\{b\}}}\label{scalardot-product-boldsymbola-cdot-boldsymbolb} + +\[\boldsymbol{a} \cdot \boldsymbol{b} = a_1 b_1 + a_2 b_2\] + +\textbf{on CAS:} \texttt{dotP({[}a\ b\ c{]},\ {[}d\ e\ f{]})} + +\subsection{Scalar product properties}\label{scalar-product-properties} + +\begin{enumerate} +\def\labelenumi{\arabic{enumi}.} +\tightlist +\item + \(k(\boldsymbol{a\cdot b})=(k\boldsymbol{a})\cdot \boldsymbol{b}=\boldsymbol{a}\cdot (k{b})\) +\item + \(\boldsymbol{a \cdot 0}=0\) +\item + \(\boldsymbol{a \cdot (b + c)}=\boldsymbol{a \cdot b + a \cdot c}\) +\item + \(\boldsymbol{i \cdot i} = \boldsymbol{j \cdot j} = \boldsymbol{k \cdot k}= 1\) +\item + If \(\boldsymbol{a} \cdot \boldsymbol{b} = 0\), \(\boldsymbol{a}\) and + \(\boldsymbol{b}\) are perpendicular +\item + \(\boldsymbol{a \cdot a} = |\boldsymbol{a}|^2 = a^2\) +\end{enumerate} + +For parallel vectors \(\boldsymbol{a}\) and \(\boldsymbol{b}\):\\ +\[\boldsymbol{a \cdot b}=\begin{cases} +|\boldsymbol{a}||\boldsymbol{b}| \hspace{2.8em} \text{if same direction}\\ +-|\boldsymbol{a}||\boldsymbol{b}| \hspace{2em} \text{if opposite directions} +\end{cases}\] + +\subsection{Geometric scalar products}\label{geometric-scalar-products} + +\[\boldsymbol{a} \cdot \boldsymbol{b} = |\boldsymbol{a}| |\boldsymbol{b}| \cos \theta\] + +where \(0 \le \theta \le \pi\) + +\subsection{Perpendicular vectors}\label{perpendicular-vectors} + +If \(\boldsymbol{a} \cdot \boldsymbol{b} = 0\), then +\(\boldsymbol{a} \perp \boldsymbol{b}\) (since \(\cos 90 = 0\)) + +\subsection{Finding angle between +vectors}\label{finding-angle-between-vectors} + +\textbf{positive direction} + +\[\cos \theta = {{\boldsymbol{a} \cdot \boldsymbol{b}} \over {|\boldsymbol{a}| |\boldsymbol{b}|}} = {{a_1 b_1 + a_2 b_2} \over {|\boldsymbol{a}| |\boldsymbol{b}|}}\] + +\textbf{on CAS:} \texttt{angle({[}a\ b\ c{]},\ {[}a\ b\ c{]})} (Action +-\textgreater{} Vector -\textgreater{} Angle) + +\subsection{Angle between vector and +axis}\label{angle-between-vector-and-axis} + +Direction of a vector can be given by the angles it makes with +\(\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}\) directions. + +For +\(\boldsymbol{a} = a_1 \boldsymbol{i} + a_2 \boldsymbol{j} + a_3 \boldsymbol{k}\) +which makes angles \(\alpha, \beta, \gamma\) with positive direction of +\(x, y, z\) axes: +\[\cos \alpha = {a_1 \over |\boldsymbol{a}|}, \quad \cos \beta = {a_2 \over |\boldsymbol{a}|}, \quad \cos \gamma = {a_3 \over |\boldsymbol{a}|}\] + +\textbf{on CAS:} \texttt{angle({[}a\ b\ c{]},\ {[}1\ 0\ 0{]})} for angle +between \(a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}\) and +\(x\)-axis + +\subsection{Vector projections}\label{vector-projections} + +Vector resolute of \(\boldsymbol{a}\) in direction of \(\boldsymbol{b}\) +is magnitude of \(\boldsymbol{a}\) in direction of \(\boldsymbol{b}\): + +\[\boldsymbol{u}={{\boldsymbol{a}\cdot\boldsymbol{b}}\over |\boldsymbol{b}|^2}\boldsymbol{b}=\left({\boldsymbol{a}\cdot{\boldsymbol{b} \over |\boldsymbol{b}|}}\right)\left({\boldsymbol{b} \over |\boldsymbol{b}|}\right)=(\boldsymbol{a} \cdot \hat{\boldsymbol{b}})\hat{\boldsymbol{b}}\] + +\subsection{\texorpdfstring{Scalar resolute of \(\boldsymbol{a}\) on +\(\boldsymbol{b}\)}{Scalar resolute of \textbackslash{}boldsymbol\{a\} on \textbackslash{}boldsymbol\{b\}}}\label{scalar-resolute-of-boldsymbola-on-boldsymbolb} + +\[r_s = |\boldsymbol{u}| = \boldsymbol{a} \cdot \hat{\boldsymbol{b}}\] + +\subsection{\texorpdfstring{Vector resolute of +\(\boldsymbol{a} \perp \boldsymbol{b}\)}{Vector resolute of \textbackslash{}boldsymbol\{a\} \textbackslash{}perp \textbackslash{}boldsymbol\{b\}}}\label{vector-resolute-of-boldsymbola-perp-boldsymbolb} + +\[\boldsymbol{w} = \boldsymbol{a} - \boldsymbol{u} \> \text{ where } \boldsymbol{u} \text{ is projection } \boldsymbol{a} \text{ on } \boldsymbol{b}\] + +\subsection{Vector proofs}\label{vector-proofs} + +\subsubsection{Concurrent lines}\label{concurrent-lines} + +\(\ge\) 3 lines intersect at a single point + +\subsubsection{Collinear points}\label{collinear-points} + +\(\ge\) 3 points lie on the same line\\ +\(\implies \vec{OC} = \lambda \vec{OA} + \mu \vec{OB}\) where +\(\lambda + \mu = 1\). If \(C\) is between \(\vec{AB}\), then +\(0 < \mu < 1\)\\ +Points \(A, B, C\) are collinear iff +\(\vec{AC}=m\vec{AB} \text{ where } m \ne 0\) + +\subsubsection{Useful vector properties}\label{useful-vector-properties} + +\begin{itemize} +\tightlist +\item + If \(\boldsymbol{a}\) and \(\boldsymbol{b}\) are parallel, then + \(\boldsymbol{b}=k\boldsymbol{a}\) for some + \(k \in \mathbb{R} \setminus \{0\}\) +\item + If \(\boldsymbol{a}\) and \(\boldsymbol{b}\) are parallel with at + least one point in common, then they lie on the same straight line +\item + Two vectors \(\boldsymbol{a}\) and \(\boldsymbol{b}\) are + perpendicular if \(\boldsymbol{a} \cdot \boldsymbol{b}=0\) +\item + \(\boldsymbol{a} \cdot \boldsymbol{a} = |\boldsymbol{a}|^2\) +\end{itemize} + +\subsection{Linear dependence}\label{linear-dependence} + +Vectors \(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\) are linearly +dependent if they are non-parallel and: + +\[k\boldsymbol{a}+l\boldsymbol{b}+m\boldsymbol{c} = 0\] +\[\therefore \boldsymbol{c} = m\boldsymbol{a} + n\boldsymbol{b} \quad \text{(simultaneous)}\] + +\(\boldsymbol{a}, \boldsymbol{b},\) and \(\boldsymbol{c}\) are linearly +independent if no vector in the set is expressible as a linear +combination of other vectors in set, or if they are parallel. + +Vector \(\boldsymbol{w}\) is a linear combination of vectors +\(\boldsymbol{v_1}, \boldsymbol{v_2}, \boldsymbol{v_3}\) + +\subsection{Three-dimensional vectors}\label{three-dimensional-vectors} + +Right-hand rule for axes: \(z\) is up or out of page. + +i\includegraphics{graphics/vectors-3d.png} + +\subsection{Parametric vectors}\label{parametric-vectors} + +Parametric equation of line through point \((x_0, y_0, z_0)\) and +parallel to \(a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}\) is: + +\begin{equation}\begin{cases}x = x_o + a \cdot t \\ y = y_0 + b \cdot t \\ z = z_0 + c \cdot t\end{cases}\end{equation} + +\section{Circular functions}\label{circular-functions} + +Period of \(a\sin(bx)\) is \({2\pi} \over b\) + +Period of \(a\tan(nx)\) is \(\pi \over n\)\\ +Asymptotes at \(x={2k+1)\pi \over 2n} \> \vert \> k \in \mathbb{Z}\) + +\subsection{Reciprocal functions}\label{reciprocal-functions} + +\subsubsection{Cosecant}\label{cosecant} + +\begin{figure} +\centering +\includegraphics{graphics/csc.png} +\caption{} +\end{figure} + +\[\operatorname{cosec} \theta = {1 \over \sin \theta} \> \vert \> \sin \theta \ne 0\] + +\begin{itemize} +\tightlist +\item + \textbf{Domain} \(= \mathbb{R} \setminus {n\pi : n \in \mathbb{Z}}\) +\item + \textbf{Range} \(= \mathbb{R} \setminus (-1, 1)\) +\item + \textbf{Turning points} at + \(\theta = {{(2n + 1)\pi} \over 2} \> \vert \> n \in \mathbb{Z}\) +\item + \textbf{Asymptotes} at \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\) +\end{itemize} + +\subsubsection{Secant}\label{secant} + +\begin{figure} +\centering +\includegraphics{graphics/sec.png} +\caption{} +\end{figure} + +\[\operatorname{sec} \theta = {1 \over \cos \theta} \> \vert \> \cos \theta \ne 0\] + +\begin{itemize} +\tightlist +\item + \textbf{Domain} + \(= \mathbb{R} \setminus \{{{(2n + 1) \pi} \over 2 } : n \in \mathbb{Z}\}\) +\item + \textbf{Range} \(= \mathbb{R} \setminus (-1, 1)\) +\item + \textbf{Turning points} at + \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\) +\item + \textbf{Asymptotes} at + \(\theta = {{(2n + 1) \pi} \over 2} \> \vert \> n \in \mathbb{Z}\) +\end{itemize} + +\subsubsection{Cotangent}\label{cotangent} + +\begin{figure} +\centering +\includegraphics{graphics/cot.png} +\caption{} +\end{figure} + +\[\operatorname{cot} \theta = {{\cos \theta} \over {\sin \theta}} \> \vert \> \sin \theta \ne 0\] + +\begin{itemize} +\tightlist +\item + \textbf{Domain} \(= \mathbb{R} \setminus \{n \pi: n \in \mathbb{Z}\}\) +\item + \textbf{Range} \(= \mathbb{R}\) +\item + \textbf{Asymptotes} at \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\) +\end{itemize} + +\subsubsection{Symmetry properties}\label{symmetry-properties} + +\begin{equation}\begin{split} + \operatorname{sec} (\pi \pm x) & = -\operatorname{sec} x \\ + \operatorname{sec} (-x) & = \operatorname{sec} x \\ + \operatorname{cosec} (\pi \pm x) & = \mp \operatorname{cosec} x \\ + \operatorname{cosec} (-x) & = - \operatorname{cosec} x \\ + \operatorname{cot} (\pi \pm x) & = \pm \operatorname{cot} x \\ + \operatorname{cot} (-x) & = - \operatorname{cot} x +\end{split}\end{equation} + +\subsubsection{Complementary properties}\label{complementary-properties} + +\begin{equation}\begin{split} + \operatorname{sec} \left({\pi \over 2} - x\right) & = \operatorname{cosec} x \\ + \operatorname{cosec} \left({\pi \over 2} - x\right) & = \operatorname{sec} x \\ + \operatorname{cot} \left({\pi \over 2} - x\right) & = \tan x \\ + \tan \left({\pi \over 2} - x\right) & = \operatorname{cot} x +\end{split}\end{equation} + +\subsubsection{Pythagorean identities}\label{pythagorean-identities} + +\begin{equation}\begin{split} + 1 + \operatorname{cot}^2 x & = \operatorname{cosec}^2 x, \quad \text{where } \sin x \ne 0 \\ + 1 + \tan^2 x & = \operatorname{sec}^2 x, \quad \text{where } \cos x \ne 0 +\end{split}\end{equation} + +\subsection{Compound angle formulas}\label{compound-angle-formulas} + +\[\cos(x \pm y) = \cos x + \cos y \mp \sin x \sin y\] +\[\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y\] +\[\tan(x \pm y) = {{\tan x \pm \tan y} \over {1 \mp \tan x \tan y}}\] + +\subsection{Double angle formulas}\label{double-angle-formulas} + +\begin{equation}\begin{split} + \cos 2x &= \cos^2 x - \sin^2 x \\ + & = 1 - 2\sin^2 x \\ + & = 2 \cos^2 x -1 +\end{split}\end{equation} + +\[\sin 2x = 2 \sin x \cos x\] + +\[\tan 2x = {{2 \tan x} \over {1 - \tan^2 x}}\] + +\subsection{Inverse circular +functions}\label{inverse-circular-functions} + +Inverse functions: \(f(f^{-1}(x)) = x, \quad f(f^{-1}(x)) = x\)\\ +Must be 1:1 to find inverse (reflection in \(y=x\) + +Domain is restricted to make functions 1:1. + +\subsubsection{\texorpdfstring{\(\arcsin\)}{\textbackslash{}arcsin}}\label{arcsin} + +\[\sin^{-1}: [-1, 1] \rightarrow \mathbb{R}, \quad \sin^{-1} x = y, \quad \text{where } \sin y = x \text{ and } y \in [{-\pi \over 2}, {\pi \over 2}]\] + +\subsubsection{\texorpdfstring{\(\arcos\)}{\textbackslash{}arcos}}\label{arcos} + +\[\cos^{-1} \rightarrow \mathbb{R}, \quad \cos^{-1} x = y, \quad \text{where } \cos y = x \text{ and } y \in [0, \pi]\] + +\subsubsection{\texorpdfstring{\(\arctan\)}{\textbackslash{}arctan}}\label{arctan} + +\[\tan^{-1}: \mathbb{R} \rightarrow \mathbb{R}, \quad \tan^{-1} x = y, \quad \text{where } \tan y = x \text{ and } y \in \left(-{\pi \over 2}, {\pi \over 2}\right)\] +\# Differential calculus + +\subsection{Limits}\label{limits} + +\[\lim_{x \rightarrow a}f(x)\] + +\(L^-\) - limit from below + +\(L^+\) - limit from above + +\(\lim_{x \to a} f(x)\) - limit of a point + +\begin{itemize} +\tightlist +\item + Limit exists if \(L^-=L^+\) +\item + If limit exists, point does not. +\end{itemize} + +Limits can be solved using normal techniques (if div 0, factorise) + +\subsection{Limit theorems}\label{limit-theorems} + +\begin{enumerate} +\def\labelenumi{\arabic{enumi}.} +\tightlist +\item + For constant function \(f(x)=k\), \(\lim_{x \rightarrow a} f(x) = k\) +\item + \(\lim_{x \rightarrow a} (f(x) \pm g(x)) = F \pm G\) +\item + \(\lim_{x \rightarrow a} (f(x) \times g(x)) = F \times G\) +\item + \({\lim_{x \rightarrow a} {f(x) \over g(x)}} = {F \over G}, G \ne 0\) +\end{enumerate} + +Corollary: \(\lim_{x \rightarrow a} c \times f(x)=cF\) where \(c=\) +constant + +\subsection{\texorpdfstring{Solving limits for +\(x\rightarrow\infty\)}{Solving limits for x\textbackslash{}rightarrow\textbackslash{}infty}}\label{solving-limits-for-xrightarrowinfty} + +Factorise so that all values of \(x\) are in denominators. + +e.g. + +\[\lim_{x \rightarrow \infty}{{2x+3} \over {x-2}}={{2+{3 \over x}} \over {1-{2 \over x}}}={2 \over 1} = 2\] + +\subsection{Continuous functions}\label{continuous-functions} + +A function is continuous if \(L^-=L^+=f(x)\) for all values of \(x\). + +\subsection{Gradients of secants and +tangents}\label{gradients-of-secants-and-tangents} + +Secant (chord) - line joining two points on curve + +Tangent - line that intersects curve at one point + +given \(P(x,y) \quad Q(x+\delta x, y + \delta y)\): gradient of chord +joining \(P\) and \(Q\) is +\({m_{PQ}}={\operatorname{rise} \over \operatorname{run}} = {\delta y \over \delta x}\) + +As \(Q \rightarrow P, \delta x \rightarrow 0\). Chord becomes tangent +(two infinitesimal points are equal). + +Can also be used with functions, where \(h=\delta x\). + +\subsection{First principles +derivative}\label{first-principles-derivative} + +\[f^\prime(x) = \lim_{\delta x \rightarrow 0}{\delta y \over \delta x}={dy \over dx}\] + +\[m_{\tan}=\lim_{h \rightarrow 0}f^\prime(x)\] + +\[m_{\vec{PQ}}=f^\prime(x)\] + +first principles derivative: +\[{m_{\text{tangent at }P} =\lim_{h \rightarrow 0}}{{f(x+h)-f(x)}\over h}\] + +\subsection{Gradient at a point}\label{gradient-at-a-point} + +Given point \(P(a, b)\) and function \(f(x)\), the gradient is +\(f^\prime(a)\) + +\subsection{\texorpdfstring{Derivatives of +\(x^n\)}{Derivatives of x\^{}n}}\label{derivatives-of-xn} + +\[{d(ax^n) \over dx}=anx^{n-1}\] + +If \(x=\) constant, derivative is \(0\) + +If \(y=ax^n\), derivative is \(a\times nx^{n-1}\) + +If +\(f(x)={1 \over x}=x^{-1}, \quad f^\prime(x)=-1x^{-2}={-1 \over x^2}\) + +If +\(f(x)=^5\sqrt{x}=x^{1 \over 5}, \quad f^\prime(x)={1 \over 5}x^{-4/5}={1 \over 5 \times ^5\sqrt{x^4}}\) + +If \(f(x)=(x-b)^2, \quad f^\prime(x)=2(x-b)\) + +\[f^\prime(x)=\lim_{h \rightarrow 0}{{f(x+h)-f(x)} \over h}\] + +\subsection{\texorpdfstring{Derivatives of +\(u \pm v\)}{Derivatives of u \textbackslash{}pm v}}\label{derivatives-of-u-pm-v} + +\[{dy \over dx}={du \over dx} \pm {dv \over dx}\] where \(u\) and \(v\) +are functions of \(x\) + +\subsection{Euler's number as a limit}\label{eulers-number-as-a-limit} + +\[\lim_{h \rightarrow 0} {{e^h-1} \over h}=1\] + +\subsection{\texorpdfstring{Chain rule for +\((f\circ g)\)}{Chain rule for (f\textbackslash{}circ g)}}\label{chain-rule-for-fcirc-g} + +If \(f(x) = h(g(x)) = (h \circ g)(x)\): + +\[f^\prime(x) = h^\prime(g(x)) \cdot g^\prime(x)\] + +If \(y=h(u)\) and \(u=g(x)\): + +\[{dy \over dx} = {dy \over du} \cdot {du \over dx}\] +\[{d((ax+b)^n) \over dx} = {d(ax+b) \over dx} \cdot n \cdot (ax+b)^{n-1}\] + +Used with only one expression. + +e.g. \(y=(x^2+5)^7\) - Cannot reasonably expand\\ +Let \(u-x^2+5\) (inner expression)\\ +\({du \over dx} = 2x\)\\ +\(y=u^7\)\\ +\({dy \over du} = 7u^6\) + +\subsection{\texorpdfstring{Product rule for +\(y=uv\)}{Product rule for y=uv}}\label{product-rule-for-yuv} + +\[{dy \over dx} = u{dv \over dx} + v{du \over dx}\] + +\subsection{\texorpdfstring{Quotient rule for +\(y={u \over v}\)}{Quotient rule for y=\{u \textbackslash{}over v\}}}\label{quotient-rule-for-yu-over-v} + +\[{dy \over dx} = {{v{du \over dx} - u{dv \over dx}} \over v^2}\] + +\[f^\prime(x)={{v(x)u^\prime(x)-u(x)v^\prime(x)} \over [v(x)]^2}\] + +\subsection{Logarithms}\label{logarithms} + +\[\log_b (x) = n \quad \operatorname{where} \hspace{0.5em} b^n=x\] + +Wikipedia: + +\begin{quote} +the logarithm of a given number \(x\) is the exponent to which another +fixed number, the base \(b\), must be raised, to produce that number +\(x\) +\end{quote} + +\subsubsection{Logarithmic identities}\label{logarithmic-identities} + +\(\log_b (xy)=\log_b x + \log_b y\)\\ +\(\log_b x^n = n \log_b x\)\\ +\(\log_b y^{x^n} = x^n \log_b y\) + +\subsubsection{Index identities}\label{index-identities} + +\(b^{m+n}=b^m \cdot b^n\)\\ +\((b^m)^n=b^{m \cdot n}\)\\ +\((b \cdot c)^n = b^n \cdot c^n\)\\ +\({a^m \div a^n} = {a^{m-n}}\) + +\subsubsection{\texorpdfstring{\(e\) as a +logarithm}{e as a logarithm}}\label{e-as-a-logarithm} + +\[\operatorname{if} y=e^x, \quad \operatorname{then} x=\log_e y\] +\[\ln x = \log_e x\] + +\subsubsection{Differentiating +logarithms}\label{differentiating-logarithms} + +\[{d(\log_e x)\over dx} = x^{-1} = {1 \over x}\] + +\subsection{Derivative rules}\label{derivative-rules} + +\begin{longtable}[]{@{}ll@{}} +\toprule +\(f(x)\) & \(f^\prime(x)\)\tabularnewline +\midrule +\endhead +\(\sin x\) & \(\cos x\)\tabularnewline +\(\sin ax\) & \(a\cos ax\)\tabularnewline +\(\cos x\) & \(-\sin x\)\tabularnewline +\(\cos ax\) & \(-a \sin ax\)\tabularnewline +\(\tan f(x)\) & \(f^2(x) \sec^2f(x)\)\tabularnewline +\(e^x\) & \(e^x\)\tabularnewline +\(e^{ax}\) & \(ae^{ax}\)\tabularnewline +\(ax^{nx}\) & \(an \cdot e^{nx}\)\tabularnewline +\(\log_e x\) & \(1 \over x\)\tabularnewline +\(\log_e {ax}\) & \(1 \over x\)\tabularnewline +\(\log_e f(x)\) & \(f^\prime (x) \over f(x)\)\tabularnewline +\(\sin(f(x))\) & \(f^\prime(x) \cdot \cos(f(x))\)\tabularnewline +\(\sin^{-1} x\) & \(1 \over {\sqrt{1-x^2}}\)\tabularnewline +\(\cos^{-1} x\) & \(-1 \over {sqrt{1-x^2}}\)\tabularnewline +\(\tan^{-1} x\) & \(1 \over {1 + x^2}\)\tabularnewline +\bottomrule +\end{longtable} + +\subsection{Reciprocal derivatives}\label{reciprocal-derivatives} + +\[{1 \over {dy \over dx}} = {dx \over dy}\] + +\subsection{\texorpdfstring{Differentiating +\(x=f(y)\)}{Differentiating x=f(y)}}\label{differentiating-xfy} + +Find \(dx \over dy\). Then +\({dx \over dy} = {1 \over {dy \over dx}} \implies {dy \over dx} = {1 \over {dx \over dy}}\). + +\[{dy \over dx} = {1 \over {dx \over dy}}\] + +\subsection{Second derivative}\label{second-derivative} + +\[f(x) \longrightarrow f^\prime (x) \longrightarrow f^{\prime\prime}(x)\] + +\[\therefore y \longrightarrow {dy \over dx} \longrightarrow {d({dy \over dx}) \over dx} \longrightarrow {d^2 y \over dx^2}\] + +Order of polynomial \(n\)th derivative decrements each time the +derivative is taken + +\subsubsection{Points of Inflection}\label{points-of-inflection} + +\emph{Stationary point} - point of zero gradient (i.e. +\(f^\prime(x)=0\))\\ +\emph{Point of inflection} - point of maximum \(|\)gradient\(|\) (i.e. +\(f^{\prime\prime} = 0\)) + +\begin{itemize} +\tightlist +\item + if \(f^\prime (a) = 0\) and \(f^{\prime\prime}(a) > 0\), then point + \((a, f(a))\) is a local min (curve is concave up) +\item + if \(f^\prime (a) = 0\) and \(f^{\prime\prime} (a) < 0\), then point + \((a, f(a))\) is local max (curve is concave down) +\item + if \(f^{\prime\prime}(a) = 0\), then point \((a, f(a))\) is a point of + inflection +\item + if also \(f^\prime(a)=0\), then it is a stationary point of inflection +\end{itemize} + +\begin{figure} +\centering +\includegraphics{graphics/second-derivatives.png} +\caption{} +\end{figure} + +\subsection{Implicit Differentiation}\label{implicit-differentiation} + +\textbf{On CAS:} Action \(\rightarrow\) Calculation \(\rightarrow\) +\texttt{impDiff(y\^{}2+ax=5,\ x,\ y)}. Returns \(y^\prime= \dots\). + +Used for differentiating circles etc. + +If \(p\) and \(q\) are expressions in \(x\) and \(y\) such that \(p=q\), +for all \(x\) nd \(y\), then: + +\[{dp \over dx} = {dq \over dx} \quad \text{and} \quad {dp \over dy} = {dq \over dy}\] + +\subsection{Integration}\label{integration} + +\[\int f(x) \cdot dx = F(x) + c \quad \text{where } F^\prime(x) = f(x)\] + +\[\int x^n \cdot dx = {x^{n+1} \over n+1} + c\] + +\begin{itemize} +\tightlist +\item + area enclosed by curves +\item + \(+c\) should be shown on each step without \(\int\) +\end{itemize} + +\subsubsection{Integral laws}\label{integral-laws} + +\(\int f(x) + g(x) dx = \int f(x) dx + \int g(x) dx\)\\ +\(\int k f(x) dx = k \int f(x) dx\) + +\begin{longtable}[]{@{}ll@{}} +\toprule +\begin{minipage}[b]{0.42\columnwidth}\raggedright\strut +\(f(x)\)\strut +\end{minipage} & \begin{minipage}[b]{0.38\columnwidth}\raggedright\strut +\(\int f(x) \cdot dx\)\strut +\end{minipage}\tabularnewline +\midrule +\endhead +\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut +\(k\) (constant)\strut +\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut +\(kx + c\)\strut +\end{minipage}\tabularnewline +\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut +\(x^n\)\strut +\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut +\({x^{n+1} \over {n+1}} + c\)\strut +\end{minipage}\tabularnewline +\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut +\(a x^{-n}\)\strut +\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut +\(a \cdot \log_e x + c\)\strut +\end{minipage}\tabularnewline +\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut +\({1 \over {ax+b}}\)\strut +\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut +\({1 \over a} \log_e (ax+b) + c\)\strut +\end{minipage}\tabularnewline +\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut +\((ax+b)^n\)\strut +\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut +\({1 \over {a(n+1)}}(ax+b)^{n-1} + c\)\strut +\end{minipage}\tabularnewline +\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut +\(e^{kx}\)\strut +\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut +\({1 \over k} e^{kx} + c\)\strut +\end{minipage}\tabularnewline +\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut +\(e^k\)\strut +\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut +\(e^kx + c\)\strut +\end{minipage}\tabularnewline +\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut +\(\sin kx\)\strut +\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut +\(-{1 \over k} \cos (kx) + c\)\strut +\end{minipage}\tabularnewline +\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut +\(\cos kx\)\strut +\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut +\({1 \over k} \sin (kx) + c\)\strut +\end{minipage}\tabularnewline +\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut +\(\sec^2 kx\)\strut +\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut +\({1 \over k} \tan(kx) + c\)\strut +\end{minipage}\tabularnewline +\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut +\(1 \over \sqrt{a^2-x^2}\)\strut +\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut +\(\sin^{-1} {x \over a} + c \>\vert\> a>0\)\strut +\end{minipage}\tabularnewline +\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut +\(-1 \over \sqrt{a^2-x^2}\)\strut +\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut +\(\cos^{-1} {x \over a} + c \>\vert\> a>0\)\strut +\end{minipage}\tabularnewline +\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut +\(a \over {a^2-x^2}\)\strut +\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut +\(\tan^{-1} {x \over a} + c\)\strut +\end{minipage}\tabularnewline +\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut +\({f^\prime (x)} \over {f(x)}\)\strut +\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut +\(\log_e f(x) + c\)\strut +\end{minipage}\tabularnewline +\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut +\(g^\prime(x)\cdot f^\prime(g(x)\)\strut +\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut +\(f(g(x))\) (chain rule)\strut +\end{minipage}\tabularnewline +\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut +\(f(x) \cdot g(x)\)\strut +\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut +\(\int [f^\prime(x) \cdot g(x)] dx + \int [g^\prime(x) f(x)] dx\)\strut +\end{minipage}\tabularnewline +\bottomrule +\end{longtable} + +Note \(\sin^{-1} {x \over a} + \cos^{-1} {x \over a}\) is constant for +all \(x \in (-a, a)\). + +\subsubsection{Definite integrals}\label{definite-integrals} + +\[\int_a^b f(x) \cdot dx = [F(x)]_a^b=F(b)-F(a)\] + +\begin{itemize} +\tightlist +\item + Signed area enclosed by: + \(\> y=f(x), \quad y=0, \quad x=a, \quad x=b\). +\item + \emph{Integrand} is \(f\). +\item + \(F(x)\) may be any integral, i.e. \(c\) is inconsequential +\end{itemize} + +\paragraph{Properties}\label{properties-2} + +\[\int^b_a f(x) \> dx = \int^c_a f(x) \> dx + \int^b_c f(x) \> dx\] + +\[\int^a_a f(x) \> dx = 0\] + +\[\int^b_a k \cdot f(x) \> dx = k \int^b_a f(x) \> dx\] + +\[\int^b_a f(x) \pm g(x) \> dx = \int^b_a f(x) \> dx \pm \int^b_a g(x) \> dx\] + +\[\int^b_a f(x) \> dx = - \int^a_b f(x) \> dx\] + +\subsubsection{Integration by +substitution}\label{integration-by-substitution} + +\[\int f(u) {du \over dx} \cdot dx = \int f(u) \cdot du\] + +Note \(f(u)\) must be one-to-one \(\implies\) one \(x\) value for each +\(y\) value + +e.g.~for \(y=\int(2x+1)\sqrt{x+4} \cdot dx\):\\ +let \(u=x+4\)\\ +\(\implies {du \over dx} = 1\)\\ +\(\implies x = u - 4\)\\ +then \(y=\int (2(u-4)+1)u^{1 \over 2} \cdot du\)\\ +Solve as a normal integral + +\paragraph{Definite integrals by +substitution}\label{definite-integrals-by-substitution} + +For \(\int^b_a f(x) {du \over dx} \cdot dx\), evaluate new \(a\) and +\(b\) for \(f(u) \cdot du\). + +\subsubsection{Trigonometric +integration}\label{trigonometric-integration} + +\[\sin^m x \cos^n x \cdot dx\] + +\textbf{\(m\) is odd:}\\ +\(m=2k+1\) where \(k \in \mathbb{Z}\)\\ +\(\implies \sin^{2k+1} x = (\sin^2 z)^k \sin x = (1 - \cos^2 x)^k \sin x\)\\ +Substitute \(u=\cos x\) + +\textbf{\(n\) is odd:}\\ +\(n=2k+1\) where \(k \in \mathbb{Z}\)\\ +\(\implies \cos^{2k+1} x = (\cos^2 x)^k \cos x = (1-\sin^2 x)^k \cos x\)\\ +Subbstitute \(u=\sin x\) + +\textbf{\(m\) and \(n\) are even:}\\ +Use identities: + +\begin{itemize} +\tightlist +\item + \(\sin^2x={1 \over 2}(1-\cos 2x)\) +\item + \(\cos^2x={1 \over 2}(1+\cos 2x)\) +\item + \(\sin 2x = 2 \sin x \cos x\) +\end{itemize} + +\subsection{Partial fractions}\label{partial-fractions} + +On CAS: Action \(\rightarrow\) Transformation \(\rightarrow\) +\texttt{expand/combine}\\ +or Interactive \(\rightarrow\) Transformation \(\rightarrow\) +\texttt{expand} \(\rightarrow\) Partial + +\subsection{Graphing integrals on CAS}\label{graphing-integrals-on-cas} + +In main: Interactive \(\rightarrow\) Calculation \(\rightarrow\) +\(\int\) (\(\rightarrow\) Definite)\\ +Restrictions: \texttt{Define\ f(x)=...} \(\rightarrow\) +\texttt{f(x)\textbar{}x\textgreater{}1} (e.g.) + +\subsection{Applications of +antidifferentiation}\label{applications-of-antidifferentiation} + +\begin{itemize} +\tightlist +\item + \(x\)-intercepts of \(y=f(x)\) identify \(x\)-coordinates of + stationary points on \(y=F(x)\) +\item + nature of stationary points is determined by sign of \(y=f(x)\) on + either side of its \(x\)-intercepts +\item + if \(f(x)\) is a polynomial of degree \(n\), then \(F(x)\) has degree + \(n+1\) +\end{itemize} + +To find stationary points of a function, substitute \(x\) value of given +point into derivative. Solve for \({dy \over dx}=0\). Integrate to find +original function. + +\subsection{Solids of revolution}\label{solids-of-revolution} + +Approximate as sum of infinitesimally-thick cylinders + +\subsubsection{\texorpdfstring{Rotation about +\(x\)-axis}{Rotation about x-axis}}\label{rotation-about-x-axis} + +\begin{align*} + V &= \int^{x=b}_{x-a} \pi y^2 \> dx \\ + &= \pi \int^b_a (f(x))^2 \> dx +\end{align*} + +\subsubsection{\texorpdfstring{Rotation about +\(y\)-axis}{Rotation about y-axis}}\label{rotation-about-y-axis} + +\begin{align*} + V &= \int^{y=b}_{y=a} \pi x^2 \> dy \\ + &= \pi \int^b_a (f(y))^2 \> dy +\end{align*} + +\subsubsection{\texorpdfstring{Regions not bound by +\(y=0\)}{Regions not bound by y=0}}\label{regions-not-bound-by-y0} + +\[V = \pi \int^b_a f(x)^2 - g(x)^2 \> dx\]\\ +where \(f(x) > g(x)\) + +\subsection{Length of a curve}\label{length-of-a-curve} + +\[L = \int^b_a \sqrt{1 + ({dy \over dx})^2} \> dx \quad \text{(Cartesian)}\] + +\[L = \int^b_a \sqrt{{dx \over dt} + ({dy \over dt})^2} \> dt \quad \text{(parametric)}\] + +Evaluate on CAS. Or use Interactive \(\rightarrow\) Calculation +\(\rightarrow\) Line \(\rightarrow\) \texttt{arcLen}. + +\subsection{Rates}\label{rates} + +\subsubsection{Related rates}\label{related-rates} + +\[{da \over db} \quad \text{(change in } a \text{ with respect to } b)\] + +\subsubsection{Gradient at a point on parametric +curve}\label{gradient-at-a-point-on-parametric-curve} + +\[{dy \over dx} = {{dy \over dt} \div {dx \over dt}} \> \vert \> {dx \over dt} \ne 0\] + +\[{d^2 \over dx^2} = {d(y^\prime) \over dx} = {{dy^\prime \over dt} \div {dx \over dt}} \> \vert \> y^\prime = {dy \over dx}\] + +\subsection{Rational functions}\label{rational-functions} + +\[f(x) = {P(x) \over Q(x)} \quad \text{where } P, Q \text{ are polynomial functions}\] + +\subsubsection{Addition of ordinates}\label{addition-of-ordinates} + +\begin{itemize} +\tightlist +\item + when two graphs have the same ordinate, \(y\)-coordinate is double the + ordinate +\item + when two graphs have opposite ordinates, \(y\)-coordinate is 0 i.e. + (\(x\)-intercept) +\item + when one of the ordinates is 0, the resulting ordinate is equal to the + other ordinate +\end{itemize} + +\subsection{Fundamental theorem of +calculus}\label{fundamental-theorem-of-calculus} + +If \(f\) is continuous on \([a, b]\), then + +\[\int^b_a f(x) \> dx = F(b) - F(a)\] + +where \(F\) is any antiderivative of \(f\) + +\subsection{Differential equations}\label{differential-equations} + +One or more derivatives + +\textbf{Order} - highest power inside derivative\\ +\textbf{Degree} - highest power of highest derivative\\ +e.g. \({\left(dy^2 \over d^2 x\right)}^3\): order 2, degree 3 + +\subsubsection{Verifying solutions}\label{verifying-solutions} + +Start with \(y=\dots\), and differentiate. Substitute into original +equation. + +\subsubsection{Function of the dependent +variable}\label{function-of-the-dependent-variable} + +If \({dy \over dx}=g(y)\), then +\({dx \over dy} = 1 \div {dy \over dx} = {1 \over g(y)}\). Integrate +both sides to solve equation. Only add \(c\) on one side. Express +\(e^c\) as \(A\). + +\subsubsection{Mixing problems}\label{mixing-problems} + +\[\left({dm \over dt}\right)_\Sigma = \left({dm \over dt}\right)_{\text{in}} - \left({dm \over dt}\right)_{\text{out}}\] + +\subsubsection{Separation of variables}\label{separation-of-variables} + +If \({dy \over dx}=f(x)g(y)\), then: + +\[\int f(x) \> dx = \int {1 \over g(y)} \> dy\] + +\subsubsection{Using definite integrals to solve +DEs}\label{using-definite-integrals-to-solve-des} + +Used for situations where solutions to \({dy \over dx} = f(x)\) is not +required. + +In some cases, it may not be possible to obtain an exact solution. + +Approximate solutions can be found by numerically evaluating a definite +integral. + +\subsubsection{Using Euler's method to solve a differential +equation}\label{using-eulers-method-to-solve-a-differential-equation} + +\[{{f(x+h) - f(x)} \over h } \approx f^\prime (x) \quad \text{for small } h\] + +\[\implies f(x+h) \approx f(x) + hf^\prime(x)\] + +\end{document}