From: Andrew Lorimer Date: Sun, 29 Jul 2018 11:21:18 +0000 (+1000) Subject: circular functions - tan graphs, pythag ident. etc X-Git-Tag: yr11~81^2 X-Git-Url: https://git.lorimer.id.au/notes.git/diff_plain/924c0548b3e7564d4015e879c56a46a5606807fe?ds=sidebyside circular functions - tan graphs, pythag ident. etc --- diff --git a/methods/circ-functions.md b/methods/circ-functions.md index d232247..a48b106 100644 --- a/methods/circ-functions.md +++ b/methods/circ-functions.md @@ -12,12 +12,62 @@ $$f(x)=a \sin(bx-c)+d$$ $$f(x)=a \cos(bx-c)+d$$ where -$a$ is the amplitude -$b$ is the $x$-dilation -$c$ is the $y$-shift +$a$ is the $y$-dilation (amplitude) +$b$ is the $x$-dilation (period) +$c$ is the $x$-shift (phase) +$d$ is the $y$-shift (equilibrium position) -Period is ${2 \pi} \over b$ Domain is $\mathbb{R}$ Range is $[-b+c, b+c]$; Graph of $\cos(x)$ starts at $(0,1)$. Graph of $\sin(x)$ starts at $(0,0)$. + +### Amplitude + +Amplitude of $a$ means graph oscillates between $+a$ and $-a$ in $y$-axis + +$a=0$ produces straight line +$a\lt0$ inverts the phase ($\sin$ becomes $\cos$, vice vera) + +### Period + +Period $T$ is ${2 \pi}\over b$ +$b=0$ produces straight line +$b\lt0$ inverts the phase + +### Phase + +$c$ moves the graph left-right in the $x$ axis. +If $c=T={{2\pi}\over b}$, the graph has no actual phase shift. + +## Symmetry + +$$\sin(\theta+{\pi\over 2})=\sin\theta$$ +$$\sin(\theta+\pi)=-\sin\theta$$ + +$$\cos(\theta+{\pi \over 2})=-\cos\theta$$ +$$\cos(\theta+\pi)=-cos(\theta+{3\pi \over 2})=\cos(-\theta)$$ + +## Pythagorean identity + +$$\cos^2\theta+\sin^2\theta=1$$ + +## Complementary relationships + +$$\sin({\pi \over 2} - \theta)=\cos\theta$$ +$$\cos({\pi \over 2} - \theta)=\sin\theta$$ + +$$\sin\theta=-\cos(\theta+{\pi \over 2})$$ +$$\cos\theta=\sin(\theta+{\pi \over 2})$$ + +## $tan$ graph + +$$y=a\tan(nx)$$ + +where +$a$ is $x$-dilation (period) +$n$ is $y$-dilation ($\equiv$ amplitude) +period $T$ is $\pi \over n$ +range is $R$ +roots at $x={k\pi \over n}$ +asymptotes at $x={{(2k+1)\pi}\over 2},\quad k \in \mathbb{Z}$