From: Andrew Lorimer Date: Wed, 28 Aug 2019 04:03:45 +0000 (+1000) Subject: [spec] confidence intervals/limits X-Git-Tag: yr12~51 X-Git-Url: https://git.lorimer.id.au/notes.git/diff_plain/93eb70a4067f707438d4162bcef4943141871e43?ds=sidebyside;hp=c0dc70858af633fbee6fd88e78c4f4caef925996 [spec] confidence intervals/limits --- diff --git a/spec/statistics.pdf b/spec/statistics.pdf index 9f5622d..cd372e0 100644 Binary files a/spec/statistics.pdf and b/spec/statistics.pdf differ diff --git a/spec/statistics.tex b/spec/statistics.tex index 2228636..ee414c6 100644 --- a/spec/statistics.tex +++ b/spec/statistics.tex @@ -144,4 +144,51 @@ If \(X\) is randomly distributed with mean \(\mu\) and sd \(\sigma\), then with an adequate sample size \(n\) the distribution of the sample mean \(\overline{X}\) is approximately normal with mean \(E(\overline{X})\) and \(\operatorname{sd}(\overline{X}) = \frac{\sigma}{\sqrt{n}}\). + \section{Confidence intervals} + + \begin{itemize} + \item \textbf{Point estimate:} single-valued estimate of the population mean from the value of the sample mean \(\overline{x}\) + \item \textbf{Interval estimate:} confidence interval for population mean \(\mu\) + \end{itemize} + + \subsection*{95% confidence interval} + + \[ \left( \overline{x} \pm 1.96 \dfrac{\sigma}{\sqrt{n}} \] + + where: \\ + \(\mu\) is the population mean (unknown) \\ + \(\overline{x}\) is the sample mean \\ + \(\sigma\) is the population sd \\ + \(n\) is the sample size from which \(\overline{x}\) was calculated + + Always express \(z\) as +ve. Express confidence \textit{interval} as ordered pair. + + \colorbox{cas}{\textbf{On CAS}} + + Menu \(\rightarrow\) Stats \(\rightarrow\) Calc \(\rightarrow\) Interval \\ + Set Type = One-Sample Z Int, Variable + + \subsection*{Interpretation of confidence intervals} + + 95% confidence interval \(\implies\) 95% of samples will contain population mean \(\mu\). + + \subsection*{Margin of error} + + For 95% confidence interval for \(\mu\), margin of error \(M\) is: + + \begin{align*} + M &= 1.96 \times \dfrac{\sigma}{\sqrt{n}} \\ + \implies n &= \left( \dfrac{1.96 \sigma}{M} \right)^2 + \end{align*} + + \subsection*{General case} + + A confidence interval of \(C\)% is given by + + A 95% confidence interval for \(\mu\) will have \(M\) when + \[ \overline{x} \pm k \dfrac{\sigma}{\sqrt{n}} \] + + where \(k\) is such that \(\Pr(-k < Z < k) = \frac{C}{100}\) + + \end{document}