From: Andrew Lorimer Date: Tue, 26 Mar 2019 00:32:36 +0000 (+1100) Subject: [spec] double derivatives X-Git-Tag: yr12~183 X-Git-Url: https://git.lorimer.id.au/notes.git/diff_plain/9491e04038cd0f5e14830fd89794529b09bdd295?ds=inline [spec] double derivatives --- diff --git a/spec/calculus.md b/spec/calculus.md index 6c6685a..ee88068 100644 --- a/spec/calculus.md +++ b/spec/calculus.md @@ -111,8 +111,6 @@ $y=u^7$ ${dy \over du} = 7u^6$ -$7u^6 \times$ - ## Product rule for $y=uv$ $${dy \over dx} = u{dv \over dx} + v{du \over dx}$$ @@ -135,12 +133,14 @@ Wikipedia: > the logarithm of a given number $x$ is the exponent to which another fixed number, the base $b$, must be raised, to produce that number $x$ -### Logarithmic identities +### Logarithmic identities + $\log_b (xy)=\log_b x + \log_b y$ $\log_b x^n = n \log_b x$ $\log_b y^{x^n} = x^n \log_b y$ ### Index identities + $b^{m+n}=b^m \cdot b^n$ $(b^m)^n=b^{m \cdot n}$ $(b \cdot c)^n = b^n \cdot c^n$ @@ -154,7 +154,7 @@ $$\ln x = \log_e x$$ ### Differentiating logarithms $${d(\log_e x)\over dx} = x^{-1} = {1 \over x}$$ -## Solving $e^x$ etc +## Derivative rules | $f(x)$ | $f^\prime(x)$ |xs | ------ | ------------- | @@ -182,7 +182,27 @@ $${{dy \over dx} \over 1} = dx \over dy$$ ## Differentiating $x=f(y)$ -Find $dx \over dy$. Then $dx \over dy = {1 \over {dy \over dx}} \therefore {dy \over dx} = {1 \over {dx \over dy}$ +Find $dx \over dy$. Then $dx \over dy = {1 \over {dy \over dx}} \therefore {dy \over dx} = {1 \over {dx \over dy}}$. + +$${dy \over dx} = {1 \over {dx \over dy}}$$ + +## Second derivative + +$$f(x) \implies f^\prime (x) \implies f^{\prime\prime}(x)$$ + +$$\therefore y \implies {dy \over dx} \implies {d({dy \over dx}) \over dx} \implies {d^2 y \over dx^2}$$ + +Order of polynomial $n$th derivative decrements each time the derivative is taken + +### Maxima and minima + +- if $f^\prime (a) = 0$ and $f^{\prime\prime}(a) > 0$, then point $(a, f(a))$ is a local min (curve is concave up) + +- if $f^\prime (a) = 0$ and $f^{\prime\prime} (a) < 0$, then point $(a, f(a))$ is local max (curve is concave down) +- if $f^{\prime\prime}(a) = 0$, then point $(a, f(a))$ is a point of inflection +- - if also $f^\prime(a)=0$, then it is a stationary point of inflection + +*Point of inflection* - point of maximum gradient (either +ve or -ve) ## Antidifferentiation