From: Andrew Lorimer Date: Tue, 9 Apr 2019 06:08:16 +0000 (+1000) Subject: Merge branch 'master' of ssh://charles/tank/andrew/school/notes X-Git-Tag: yr12~168 X-Git-Url: https://git.lorimer.id.au/notes.git/diff_plain/9b4ce53d414fedba7ccafc9534dee37f57d74372?ds=sidebyside;hp=-c Merge branch 'master' of ssh://charles/tank/andrew/school/notes --- 9b4ce53d414fedba7ccafc9534dee37f57d74372 diff --combined spec/calculus.md index 5be3218,167a7e7..ddda405 --- a/spec/calculus.md +++ b/spec/calculus.md @@@ -1,12 -1,3 +1,12 @@@ +--- +geometry: margin=2cm +columns: 2 +graphics: yes +tables: yes +author: Andrew Lorimer +classoption: twocolumn +--- + # Differential calculus ## Limits @@@ -216,13 -207,23 +216,23 @@@ Order of polynomial $n$th derivative de ![](graphics/second-derivatives.png) + ## Implicit Differentiation + + On CAS: Action $\rightarrow$ Calculation $\rightarrow$ `impDiff(y^2+ax=5, x, y)`. Returns $y^\prime= \dots$. + + Used for differentiating circles etc. + + If $p$ and $q$ are expressions in $x$ and $y$ such that $p=q$, for all $x$ nd $y$, then: + + $${dp \over dx} = {dq \over dx} \quad \text{and} \quad {dp \over dy} = {dq \over dy}$$ + ## Antidifferentiation $$y={x^{n+1} \over n+1} + c$$ ## Integration - $$\int f(x) dx = F(x) + c$$ + $$\int f(x) dx = F(x) + c \quad \text{where } F^\prime(x) = f(x)$$ - area enclosed by curves - $+c$ should be shown on each step without $\int$ @@@ -237,10 -238,8 +247,10 @@@ $\int k f(x) dx = k \int f(x) dx | $f(x)$ | $\int f(x) \cdot dx$ | | ------------------------------- | ---------------------------- | | $k$ (constant) | $kx + c$ | -| $x^n$ | ${1 \over {n+1}}x^{n+1} + c$ | +| $x^n$ | ${x^{n+1} \over {n+1}} + c$ | | $a x^{-n}$ | $a \cdot \log_e x + c$ | +| ${1 \over {ax+b}}$ | ${1 \over a} \log_e (ax+b) + c$ | +| $(ax+b)^n$ | ${1 \over {a(n+1)}}(ax+b)^{n-1} + c$ | | $e^{kx}$ | ${1 \over k} e^{kx} + c$ | | $e^k$ | $e^kx + c$ | | $\sin kx$ | $-{1 \over k} \cos (kx) + c$ | @@@ -248,7 -247,13 +258,11 @@@ | ${f^\prime (x)} \over {f(x)}$ | $\log_e f(x) + c$ | | $g^\prime(x)\cdot f^\prime(g(x)$ | $f(g(x))$ (chain rule)| | $f(x) \cdot g(x)$ | $\int [f^\prime(x) \cdot g(x)] dx + \int [g^\prime(x) f(x)] dx$ | -| ${1 \over {ax+b}}$ | ${1 \over a} \log_e (ax+b) + c$ | -| $(ax+b)^n$ | ${1 \over {a(n+1)}}(ax+b)^{n-1} + c$ | + ### Definite integrals + + $$\int_a^b f(x) \cdot dx = [F(x)]_a^b=F(b)-F(a)_{}$$ + ## Applications of antidifferentiation - $x$-intercepts of $y=f(x)$ identify $x$-coordinates of stationary points on $y=F(x)$ @@@ -269,13 -274,12 +283,12 @@@ $${dy \over dx} = {{dy \over dt} \over $${d^2 \over dx^2} = {d(y^\prime) \over dx} = {{dy^\prime \over dt} \over {dx \over dt}} \> \vert \> y^\prime = {dy \over dx}$$ - # Rational functions + ## Rational functions $$f(x) = {P(x) \over Q(x)} \quad \text{where } P, Q \text{ are polynomial functions}$$ - ## Addition of ordinates + ### Addition of ordinates - when two graphs have the same ordinate, $y$-coordinate is double the ordinate - when two graphs have opposite ordinates, $y$-coordinate is 0 i.e. ($x$-intercept) - when one of the ordinates is 0, the resulting ordinate is equal to the other ordinate -