From: Andrew Lorimer Date: Wed, 13 Feb 2019 01:18:47 +0000 (+1100) Subject: properties of complex conjugates & moduli X-Git-Tag: yr12~254^2~2 X-Git-Url: https://git.lorimer.id.au/notes.git/diff_plain/9f4e42fdb4fdcb8049ab6f9487d5f19275ffb17b?hp=c526004533c1b7a3bb623e4caf1ec609b623e1e4 properties of complex conjugates & moduli --- diff --git a/spec/complex.md b/spec/complex.md index 374b793..c281154 100755 --- a/spec/complex.md +++ b/spec/complex.md @@ -2,9 +2,7 @@ ## Imaginary numbers -$i^2 = -1$ - -$\therefore i = \sqrt {-1}$ +$i^2 = -1 \quad \therefore i = \sqrt {-1}$ ### Simplifying negative surds @@ -16,9 +14,8 @@ $= \sqrt{2}i$ $\mathbb{C} = \{a+bi : a, b \in \mathbb{R} \}$ -General form: $z=a+bi$ -- $\operatorname{Re}(z) = a$ -- $\operatorname{Im}(z) = b$ +General form: $z=a+bi$ +$\operatorname{Re}(z) = a, \quad \operatorname{Im}(z) = b$ ### Addition @@ -59,10 +56,19 @@ $z_1 \times z_2 = (ac-bd)+(ad+bc)i$ If $z=a+bi$, conjugate of $z$ is $\overline{z} = a-bi$ (flipped operator) -Also, $z \overline{z} = (a+bi)(a-bi) = a^2+b^2$ +Also, $z \overline{z} = (a+bi)(a-bi) = a^2+b^2 = |z|^2$ - Multiplication and addition are associative +#### Properties + +- $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$ +- $\overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}$ +- $\overline{kz} = k \overline{z}, \text{ for } k \in \mathbb{R}$ +- $z \overline{z} = |z|^2$ +- $z + \overline{z} = 2 \operatorname{Re}(z)$ + + ### Modulus Distance from origin. @@ -70,6 +76,12 @@ $|{z}|=\sqrt{a^2+b^2}$ $\therefore z \overline{z} = |z|^2$ +#### Properties + +- $|z_1 z_2| = |z_1| |z_2|$ +- $|{z_1 \over z_2}| = {|z_1| \over |z_2|}$ +- $|z_1 + z_2| \le |z_1 + |z_2|$ + ### Multiplicative inverse $z^{-1} = {1 \over z} = {{a-bi} \over {a^2+B^2}} = {\overline{z} \over {|z|^2}}$