From: Andrew Lorimer Date: Wed, 21 Aug 2019 05:02:44 +0000 (+1000) Subject: [spec] add statistics notes up to 15E X-Git-Tag: yr12~60 X-Git-Url: https://git.lorimer.id.au/notes.git/diff_plain/a11aed77bd96142b075834cad47f46d795a92f5e [spec] add statistics notes up to 15E --- diff --git a/spec/statistics.pdf b/spec/statistics.pdf new file mode 100644 index 0000000..adbdbf0 Binary files /dev/null and b/spec/statistics.pdf differ diff --git a/spec/statistics.tex b/spec/statistics.tex new file mode 100644 index 0000000..f546e20 --- /dev/null +++ b/spec/statistics.tex @@ -0,0 +1,86 @@ +\documentclass[a4paper]{article} +\usepackage[a4paper, margin=2cm]{geometry} +\usepackage{array} +\usepackage{amsmath} +\usepackage{amssymb} +\usepackage{tcolorbox} +\usepackage{fancyhdr} +\usepackage{pgfplots} +\usepackage{tabularx} +\usepackage{keystroke} +\usepackage{listings} +\usepackage{xcolor} % used only to show the phantomed stuff +\definecolor{cas}{HTML}{e6f0fe} +\usepackage{mathtools} + +\pagestyle{fancy} +\fancyhead[LO,LE]{Unit 4 Specialist --- Statistics} +\fancyhead[CO,CE]{Andrew Lorimer} + +\setlength\parindent{0pt} + +\begin{document} + + \title{Statistics} + \author{} + \date{} + \maketitle + + \section{Linear combinations of random variables} + + \subsection*{Continuous random variables} + + A continuous random variable \(X\) has a pdf \(f\) such that: + + \begin{enumerate} + \item \(f(x) \ge 0 \forall x \) + \item \(\int^\infty_{-\infty} f(x) \> dx = 1\) + \end{enumerate} + + \[ \Pr(X \le c) = \int^c_{-\infty} f(x) \> dx \] + + \subsubsection*{Linear functions \(X \rightarrow aX+b\)} + + \begin{align*} + \Pr(Y \le y) &= \Pr(aX+b \le y) \\ + &= \Pr\left(X \le \dfrac{y-b}{a}\right) \\ + &= \int^{\dfrac{y-b}{a}}_{-\infty} f(x) \> dx + \end{align*} + + \begin{align*} + \textbf{Mean:} && \operatorname{E}(aX+b) & = a\operatorname{E}(X)+b \\ + \textbf{Variance:} && \operatorname{Var}(aX+b) &= a^2 \operatorname{Var}(X) \\ + \end{align*} + + \subsection*{Linear combination of two random variables} + + \begin{align*} + \textbf{Mean:} && \operatorname{E}(aX+bY) & = a\operatorname{E}(X)+b\operatorname{E}(Y) \\ + \textbf{Variance:} && \operatorname{Var}(aX+bY) &= a^2 \operatorname{Var}(X) + b^2 \operatorname{Var}(Y) \tag{if \(X\) and \(Y\) are independent}\\ + \end{align*} + + \section{Sample mean} + + \[ \overline{x} = \dfrac{\Sigma x}{n} \] + + where \(n\) is the size of the sample (number of sample points) + + \subsubsection*{\colorbox{cas}{On CAS:}} + + \begin{enumerate} + \item Spreadsheet + \item In cell A1: \verb;mean(randNorm(sd, mean, sample size)); + \item Edit \(\rightarrow\) Fill \(\rightarrow\) Fill Range + \item Input range as A1:An where \(n\) is the number of samples + \item Graph \(\rightarrow\) Histogram + \end{enumerate} + + \subsubsection*{Sample size of \(n\)} + + \[ \overline{X} = \sum_{i=1}^n \frac{x_i}{n} = \dfrac{\sum x}{n} \] + + Sample mean is distributed with mean \(\mu\) and sd \(\frac{\sigma}{\sqrt{n}}\) + + + +\end{document}