From: Andrew Lorimer Date: Wed, 6 Mar 2019 11:00:39 +0000 (+1100) Subject: [spec] finish vectors reference X-Git-Tag: yr12~217 X-Git-Url: https://git.lorimer.id.au/notes.git/diff_plain/aa43df379be8af5784531ada2685585ffdb33f02 [spec] finish vectors reference --- diff --git a/spec/graphics/vectors-3d.png b/spec/graphics/vectors-3d.png new file mode 100644 index 0000000..e282fa2 Binary files /dev/null and b/spec/graphics/vectors-3d.png differ diff --git a/spec/vectors-ref.pdf b/spec/vectors-ref.pdf index c1c46b6..12e0161 100644 Binary files a/spec/vectors-ref.pdf and b/spec/vectors-ref.pdf differ diff --git a/spec/vectors.md b/spec/vectors.md index 1ac62fe..932f614 100644 --- a/spec/vectors.md +++ b/spec/vectors.md @@ -24,7 +24,7 @@ header-includes: - vectors with equal magnitude and direction are equivalent -[//]: # ![](graphics/vectors-intro.png){#id .class width=20%} +![](graphics/vectors-intro.png){#id .class width=20%} ## Vector addition @@ -43,9 +43,9 @@ To find $\boldsymbol{u} - \boldsymbol{v}$, add $\boldsymbol{-v}$ to $\boldsymbol ## Parallel vectors -Parallel vectors have same direction or opposite direction. +Same or opposite direction -**Two non-zero vectors $\boldsymbol{u}$ and $\boldsymbol{v}$ are parallel if there is some $k \in \mathbb{R} \setminus \{0\}$ such at $\boldsymbol{u} = k \boldsymbol{v}$** +$$\boldsymbol{u} || \boldsymbol{v} \iff \boldsymbol{u} = k \boldsymbol{v} \text{ where } k \in \mathbb{R} \setminus \{0\}$$ ## Position vectors @@ -78,25 +78,14 @@ Basic algebra applies: $(x\boldsymbol{i} + y\boldsymbol{j}) + (m\boldsymbol{i} + n\boldsymbol{j}) = (x + m)\boldsymbol{i} + (y+n)\boldsymbol{j}$ Two vectors equal if and only if their components are equal. -## Unit vectors +## Unit vector $|\hat{\boldsymbol{a}}|=1$ -A vector of length 1. $\boldsymbol{i}$ and $\boldsymbol{j}$ are unit vectors. +\begin{equation}\begin{split}\hat{\boldsymbol{a}} & = {1 \over {|\boldsymbol{a}|}}\boldsymbol{a} \\ & = \boldsymbol{a} \cdot {|\boldsymbol{a}|}\end{split}\end{equation} -A unit vector in direction of $\boldsymbol{a}$ is denoted by $\hat{\boldsymbol{a}}$: +## Scalar/dot product $\boldsymbol{a} \cdot \boldsymbol{b}$ -$$\hat{\boldsymbol{a}}={1 \over {|\boldsymbol{a}|}}\boldsymbol{a}\quad (\implies |\hat{\boldsymbol{a}}|=1)$$ - -Also, unit vector of $\boldsymbol{a}$ can be defined by $\boldsymbol{a} \cdot {|\boldsymbol{a}|}$ - -## Scalar products / dot products - -If $\boldsymbol{a} = a_i \boldsymbol{i} + a_2 \boldsymbol{j}$ and $\boldsymbol{b} = b_i \boldsymbol{i} + b_2 \boldsymbol{j}$, the dot product is: $$\boldsymbol{a} \cdot \boldsymbol{b} = a_1 b_1 + a_2 b_2$$ -Produces a real number, not a vector. - -$$\boldsymbol{a} \cdot \boldsymbol{a} = |\boldsymbol{a}|^2$$ - **on CAS:** `dotP([a b c], [d e f])` ## Scalar product properties @@ -132,22 +121,42 @@ $$\cos \theta = {{\boldsymbol{a} \cdot \boldsymbol{b}} \over {|\boldsymbol{a}| | **on CAS:** `angle([a b c], [a b c])` (Action -> Vector -> Angle) +## Angle between vector and axis + +Direction of a vector can be given by the angles it makes with $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$ directions. + +For $\boldsymbol{a} = a_1 \boldsymbol{i} + a_2 \boldsymbol{j} + a_3 \boldsymbol{k}$ which makes angles $\alpha, \beta, \gamma$ with positive direction of $x, y, z$ axes: +$$\cos \alpha = {a_1 \over |\boldsymbol{a}|}, \quad \cos \beta = {a_2 \over |\boldsymbol{a}|}, \quad \cos \gamma = {a_3 \over |\boldsymbol{a}|}$$ + +**on CAS:** `angle([a b c], [1 0 0])` for angle between $a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}$ and $x$-axis ## Vector projections -Vector resolute of $\boldsymbol{a}$ in direction of $\boldsymbol{b}$ is magnitude of $\boldsymbol{a}$ in direction of $\boldsymbol{b}$. +Vector resolute of $\boldsymbol{a}$ in direction of $\boldsymbol{b}$ is magnitude of $\boldsymbol{a}$ in direction of $\boldsymbol{b}$: $$\boldsymbol{u}={{\boldsymbol{a}\cdot\boldsymbol{b}}\over |\boldsymbol{b}|^2}\boldsymbol{b}=\left({\boldsymbol{a}\cdot{\boldsymbol{b} \over |\boldsymbol{b}|}}\right)\left({\boldsymbol{b} \over |\boldsymbol{b}|}\right)=(\boldsymbol{a} \cdot \hat{\boldsymbol{b}})\hat{\boldsymbol{b}}$$ -Scalar resolute of $\vec{a}$ on $\vec{b} = |\vec{u}| = \vec{a} \cdot \hat{\vec{b}}$ (results in a scalar) -Vector resolute of $\vec{a}$ perpendicular to $b$ is equal to $\vec{a} - \vec{u}$ where $\vec{u}$ is vector projection of $\vec{a}$ on $\vec{b}$ +## Scalar resolute of $\boldsymbol{a}$ on $\boldsymbol{b}$ + +$$r_s = |\boldsymbol{u}| = \boldsymbol{a} \cdot \hat{\boldsymbol{b}}$$ + +## Vector resolute of $\boldsymbol{a} \perp \boldsymbol{b}$ + +$$\boldsymbol{w} = \boldsymbol{a} - \boldsymbol{u} \> \text{ where } \boldsymbol{u} \text{ is projection } \boldsymbol{a} \text{ on } \boldsymbol{b}$$ ## Vector proofs -**Concurrent lines -** $\ge$ 3 lines intersect at a single point -**Collinear points -** $\ge$ 3 points lie on the same line ($\implies \vec{OC} = \lambda \vec{OA} + \mu \vec{OB}$ where $\lambda + \mu = 1$. If $C$ is between $\vec{AB}$, then $0 < \mu < 1$) +### Concurrent lines + +$\ge$ 3 lines intersect at a single point + +### Collinear points + +$\ge$ 3 points lie on the same line +$\implies \vec{OC} = \lambda \vec{OA} + \mu \vec{OB}$ where $\lambda + \mu = 1$. If $C$ is between $\vec{AB}$, then $0 < \mu < 1$ +Points $A, B, C$ are collinear iff $\vec{AC}=m\vec{AB} \text{ where } m \ne 0$ -Useful vector properties: +### Useful vector properties - If $\boldsymbol{a}$ and $\boldsymbol{b}$ are parallel, then $\boldsymbol{b}=k\boldsymbol{a}$ for some $k \in \mathbb{R} \setminus \{0\}$ - If $\boldsymbol{a}$ and $\boldsymbol{b}$ are parallel with at least one point in common, then they lie on the same straight line @@ -156,28 +165,23 @@ Useful vector properties: ## Linear dependence -Vectors $\vec{a}, \vec{b}, \vec{c}$ are linearly dependent if they are non-parallel and: +Vectors $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ are linearly dependent if they are non-parallel and: -$$k\vec{a}+l\vec{b}+m\vec{c} = 0$$ -$$\therefore \vec{c} = m\vec{a} + n\vec{b} \quad \text{(simultaneous)}$$ +$$k\boldsymbol{a}+l\boldsymbol{b}+m\boldsymbol{c} = 0$$ +$$\therefore \boldsymbol{c} = m\boldsymbol{a} + n\boldsymbol{b} \quad \text{(simultaneous)}$$ -$\vec{a}, \vec{b},$ and $\vec{c}$ are linearly independent if no vector in the set is expressible as a linear combination of other vectors in set, or if they are parallel. +$\boldsymbol{a}, \boldsymbol{b},$ and $\boldsymbol{c}$ are linearly independent if no vector in the set is expressible as a linear combination of other vectors in set, or if they are parallel. -Vector $\vec{w}$ is a linear combination of vectors $\vec{v_1}, \vec{v_2}, \vec{v_3}$ +Vector $\boldsymbol{w}$ is a linear combination of vectors $\boldsymbol{v_1}, \boldsymbol{v_2}, \boldsymbol{v_3}$ ## Three-dimensional vectors -Right-hand rule for axes - $z$ is up or out of page. - -## Angle between vector and axis +Right-hand rule for axes: $z$ is up or out of page. -Direction of a vector can be given by the angles it makes with $\vec{i}, \vec{j}, \vec{k}$ directions. +i![](graphics/vectors-3d.png) -For $\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$ which makes angles $\alpha, \beta, \gamma$ with positive direction of $x, y, z$ axes: -$$\cos \alpha = {a_1 \over |\vec{a}|}, \quad \cos \beta = {a_2 \over |\vec{a}|}, \quad \cos \gamma = {a_3 \over |\vec{a}|}$$ +## Parametric vectors -**on CAS:** `angle([a b c], [1 0 0])` for angle between $a\vec{i} + b\vec{j} + c\vec{k}$ and $x$-axis +Parametric equation of line through point $(x_0, y_0, z_0)$ and parallel to $a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}$ is: -## Collinearity - -Points $A, B, C$ are collinear iff $\vec{AC}=m\vec{AB} \text{ where } m \ne 0$ +\begin{equation}\begin{cases}x = x_o + a \cdot t \\ y = y_0 + b \cdot t \\ z = z_0 + c \cdot t\end{cases}\end{equation}