From: Andrew Lorimer <andrew@lorimer.id.au> Date: Tue, 9 Apr 2019 06:08:09 +0000 (+1000) Subject: [spec] add to integral laws X-Git-Tag: yr12~169 X-Git-Url: https://git.lorimer.id.au/notes.git/diff_plain/b99782992dd6859bf7e977aa5d4ba334806c51b0?ds=sidebyside [spec] add to integral laws --- diff --git a/spec/calculus.md b/spec/calculus.md index a085f3b..5be3218 100644 --- a/spec/calculus.md +++ b/spec/calculus.md @@ -1,3 +1,12 @@ +--- +geometry: margin=2cm +columns: 2 +graphics: yes +tables: yes +author: Andrew Lorimer +classoption: twocolumn +--- + # Differential calculus ## Limits @@ -228,8 +237,10 @@ $\int k f(x) dx = k \int f(x) dx$ | $f(x)$ | $\int f(x) \cdot dx$ | | ------------------------------- | ---------------------------- | | $k$ (constant) | $kx + c$ | -| $x^n$ | ${1 \over {n+1}}x^{n+1} + c$ | +| $x^n$ | ${x^{n+1} \over {n+1}} + c$ | | $a x^{-n}$ | $a \cdot \log_e x + c$ | +| ${1 \over {ax+b}}$ | ${1 \over a} \log_e (ax+b) + c$ | +| $(ax+b)^n$ | ${1 \over {a(n+1)}}(ax+b)^{n-1} + c$ | | $e^{kx}$ | ${1 \over k} e^{kx} + c$ | | $e^k$ | $e^kx + c$ | | $\sin kx$ | $-{1 \over k} \cos (kx) + c$ | @@ -237,8 +248,6 @@ $\int k f(x) dx = k \int f(x) dx$ | ${f^\prime (x)} \over {f(x)}$ | $\log_e f(x) + c$ | | $g^\prime(x)\cdot f^\prime(g(x)$ | $f(g(x))$ (chain rule)| | $f(x) \cdot g(x)$ | $\int [f^\prime(x) \cdot g(x)] dx + \int [g^\prime(x) f(x)] dx$ | -| ${1 \over {ax+b}}$ | ${1 \over a} \log_e (ax+b) + c$ | -| $(ax+b)^n$ | ${1 \over {a(n+1)}}(ax+b)^{n-1} + c$ | ## Applications of antidifferentiation