From: Andrew Lorimer Date: Thu, 16 Aug 2018 10:57:25 +0000 (+1000) Subject: clarify chain/product/quotient rules X-Git-Tag: yr11~67 X-Git-Url: https://git.lorimer.id.au/notes.git/diff_plain/becf5ca1430ee99bdbe44b482b7c57a81789632c clarify chain/product/quotient rules --- diff --git a/spec/calculus.md b/spec/calculus.md index c0056c4..4c33318 100644 --- a/spec/calculus.md +++ b/spec/calculus.md @@ -70,12 +70,12 @@ Given point $P(a, b)$ and function $f(x)$, the gradient is $f^\prime(a)$ ## Derivatives of $x^n$ -For $f: \mathbb{R} \rightarrow \mathbb{R}$ where $f(x)=x^n, x \in \mathbb{N}$ - -Derivative is $f^\prime(x) = nx^{n-1}$ +$${d(ax^n) \over dx}=anx^{n-1}$$ If $x=$ constant, derivative is $0$ +If $y=ax^n$, derivative is $a\times nx^{n-1}$ + If $f(x)={1 \over x}=x^{-1}, \quad f^\prime(x)=-1x^{-2}={-1 \over x^2}$ If $f(x)=^5\sqrt{x}=x^{1 \over 5}, \quad f^\prime(x)={1 \over 5}x^{-4/5}={1 \over 5 \times ^5\sqrt{x^4}}$ @@ -84,15 +84,22 @@ If $f(x)=(x-b)^2, \quad f^\prime(x)=2(x-b)$ $$f^\prime(x)=\lim_{h \rightarrow 0}{{f(x+h)-f(x)} \over h}$$ +## Derivatives of $u \pm v$ + +$${dy \over dx}={du \over dx} \pm {dv \over dx}$$ +where $u$ and $v$ are functions of $x$ + ## Euler's number as a limit $$\lim_{h \rightarrow 0} {{e^h-1} \over h}=1$$ ## Chain rule +$$(f \circ g)^\prime = (f^\prime \circ g) \cdot g^\prime$$ + Leibniz notation: -$${dy \over dx} = {dy \over du} \times {du \over dx}$$ +$${dy \over dx} = {dy \over du} \cdot {du \over dx}$$ Function notation: @@ -109,15 +116,15 @@ ${dy \over du} = 7u^6$ $7u^6 \times$ -## Product rule - -If $f(x)=u(x) \times v(x)$, then $f^\prime (x) = u(x) \times v^\prime(x) + v(x)\times u^\prime(x)$ +## Product rule for $y=uv$ -If $y=uv$, then derivative ${dy \over dx} = u{dv \over dx} + v{du \over dx}$ +$${dy \over dx} = u{dv \over dx} + v{du \over dx}$$ Surds can be left on denomintaors. -## Quotient rule +## Quotient rule for $y={u \over v}$ + +$${dy \over dx} = {{v{du \over dx} - u{dv \over dx}} \over v^2}$$ If $f(x)={u(x) \over v(x)}$, then $f^\prime(x)={{v(x)u^\prime(x)-u(x)v^\prime(x)} \over [v(x)]^2}$