From: Andrew Lorimer Date: Tue, 2 Apr 2019 11:10:15 +0000 (+1100) Subject: [spec] clarify stationary points & chain rule X-Git-Tag: yr12~170 X-Git-Url: https://git.lorimer.id.au/notes.git/diff_plain/cc220a67dfb1dfe7cdfbcb695761406a5e402ade [spec] clarify stationary points & chain rule --- diff --git a/spec/calculus.md b/spec/calculus.md index 5c3b3fc..a085f3b 100644 --- a/spec/calculus.md +++ b/spec/calculus.md @@ -95,12 +95,14 @@ $$\lim_{h \rightarrow 0} {{e^h-1} \over h}=1$$ ## Chain rule for $(f\circ g)$ -$${dy \over dx} = {dy \over du} \cdot {du \over dx}$$ -$${d((ax+b)^n) \over dx} = {d(ax+b) \over dx} \cdot n \cdot (ax+b)^{n-1}$$ +If $f(x) = h(g(x)) = (h \circ g)(x)$: + +$$f^\prime(x) = h^\prime(g(x)) \cdot g^\prime(x)$$ -Function notation: +If $y=h(u)$ and $u=g(x)$: -$$(f\circ g)^\prime(x)=f^\prime(g(x))g^\prime(x),\quad \mathbb{where}\hspace{0.3em} (f\circ g)(x)=f(g(x))$$ +$${dy \over dx} = {dy \over du} \cdot {du \over dx}$$ +$${d((ax+b)^n) \over dx} = {d(ax+b) \over dx} \cdot n \cdot (ax+b)^{n-1}$$ Used with only one expression. @@ -110,7 +112,6 @@ ${du \over dx} = 2x$ $y=u^7$ ${dy \over du} = 7u^6$ - ## Product rule for $y=uv$ $${dy \over dx} = u{dv \over dx} + v{du \over dx}$$ @@ -196,7 +197,8 @@ Order of polynomial $n$th derivative decrements each time the derivative is take ### Points of Inflection -*Point of inflection* - point of maximum gradient (either +ve or -ve). Occurs where $f^{\prime\prime} = 0$ +*Stationary point* - point of zero gradient (i.e. $f^\prime(x)=0$) +*Point of inflection* - point of maximum $|$gradient$|$ (i.e. $f^{\prime\prime} = 0$) - if $f^\prime (a) = 0$ and $f^{\prime\prime}(a) > 0$, then point $(a, f(a))$ is a local min (curve is concave up) - if $f^\prime (a) = 0$ and $f^{\prime\prime} (a) < 0$, then point $(a, f(a))$ is local max (curve is concave down)