From: Andrew Lorimer Date: Mon, 30 Jul 2018 01:15:48 +0000 (+1000) Subject: features of asymptotes on tan graphs X-Git-Tag: yr11~80 X-Git-Url: https://git.lorimer.id.au/notes.git/diff_plain/e710454793e7ca43b759a0552e00fa3200c2d125 features of asymptotes on tan graphs --- diff --git a/methods/circ-functions.md b/methods/circ-functions.md index 3bbe1c2..f30ed7a 100644 --- a/methods/circ-functions.md +++ b/methods/circ-functions.md @@ -24,7 +24,6 @@ Range is $[-b+c, b+c]$; Graph of $\cos(x)$ starts at $(0,1)$. Graph of $\sin(x)$ starts at $(0,0)$. -<<<<<<< HEAD **Mean / equilibrium:** line that the graph oscillates around ($y=d$) ## Solving trig equations @@ -37,7 +36,7 @@ $\sin2\theta={\sqrt{3}\over2}, \quad \theta \in[0, 2\pi] \quad(\therefore 2\thet $2\theta=\sin^{-1}{\sqrt{3} \over 2}$ $2\theta={\pi\over 3}, {2\pi \over 3}, {7\pi \over 3}, {8\pi \over 3}$ $\therefore \theta = {\pi \over 6}, {\pi \over 3}, {7 \pi \over 6}, {4\pi \over 3}$ -======= + ### Amplitude Amplitude of $a$ means graph oscillates between $+a$ and $-a$ in $y$-axis @@ -86,5 +85,5 @@ $n$ is $y$-dilation ($\equiv$ amplitude) period $T$ is $\pi \over n$ range is $R$ roots at $x={k\pi \over n}$ -asymptotes at $x={{(2k+1)\pi}\over 2},\quad k \in \mathbb{Z}$ ->>>>>>> 924c0548b3e7564d4015e879c56a46a5606807fe +asymptotes at $x={{(2k+1)\pi}\over 2n},\quad k \in \mathbb{Z}$ +**Asymptotes should always have equations and arrow pointing up**