From: Andrew Lorimer Date: Thu, 25 Apr 2019 04:49:26 +0000 (+1000) Subject: [spec] integration by substitution X-Git-Tag: yr12~158 X-Git-Url: https://git.lorimer.id.au/notes.git/diff_plain/f05acf18e1c0d59f1fe02c6254e4eac4b9271084 [spec] integration by substitution --- diff --git a/spec/calculus.md b/spec/calculus.md index 9025d37..0121899 100644 --- a/spec/calculus.md +++ b/spec/calculus.md @@ -254,6 +254,45 @@ $$\int_a^b f(x) \cdot dx = [F(x)]_a^b=F(b)-F(a)$$ - *Integrand* is $f$. - $F(x)$ may be any integral, i.e. $c$ is inconsequential +### Integration by substitution + +$$\int f(u) {du \over dx} \cdot dx = \int f(u) \cdot du$$ + +Note $f(u)$ must be one-to-one $\implies$ one $x$ value for each $y$ value + +e.g. for $y=\int(2x+1)\sqrt{x+4} \cdot dx$: +let $u=x+4$ +$\implies {du \over dx} = 1$ +$\implies x = u - 4$ +then $y=\int (2(u-4)+1)u^{1 \over 2} \cdot du$ +Solve as a normal integral + +#### Definite integrals by substitution + +For $\int^b_a f(x) {du \over dx} \cdot dx$, evaluate new $a$ and $b$ for $f(u) \cdot du$. + +### Trigonometric integration + +$$\sin^m x \cos^n x \cdot dx$$ + +**$m$ is odd:** +$m=2k+1$ where $k \in \mathbb{Z}$ +$\implies \sin^{2k+1} x = (\sin^2 z)^k \sin x = (1 - \cos^2 x)^k \sin x$ +Substitute $u=\cos x$ + +**$n$ is odd:** +$n=2k+1$ where $k \in \mathbb{Z}$ +$\implies \cos^{2k+1} x = (\cos^2 x)^k \cos x = (1-\sin^2 x)^k \cos x$ +Subbstitute $u=\sin x$ + +**$m$ and $n$ are even:** +Use identities: + +- $\sin^2x={1 \over 2}(1-\cos 2x)$ +- $\cos^2x={1 \over 2}(1+\cos 2x)$ +- $\sin 2x = 2 \sin x \cos x + + ## Applications of antidifferentiation - $x$-intercepts of $y=f(x)$ identify $x$-coordinates of stationary points on $y=F(x)$