From: Andrew Lorimer Date: Sun, 8 Sep 2019 12:10:33 +0000 (+1000) Subject: [methods] add statistics notes to main document X-Git-Tag: yr12~40 X-Git-Url: https://git.lorimer.id.au/notes.git/diff_plain/f2f603c4d052742995463d39f42b9de55843cafc?ds=inline [methods] add statistics notes to main document --- diff --git a/methods/calculus.tex b/methods/calculus.tex index 4478faa..6f57dc0 100644 --- a/methods/calculus.tex +++ b/methods/calculus.tex @@ -139,6 +139,7 @@ Type \(x\) value to solve for a point. Return to show equation for line. \(f(g(x))\) & \(f^\prime(g(x))\cdot g^\prime(x)\)\\ \hline \end{tabularx} + \vspace*{\fill} \columnbreak \subsection*{Antiderivatives} \rowcolors{1}{shade1}{cas} @@ -166,4 +167,5 @@ Type \(x\) value to solve for a point. Return to show equation for line. \(f(x) \cdot g(x)\) & \(\int [f^\prime(x) \cdot g(x)] dx + \int [g^\prime(x) f(x)] dx\)\\ \hline \end{tabularx} - +\vspace*{\fill} + \columnbreak diff --git a/methods/circ-functions.tex b/methods/circ-functions.tex index 7580791..2b615cd 100644 --- a/methods/circ-functions.tex +++ b/methods/circ-functions.tex @@ -5,20 +5,26 @@ \[1 \thinspace \operatorname{rad}={{180 \operatorname{deg}}\over \pi}\] \subsection*{Exact values} - - - \begin{tikzpicture}[scale=0.75] - \draw [orange, thick] (0,0) -- (3,3) node [black, pos=0.5, above left] {\(\sqrt{2}\)}; - \draw [orange, thick] (0,0) -- (3,0) node [black, below, pos=0.5] {\(1\)} node[black, above, pos=0.3] {\(\frac{\pi}{4}\)}; - \draw [orange, thick] (3,0) -- (3,3) node [black, right, pos=0.5] {1} node[black, left, pos=0.7] {\(\frac{\pi}{4}\)}; - \draw [black] (0,0) coordinate (A) (3,0) coordinate (B) (3,3) coordinate (C) pic [draw,black,angle radius=2mm] {right angle = A--B--C}; - \end{tikzpicture} - \begin{tikzpicture}[scale=0.75] - \draw [orange, thick] (0,3) -- (5.19,0) node [black, pos=0.5, above right] {2}; - \draw [orange, thick] (0,0) -- (5.19,0) node [black, below, pos=0.5] {\(\sqrt{3}\)} node[black, above, pos=0.7] {\(\frac{\pi}{6}\)}; - \draw [orange, thick] (0,0) -- (0,3) node [black, left, pos=0.5] {1} node [black, pos=0.8, right] {\(\frac{\pi}{3}\)}; - \draw [black] (5.19,0) coordinate (A) (0,0) coordinate (B) (0,3) coordinate (C) pic [draw,black,angle radius=2mm] {right angle = A--B--C}; - \end{tikzpicture} +\adjustbox{trim=0.7cm 0cm}{ + \begin{tikzpicture} + \matrix{ + \begin{scope}[scale=0.8] + \draw [orange, thick] (0,0) -- (3,3) node [black, pos=0.5, above left] {\(\sqrt{2}\)}; + \draw [orange, thick] (0,0) -- (3,0) node [black, below, pos=0.5] {\(1\)} node[black, above, pos=0.3] {\(\dfrac{\pi}{4}\)}; + \draw [orange, thick] (3,0) -- (3,3) node [black, right, pos=0.5] {1} node[black, left, pos=0.7] {\(\dfrac{\pi}{4}\)}; + \draw [black] (0,0) coordinate (A) (3,0) coordinate (B) (3,3) coordinate (C) pic [draw,black,angle radius=2mm] {right angle = A--B--C}; + \end{scope} + & + \begin{scope}[scale=0.8] + \draw [orange, thick] (0,3) -- (5.19,0) node [black, pos=0.5, above right] {2}; + \draw [orange, thick] (0,0) -- (5.19,0) node [black, below, pos=0.5] {\(\sqrt{3}\)} node[black, above, pos=0.7] {\(\dfrac{\pi}{6}\)}; + \draw [orange, thick] (0,0) -- (0,3) node [black, left, pos=0.5] {1} node [black, pos=0.8, right] {\(\dfrac{\pi}{3}\)}; + \draw [black] (5.19,0) coordinate (A) (0,0) coordinate (B) (0,3) coordinate (C) pic [draw,black,angle radius=2mm] {right angle = A--B--C}; + \end{scope} + \\ + }; + \end{tikzpicture} +} \subsection*{Compound angle formulas} diff --git a/methods/methods-collated.pdf b/methods/methods-collated.pdf index acdd213..9c6cbbb 100644 Binary files a/methods/methods-collated.pdf and b/methods/methods-collated.pdf differ diff --git a/methods/methods-collated.poly.gnuplot b/methods/methods-collated.poly.gnuplot index 1c600c1..c816031 100644 --- a/methods/methods-collated.poly.gnuplot +++ b/methods/methods-collated.poly.gnuplot @@ -1,2 +1,2 @@ set table "methods-collated.poly.table"; set format "%.5f" -set format "%.7e";; set samples 1000; set dummy x; plot [x=-2:2] sgn(x)*(abs(x)**(1./3)) ; +set format "%.7e";; set samples 100; set dummy x; plot [x=-2:2] sgn(x)*(abs(x)**(1./3)) ; diff --git a/methods/methods-collated.poly.table b/methods/methods-collated.poly.table index e981d3b..02e0dc8 100644 --- a/methods/methods-collated.poly.table +++ b/methods/methods-collated.poly.table @@ -1,1005 +1,105 @@ -# Curve 0 of 1, 1000 points +# Curve 0 of 1, 100 points # Curve title: "sgn(x)*(abs(x)**(1./3))" # x y type -2.0000000e+00 -1.2599210e+00 i --1.9959960e+00 -1.2590797e+00 i --1.9919920e+00 -1.2582372e+00 i --1.9879880e+00 -1.2573936e+00 i --1.9839840e+00 -1.2565489e+00 i --1.9799800e+00 -1.2557030e+00 i --1.9759760e+00 -1.2548560e+00 i --1.9719720e+00 -1.2540078e+00 i --1.9679680e+00 -1.2531585e+00 i --1.9639640e+00 -1.2523080e+00 i --1.9599600e+00 -1.2514564e+00 i --1.9559560e+00 -1.2506036e+00 i --1.9519520e+00 -1.2497497e+00 i --1.9479479e+00 -1.2488946e+00 i --1.9439439e+00 -1.2480383e+00 i --1.9399399e+00 -1.2471808e+00 i --1.9359359e+00 -1.2463222e+00 i --1.9319319e+00 -1.2454624e+00 i --1.9279279e+00 -1.2446013e+00 i --1.9239239e+00 -1.2437391e+00 i --1.9199199e+00 -1.2428757e+00 i --1.9159159e+00 -1.2420111e+00 i --1.9119119e+00 -1.2411453e+00 i --1.9079079e+00 -1.2402783e+00 i --1.9039039e+00 -1.2394100e+00 i --1.8998999e+00 -1.2385406e+00 i --1.8958959e+00 -1.2376699e+00 i --1.8918919e+00 -1.2367980e+00 i --1.8878879e+00 -1.2359249e+00 i --1.8838839e+00 -1.2350505e+00 i --1.8798799e+00 -1.2341749e+00 i --1.8758759e+00 -1.2332980e+00 i --1.8718719e+00 -1.2324199e+00 i --1.8678679e+00 -1.2315406e+00 i --1.8638639e+00 -1.2306599e+00 i --1.8598599e+00 -1.2297781e+00 i --1.8558559e+00 -1.2288949e+00 i --1.8518519e+00 -1.2280105e+00 i --1.8478478e+00 -1.2271248e+00 i --1.8438438e+00 -1.2262378e+00 i --1.8398398e+00 -1.2253496e+00 i --1.8358358e+00 -1.2244600e+00 i --1.8318318e+00 -1.2235692e+00 i --1.8278278e+00 -1.2226771e+00 i --1.8238238e+00 -1.2217836e+00 i --1.8198198e+00 -1.2208889e+00 i --1.8158158e+00 -1.2199928e+00 i --1.8118118e+00 -1.2190954e+00 i --1.8078078e+00 -1.2181967e+00 i --1.8038038e+00 -1.2172967e+00 i --1.7997998e+00 -1.2163953e+00 i --1.7957958e+00 -1.2154926e+00 i --1.7917918e+00 -1.2145885e+00 i --1.7877878e+00 -1.2136831e+00 i --1.7837838e+00 -1.2127764e+00 i --1.7797798e+00 -1.2118683e+00 i --1.7757758e+00 -1.2109588e+00 i --1.7717718e+00 -1.2100480e+00 i --1.7677678e+00 -1.2091358e+00 i --1.7637638e+00 -1.2082222e+00 i --1.7597598e+00 -1.2073072e+00 i --1.7557558e+00 -1.2063908e+00 i --1.7517518e+00 -1.2054731e+00 i --1.7477477e+00 -1.2045539e+00 i --1.7437437e+00 -1.2036334e+00 i --1.7397397e+00 -1.2027114e+00 i --1.7357357e+00 -1.2017880e+00 i --1.7317317e+00 -1.2008632e+00 i --1.7277277e+00 -1.1999370e+00 i --1.7237237e+00 -1.1990093e+00 i --1.7197197e+00 -1.1980802e+00 i --1.7157157e+00 -1.1971497e+00 i --1.7117117e+00 -1.1962177e+00 i --1.7077077e+00 -1.1952842e+00 i --1.7037037e+00 -1.1943493e+00 i --1.6996997e+00 -1.1934129e+00 i --1.6956957e+00 -1.1924751e+00 i --1.6916917e+00 -1.1915357e+00 i --1.6876877e+00 -1.1905949e+00 i --1.6836837e+00 -1.1896526e+00 i --1.6796797e+00 -1.1887088e+00 i --1.6756757e+00 -1.1877635e+00 i --1.6716717e+00 -1.1868167e+00 i --1.6676677e+00 -1.1858684e+00 i --1.6636637e+00 -1.1849186e+00 i --1.6596597e+00 -1.1839672e+00 i --1.6556557e+00 -1.1830143e+00 i --1.6516517e+00 -1.1820599e+00 i --1.6476476e+00 -1.1811039e+00 i --1.6436436e+00 -1.1801464e+00 i --1.6396396e+00 -1.1791873e+00 i --1.6356356e+00 -1.1782267e+00 i --1.6316316e+00 -1.1772645e+00 i --1.6276276e+00 -1.1763007e+00 i --1.6236236e+00 -1.1753353e+00 i --1.6196196e+00 -1.1743684e+00 i --1.6156156e+00 -1.1733998e+00 i --1.6116116e+00 -1.1724297e+00 i --1.6076076e+00 -1.1714579e+00 i --1.6036036e+00 -1.1704845e+00 i --1.5995996e+00 -1.1695095e+00 i --1.5955956e+00 -1.1685329e+00 i --1.5915916e+00 -1.1675546e+00 i --1.5875876e+00 -1.1665747e+00 i --1.5835836e+00 -1.1655932e+00 i --1.5795796e+00 -1.1646100e+00 i --1.5755756e+00 -1.1636251e+00 i --1.5715716e+00 -1.1626386e+00 i --1.5675676e+00 -1.1616503e+00 i --1.5635636e+00 -1.1606604e+00 i --1.5595596e+00 -1.1596688e+00 i +-1.9595960e+00 -1.2513789e+00 i +-1.9191919e+00 -1.2427186e+00 i +-1.8787879e+00 -1.2339359e+00 i +-1.8383838e+00 -1.2250263e+00 i +-1.7979798e+00 -1.2159851e+00 i +-1.7575758e+00 -1.2068075e+00 i +-1.7171717e+00 -1.1974882e+00 i +-1.6767677e+00 -1.1880215e+00 i +-1.6363636e+00 -1.1784015e+00 i +-1.5959596e+00 -1.1686217e+00 i -1.5555556e+00 -1.1586755e+00 i --1.5515516e+00 -1.1576805e+00 i --1.5475475e+00 -1.1566838e+00 i --1.5435435e+00 -1.1556854e+00 i --1.5395395e+00 -1.1546852e+00 i --1.5355355e+00 -1.1536833e+00 i --1.5315315e+00 -1.1526797e+00 i --1.5275275e+00 -1.1516743e+00 i --1.5235235e+00 -1.1506672e+00 i --1.5195195e+00 -1.1496583e+00 i --1.5155155e+00 -1.1486476e+00 i --1.5115115e+00 -1.1476351e+00 i --1.5075075e+00 -1.1466208e+00 i --1.5035035e+00 -1.1456048e+00 i --1.4994995e+00 -1.1445869e+00 i --1.4954955e+00 -1.1435672e+00 i --1.4914915e+00 -1.1425457e+00 i --1.4874875e+00 -1.1415224e+00 i --1.4834835e+00 -1.1404972e+00 i --1.4794795e+00 -1.1394702e+00 i --1.4754755e+00 -1.1384414e+00 i --1.4714715e+00 -1.1374106e+00 i --1.4674675e+00 -1.1363780e+00 i --1.4634635e+00 -1.1353435e+00 i --1.4594595e+00 -1.1343072e+00 i --1.4554555e+00 -1.1332689e+00 i --1.4514515e+00 -1.1322287e+00 i --1.4474474e+00 -1.1311866e+00 i --1.4434434e+00 -1.1301426e+00 i --1.4394394e+00 -1.1290967e+00 i --1.4354354e+00 -1.1280488e+00 i --1.4314314e+00 -1.1269990e+00 i --1.4274274e+00 -1.1259472e+00 i --1.4234234e+00 -1.1248934e+00 i --1.4194194e+00 -1.1238377e+00 i --1.4154154e+00 -1.1227799e+00 i --1.4114114e+00 -1.1217202e+00 i --1.4074074e+00 -1.1206585e+00 i --1.4034034e+00 -1.1195947e+00 i --1.3993994e+00 -1.1185289e+00 i --1.3953954e+00 -1.1174611e+00 i --1.3913914e+00 -1.1163913e+00 i --1.3873874e+00 -1.1153194e+00 i --1.3833834e+00 -1.1142454e+00 i --1.3793794e+00 -1.1131694e+00 i --1.3753754e+00 -1.1120912e+00 i --1.3713714e+00 -1.1110110e+00 i --1.3673674e+00 -1.1099287e+00 i --1.3633634e+00 -1.1088442e+00 i --1.3593594e+00 -1.1077577e+00 i --1.3553554e+00 -1.1066690e+00 i --1.3513514e+00 -1.1055781e+00 i --1.3473473e+00 -1.1044851e+00 i --1.3433433e+00 -1.1033899e+00 i --1.3393393e+00 -1.1022926e+00 i --1.3353353e+00 -1.1011930e+00 i --1.3313313e+00 -1.1000913e+00 i --1.3273273e+00 -1.0989873e+00 i --1.3233233e+00 -1.0978811e+00 i --1.3193193e+00 -1.0967727e+00 i --1.3153153e+00 -1.0956621e+00 i --1.3113113e+00 -1.0945492e+00 i --1.3073073e+00 -1.0934340e+00 i --1.3033033e+00 -1.0923165e+00 i --1.2992993e+00 -1.0911968e+00 i --1.2952953e+00 -1.0900747e+00 i --1.2912913e+00 -1.0889503e+00 i --1.2872873e+00 -1.0878236e+00 i --1.2832833e+00 -1.0866946e+00 i --1.2792793e+00 -1.0855632e+00 i --1.2752753e+00 -1.0844295e+00 i --1.2712713e+00 -1.0832934e+00 i --1.2672673e+00 -1.0821548e+00 i --1.2632633e+00 -1.0810139e+00 i --1.2592593e+00 -1.0798706e+00 i --1.2552553e+00 -1.0787248e+00 i --1.2512513e+00 -1.0775767e+00 i --1.2472472e+00 -1.0764260e+00 i --1.2432432e+00 -1.0752729e+00 i --1.2392392e+00 -1.0741173e+00 i --1.2352352e+00 -1.0729592e+00 i --1.2312312e+00 -1.0717987e+00 i --1.2272272e+00 -1.0706356e+00 i --1.2232232e+00 -1.0694699e+00 i --1.2192192e+00 -1.0683017e+00 i --1.2152152e+00 -1.0671310e+00 i --1.2112112e+00 -1.0659577e+00 i --1.2072072e+00 -1.0647818e+00 i --1.2032032e+00 -1.0636033e+00 i --1.1991992e+00 -1.0624221e+00 i --1.1951952e+00 -1.0612384e+00 i --1.1911912e+00 -1.0600520e+00 i --1.1871872e+00 -1.0588629e+00 i --1.1831832e+00 -1.0576712e+00 i --1.1791792e+00 -1.0564767e+00 i --1.1751752e+00 -1.0552796e+00 i --1.1711712e+00 -1.0540797e+00 i --1.1671672e+00 -1.0528771e+00 i --1.1631632e+00 -1.0516718e+00 i --1.1591592e+00 -1.0504636e+00 i --1.1551552e+00 -1.0492527e+00 i --1.1511512e+00 -1.0480390e+00 i --1.1471471e+00 -1.0468225e+00 i --1.1431431e+00 -1.0456031e+00 i --1.1391391e+00 -1.0443809e+00 i --1.1351351e+00 -1.0431558e+00 i --1.1311311e+00 -1.0419279e+00 i --1.1271271e+00 -1.0406970e+00 i --1.1231231e+00 -1.0394632e+00 i --1.1191191e+00 -1.0382265e+00 i --1.1151151e+00 -1.0369868e+00 i +-1.5151515e+00 -1.1485556e+00 i +-1.4747475e+00 -1.1382541e+00 i +-1.4343434e+00 -1.1277627e+00 i +-1.3939394e+00 -1.1170723e+00 i +-1.3535354e+00 -1.1061734e+00 i +-1.3131313e+00 -1.0950553e+00 i +-1.2727273e+00 -1.0837068e+00 i +-1.2323232e+00 -1.0721154e+00 i +-1.1919192e+00 -1.0602679e+00 i +-1.1515152e+00 -1.0481495e+00 i -1.1111111e+00 -1.0357442e+00 i --1.1071071e+00 -1.0344985e+00 i --1.1031031e+00 -1.0332499e+00 i --1.0990991e+00 -1.0319982e+00 i --1.0950951e+00 -1.0307435e+00 i --1.0910911e+00 -1.0294857e+00 i --1.0870871e+00 -1.0282249e+00 i --1.0830831e+00 -1.0269609e+00 i --1.0790791e+00 -1.0256939e+00 i --1.0750751e+00 -1.0244237e+00 i --1.0710711e+00 -1.0231503e+00 i --1.0670671e+00 -1.0218737e+00 i --1.0630631e+00 -1.0205940e+00 i --1.0590591e+00 -1.0193110e+00 i --1.0550551e+00 -1.0180248e+00 i --1.0510511e+00 -1.0167354e+00 i --1.0470470e+00 -1.0154426e+00 i --1.0430430e+00 -1.0141466e+00 i --1.0390390e+00 -1.0128473e+00 i --1.0350350e+00 -1.0115446e+00 i --1.0310310e+00 -1.0102385e+00 i --1.0270270e+00 -1.0089290e+00 i --1.0230230e+00 -1.0076162e+00 i --1.0190190e+00 -1.0062999e+00 i --1.0150150e+00 -1.0049802e+00 i --1.0110110e+00 -1.0036569e+00 i --1.0070070e+00 -1.0023302e+00 i --1.0030030e+00 -1.0010000e+00 i --9.9899900e-01 -9.9966622e-01 i --9.9499499e-01 -9.9832887e-01 i --9.9099099e-01 -9.9698793e-01 i --9.8698699e-01 -9.9564338e-01 i --9.8298298e-01 -9.9429518e-01 i --9.7897898e-01 -9.9294331e-01 i --9.7497497e-01 -9.9158776e-01 i --9.7097097e-01 -9.9022849e-01 i --9.6696697e-01 -9.8886547e-01 i --9.6296296e-01 -9.8749869e-01 i --9.5895896e-01 -9.8612811e-01 i --9.5495495e-01 -9.8475372e-01 i --9.5095095e-01 -9.8337547e-01 i --9.4694695e-01 -9.8199336e-01 i --9.4294294e-01 -9.8060734e-01 i --9.3893894e-01 -9.7921739e-01 i --9.3493493e-01 -9.7782348e-01 i --9.3093093e-01 -9.7642559e-01 i --9.2692693e-01 -9.7502369e-01 i --9.2292292e-01 -9.7361774e-01 i --9.1891892e-01 -9.7220772e-01 i --9.1491491e-01 -9.7079360e-01 i --9.1091091e-01 -9.6937534e-01 i --9.0690691e-01 -9.6795292e-01 i --9.0290290e-01 -9.6652632e-01 i --8.9889890e-01 -9.6509548e-01 i --8.9489489e-01 -9.6366039e-01 i --8.9089089e-01 -9.6222102e-01 i --8.8688689e-01 -9.6077732e-01 i --8.8288288e-01 -9.5932928e-01 i --8.7887888e-01 -9.5787685e-01 i --8.7487487e-01 -9.5642000e-01 i --8.7087087e-01 -9.5495870e-01 i --8.6686687e-01 -9.5349291e-01 i --8.6286286e-01 -9.5202260e-01 i --8.5885886e-01 -9.5054774e-01 i --8.5485485e-01 -9.4906828e-01 i --8.5085085e-01 -9.4758420e-01 i --8.4684685e-01 -9.4609546e-01 i --8.4284284e-01 -9.4460202e-01 i --8.3883884e-01 -9.4310383e-01 i --8.3483483e-01 -9.4160088e-01 i --8.3083083e-01 -9.4009311e-01 i --8.2682683e-01 -9.3858048e-01 i --8.2282282e-01 -9.3706297e-01 i --8.1881882e-01 -9.3554053e-01 i --8.1481481e-01 -9.3401311e-01 i --8.1081081e-01 -9.3248068e-01 i --8.0680681e-01 -9.3094320e-01 i --8.0280280e-01 -9.2940062e-01 i --7.9879880e-01 -9.2785291e-01 i --7.9479479e-01 -9.2630002e-01 i --7.9079079e-01 -9.2474190e-01 i --7.8678679e-01 -9.2317851e-01 i --7.8278278e-01 -9.2160981e-01 i --7.7877878e-01 -9.2003575e-01 i --7.7477477e-01 -9.1845629e-01 i --7.7077077e-01 -9.1687137e-01 i --7.6676677e-01 -9.1528096e-01 i --7.6276276e-01 -9.1368500e-01 i --7.5875876e-01 -9.1208344e-01 i --7.5475475e-01 -9.1047625e-01 i --7.5075075e-01 -9.0886335e-01 i --7.4674675e-01 -9.0724471e-01 i --7.4274274e-01 -9.0562028e-01 i --7.3873874e-01 -9.0399000e-01 i --7.3473473e-01 -9.0235381e-01 i --7.3073073e-01 -9.0071167e-01 i --7.2672673e-01 -8.9906352e-01 i --7.2272272e-01 -8.9740931e-01 i --7.1871872e-01 -8.9574897e-01 i --7.1471471e-01 -8.9408246e-01 i --7.1071071e-01 -8.9240971e-01 i --7.0670671e-01 -8.9073067e-01 i --7.0270270e-01 -8.8904527e-01 i --6.9869870e-01 -8.8735346e-01 i --6.9469469e-01 -8.8565517e-01 i --6.9069069e-01 -8.8395034e-01 i --6.8668669e-01 -8.8223891e-01 i --6.8268268e-01 -8.8052082e-01 i --6.7867868e-01 -8.7879599e-01 i --6.7467467e-01 -8.7706437e-01 i --6.7067067e-01 -8.7532588e-01 i +-1.0707071e+00 -1.0230344e+00 i +-1.0303030e+00 -1.0100007e+00 i +-9.8989899e-01 -9.9662160e-01 i +-9.4949495e-01 -9.8287334e-01 i +-9.0909091e-01 -9.6872931e-01 i +-8.6868687e-01 -9.5415973e-01 i +-8.2828283e-01 -9.3913109e-01 i +-7.8787879e-01 -9.2360541e-01 i +-7.4747475e-01 -9.0753944e-01 i +-7.0707071e-01 -8.9088357e-01 i -6.6666667e-01 -8.7358046e-01 i --6.6266266e-01 -8.7182804e-01 i --6.5865866e-01 -8.7006855e-01 i --6.5465465e-01 -8.6830190e-01 i --6.5065065e-01 -8.6652804e-01 i --6.4664665e-01 -8.6474689e-01 i --6.4264264e-01 -8.6295837e-01 i --6.3863864e-01 -8.6116241e-01 i --6.3463463e-01 -8.5935892e-01 i --6.3063063e-01 -8.5754783e-01 i --6.2662663e-01 -8.5572906e-01 i --6.2262262e-01 -8.5390253e-01 i --6.1861862e-01 -8.5206814e-01 i --6.1461461e-01 -8.5022583e-01 i --6.1061061e-01 -8.4837549e-01 i --6.0660661e-01 -8.4651705e-01 i --6.0260260e-01 -8.4465042e-01 i --5.9859860e-01 -8.4277549e-01 i --5.9459459e-01 -8.4089219e-01 i --5.9059059e-01 -8.3900041e-01 i --5.8658659e-01 -8.3710007e-01 i --5.8258258e-01 -8.3519105e-01 i --5.7857858e-01 -8.3327327e-01 i --5.7457457e-01 -8.3134662e-01 i --5.7057057e-01 -8.2941100e-01 i --5.6656657e-01 -8.2746630e-01 i --5.6256256e-01 -8.2551242e-01 i --5.5855856e-01 -8.2354924e-01 i --5.5455455e-01 -8.2157666e-01 i --5.5055055e-01 -8.1959456e-01 i --5.4654655e-01 -8.1760283e-01 i --5.4254254e-01 -8.1560134e-01 i --5.3853854e-01 -8.1358999e-01 i --5.3453453e-01 -8.1156864e-01 i --5.3053053e-01 -8.0953717e-01 i --5.2652653e-01 -8.0749545e-01 i --5.2252252e-01 -8.0544336e-01 i --5.1851852e-01 -8.0338075e-01 i --5.1451451e-01 -8.0130750e-01 i --5.1051051e-01 -7.9922347e-01 i --5.0650651e-01 -7.9712851e-01 i --5.0250250e-01 -7.9502248e-01 i --4.9849850e-01 -7.9290523e-01 i --4.9449449e-01 -7.9077662e-01 i --4.9049049e-01 -7.8863648e-01 i --4.8648649e-01 -7.8648467e-01 i --4.8248248e-01 -7.8432101e-01 i --4.7847848e-01 -7.8214535e-01 i --4.7447447e-01 -7.7995752e-01 i --4.7047047e-01 -7.7775735e-01 i --4.6646647e-01 -7.7554466e-01 i --4.6246246e-01 -7.7331926e-01 i --4.5845846e-01 -7.7108099e-01 i --4.5445445e-01 -7.6882965e-01 i --4.5045045e-01 -7.6656504e-01 i --4.4644645e-01 -7.6428697e-01 i --4.4244244e-01 -7.6199524e-01 i --4.3843844e-01 -7.5968965e-01 i --4.3443443e-01 -7.5736997e-01 i --4.3043043e-01 -7.5503599e-01 i --4.2642643e-01 -7.5268750e-01 i --4.2242242e-01 -7.5032426e-01 i --4.1841842e-01 -7.4794604e-01 i --4.1441441e-01 -7.4555259e-01 i --4.1041041e-01 -7.4314368e-01 i --4.0640641e-01 -7.4071905e-01 i --4.0240240e-01 -7.3827844e-01 i --3.9839840e-01 -7.3582159e-01 i --3.9439439e-01 -7.3334822e-01 i --3.9039039e-01 -7.3085806e-01 i --3.8638639e-01 -7.2835081e-01 i --3.8238238e-01 -7.2582617e-01 i --3.7837838e-01 -7.2328385e-01 i --3.7437437e-01 -7.2072354e-01 i --3.7037037e-01 -7.1814490e-01 i --3.6636637e-01 -7.1554760e-01 i --3.6236236e-01 -7.1293132e-01 i --3.5835836e-01 -7.1029569e-01 i --3.5435435e-01 -7.0764035e-01 i --3.5035035e-01 -7.0496494e-01 i --3.4634635e-01 -7.0226906e-01 i --3.4234234e-01 -6.9955233e-01 i --3.3833834e-01 -6.9681433e-01 i --3.3433433e-01 -6.9405464e-01 i --3.3033033e-01 -6.9127282e-01 i --3.2632633e-01 -6.8846844e-01 i --3.2232232e-01 -6.8564102e-01 i --3.1831832e-01 -6.8279009e-01 i --3.1431431e-01 -6.7991515e-01 i --3.1031031e-01 -6.7701569e-01 i --3.0630631e-01 -6.7409118e-01 i --3.0230230e-01 -6.7114107e-01 i --2.9829830e-01 -6.6816480e-01 i --2.9429429e-01 -6.6516177e-01 i --2.9029029e-01 -6.6213138e-01 i --2.8628629e-01 -6.5907299e-01 i --2.8228228e-01 -6.5598595e-01 i --2.7827828e-01 -6.5286958e-01 i --2.7427427e-01 -6.4972318e-01 i --2.7027027e-01 -6.4654599e-01 i --2.6626627e-01 -6.4333728e-01 i --2.6226226e-01 -6.4009623e-01 i --2.5825826e-01 -6.3682202e-01 i --2.5425425e-01 -6.3351379e-01 i --2.5025025e-01 -6.3017065e-01 i --2.4624625e-01 -6.2679166e-01 i --2.4224224e-01 -6.2337583e-01 i --2.3823824e-01 -6.1992215e-01 i --2.3423423e-01 -6.1642956e-01 i --2.3023023e-01 -6.1289693e-01 i --2.2622623e-01 -6.0932311e-01 i +-6.2626263e-01 -8.5556334e-01 i +-5.8585859e-01 -8.3675362e-01 i +-5.4545455e-01 -8.1705794e-01 i +-5.0505051e-01 -7.9636397e-01 i +-4.6464646e-01 -7.7453470e-01 i +-4.2424242e-01 -7.5140030e-01 i +-3.8383838e-01 -7.2674625e-01 i +-3.4343434e-01 -7.0029535e-01 i +-3.0303030e-01 -6.7167939e-01 i +-2.6262626e-01 -6.4039223e-01 i -2.2222222e-01 -6.0570686e-01 i --2.1821822e-01 -6.0204691e-01 i --2.1421421e-01 -5.9834192e-01 i --2.1021021e-01 -5.9459046e-01 i --2.0620621e-01 -5.9079105e-01 i --2.0220220e-01 -5.8694214e-01 i --1.9819820e-01 -5.8304208e-01 i --1.9419419e-01 -5.7908913e-01 i --1.9019019e-01 -5.7508147e-01 i --1.8618619e-01 -5.7101715e-01 i --1.8218218e-01 -5.6689414e-01 i --1.7817818e-01 -5.6271027e-01 i --1.7417417e-01 -5.5846323e-01 i --1.7017017e-01 -5.5415060e-01 i --1.6616617e-01 -5.4976978e-01 i --1.6216216e-01 -5.4531801e-01 i --1.5815816e-01 -5.4079234e-01 i --1.5415415e-01 -5.3618963e-01 i --1.5015015e-01 -5.3150651e-01 i --1.4614615e-01 -5.2673938e-01 i --1.4214214e-01 -5.2188436e-01 i --1.3813814e-01 -5.1693730e-01 i --1.3413413e-01 -5.1189368e-01 i --1.3013013e-01 -5.0674867e-01 i --1.2612613e-01 -5.0149701e-01 i --1.2212212e-01 -4.9613300e-01 i --1.1811812e-01 -4.9065042e-01 i --1.1411411e-01 -4.8504249e-01 i --1.1011011e-01 -4.7930181e-01 i --1.0610611e-01 -4.7342021e-01 i --1.0210210e-01 -4.6738872e-01 i --9.8098098e-02 -4.6119741e-01 i --9.4094094e-02 -4.5483526e-01 i --9.0090090e-02 -4.4828995e-01 i --8.6086086e-02 -4.4154773e-01 i --8.2082082e-02 -4.3459306e-01 i --7.8078078e-02 -4.2740839e-01 i --7.4074074e-02 -4.1997368e-01 i --7.0070070e-02 -4.1226600e-01 i --6.6066066e-02 -4.0425880e-01 i --6.2062062e-02 -3.9592118e-01 i --5.8058058e-02 -3.8721678e-01 i --5.4054054e-02 -3.7810239e-01 i --5.0050050e-02 -3.6852603e-01 i --4.6046046e-02 -3.5842430e-01 i --4.2042042e-02 -3.4771861e-01 i --3.8038038e-02 -3.3630968e-01 i --3.4034034e-02 -3.2406924e-01 i --3.0030030e-02 -3.1082689e-01 i --2.6026026e-02 -2.9634842e-01 i --2.2022022e-02 -2.8029740e-01 i --1.8018018e-02 -2.6216156e-01 i --1.4014014e-02 -2.4109462e-01 i --1.0010010e-02 -2.1551533e-01 i --6.0060060e-03 -1.8177267e-01 i --2.0020020e-03 -1.2603413e-01 i -2.0020020e-03 1.2603413e-01 i -6.0060060e-03 1.8177267e-01 i -1.0010010e-02 2.1551533e-01 i -1.4014014e-02 2.4109462e-01 i -1.8018018e-02 2.6216156e-01 i -2.2022022e-02 2.8029740e-01 i -2.6026026e-02 2.9634842e-01 i -3.0030030e-02 3.1082689e-01 i -3.4034034e-02 3.2406924e-01 i -3.8038038e-02 3.3630968e-01 i -4.2042042e-02 3.4771861e-01 i -4.6046046e-02 3.5842430e-01 i -5.0050050e-02 3.6852603e-01 i -5.4054054e-02 3.7810239e-01 i -5.8058058e-02 3.8721678e-01 i -6.2062062e-02 3.9592118e-01 i -6.6066066e-02 4.0425880e-01 i -7.0070070e-02 4.1226600e-01 i -7.4074074e-02 4.1997368e-01 i -7.8078078e-02 4.2740839e-01 i -8.2082082e-02 4.3459306e-01 i -8.6086086e-02 4.4154773e-01 i -9.0090090e-02 4.4828995e-01 i -9.4094094e-02 4.5483526e-01 i -9.8098098e-02 4.6119741e-01 i -1.0210210e-01 4.6738872e-01 i -1.0610611e-01 4.7342021e-01 i -1.1011011e-01 4.7930181e-01 i -1.1411411e-01 4.8504249e-01 i -1.1811812e-01 4.9065042e-01 i -1.2212212e-01 4.9613300e-01 i -1.2612613e-01 5.0149701e-01 i -1.3013013e-01 5.0674867e-01 i -1.3413413e-01 5.1189368e-01 i -1.3813814e-01 5.1693730e-01 i -1.4214214e-01 5.2188436e-01 i -1.4614615e-01 5.2673938e-01 i -1.5015015e-01 5.3150651e-01 i -1.5415415e-01 5.3618963e-01 i -1.5815816e-01 5.4079234e-01 i -1.6216216e-01 5.4531801e-01 i -1.6616617e-01 5.4976978e-01 i -1.7017017e-01 5.5415060e-01 i -1.7417417e-01 5.5846323e-01 i -1.7817818e-01 5.6271027e-01 i -1.8218218e-01 5.6689414e-01 i -1.8618619e-01 5.7101715e-01 i -1.9019019e-01 5.7508147e-01 i -1.9419419e-01 5.7908913e-01 i -1.9819820e-01 5.8304208e-01 i -2.0220220e-01 5.8694214e-01 i -2.0620621e-01 5.9079105e-01 i -2.1021021e-01 5.9459046e-01 i -2.1421421e-01 5.9834192e-01 i -2.1821822e-01 6.0204691e-01 i +-1.8181818e-01 -5.6651633e-01 i +-1.4141414e-01 -5.2099187e-01 i +-1.0101010e-01 -4.6571648e-01 i +-6.0606061e-02 -3.9280049e-01 i +-2.0202020e-02 -2.7235265e-01 i +2.0202020e-02 2.7235265e-01 i +6.0606061e-02 3.9280049e-01 i +1.0101010e-01 4.6571648e-01 i +1.4141414e-01 5.2099187e-01 i +1.8181818e-01 5.6651633e-01 i 2.2222222e-01 6.0570686e-01 i -2.2622623e-01 6.0932311e-01 i -2.3023023e-01 6.1289693e-01 i -2.3423423e-01 6.1642956e-01 i -2.3823824e-01 6.1992215e-01 i -2.4224224e-01 6.2337583e-01 i -2.4624625e-01 6.2679166e-01 i -2.5025025e-01 6.3017065e-01 i -2.5425425e-01 6.3351379e-01 i -2.5825826e-01 6.3682202e-01 i -2.6226226e-01 6.4009623e-01 i -2.6626627e-01 6.4333728e-01 i -2.7027027e-01 6.4654599e-01 i -2.7427427e-01 6.4972318e-01 i -2.7827828e-01 6.5286958e-01 i -2.8228228e-01 6.5598595e-01 i -2.8628629e-01 6.5907299e-01 i -2.9029029e-01 6.6213138e-01 i -2.9429429e-01 6.6516177e-01 i -2.9829830e-01 6.6816480e-01 i -3.0230230e-01 6.7114107e-01 i -3.0630631e-01 6.7409118e-01 i -3.1031031e-01 6.7701569e-01 i -3.1431431e-01 6.7991515e-01 i -3.1831832e-01 6.8279009e-01 i -3.2232232e-01 6.8564102e-01 i -3.2632633e-01 6.8846844e-01 i -3.3033033e-01 6.9127282e-01 i -3.3433433e-01 6.9405464e-01 i -3.3833834e-01 6.9681433e-01 i -3.4234234e-01 6.9955233e-01 i -3.4634635e-01 7.0226906e-01 i -3.5035035e-01 7.0496494e-01 i -3.5435435e-01 7.0764035e-01 i -3.5835836e-01 7.1029569e-01 i -3.6236236e-01 7.1293132e-01 i -3.6636637e-01 7.1554760e-01 i -3.7037037e-01 7.1814490e-01 i -3.7437437e-01 7.2072354e-01 i -3.7837838e-01 7.2328385e-01 i -3.8238238e-01 7.2582617e-01 i -3.8638639e-01 7.2835081e-01 i -3.9039039e-01 7.3085806e-01 i -3.9439439e-01 7.3334822e-01 i -3.9839840e-01 7.3582159e-01 i -4.0240240e-01 7.3827844e-01 i -4.0640641e-01 7.4071905e-01 i -4.1041041e-01 7.4314368e-01 i -4.1441441e-01 7.4555259e-01 i -4.1841842e-01 7.4794604e-01 i -4.2242242e-01 7.5032426e-01 i -4.2642643e-01 7.5268750e-01 i -4.3043043e-01 7.5503599e-01 i -4.3443443e-01 7.5736997e-01 i -4.3843844e-01 7.5968965e-01 i -4.4244244e-01 7.6199524e-01 i -4.4644645e-01 7.6428697e-01 i -4.5045045e-01 7.6656504e-01 i -4.5445445e-01 7.6882965e-01 i -4.5845846e-01 7.7108099e-01 i -4.6246246e-01 7.7331926e-01 i -4.6646647e-01 7.7554466e-01 i -4.7047047e-01 7.7775735e-01 i -4.7447447e-01 7.7995752e-01 i -4.7847848e-01 7.8214535e-01 i -4.8248248e-01 7.8432101e-01 i -4.8648649e-01 7.8648467e-01 i -4.9049049e-01 7.8863648e-01 i -4.9449449e-01 7.9077662e-01 i -4.9849850e-01 7.9290523e-01 i -5.0250250e-01 7.9502248e-01 i -5.0650651e-01 7.9712851e-01 i -5.1051051e-01 7.9922347e-01 i -5.1451451e-01 8.0130750e-01 i -5.1851852e-01 8.0338075e-01 i -5.2252252e-01 8.0544336e-01 i -5.2652653e-01 8.0749545e-01 i -5.3053053e-01 8.0953717e-01 i -5.3453453e-01 8.1156864e-01 i -5.3853854e-01 8.1358999e-01 i -5.4254254e-01 8.1560134e-01 i -5.4654655e-01 8.1760283e-01 i -5.5055055e-01 8.1959456e-01 i -5.5455455e-01 8.2157666e-01 i -5.5855856e-01 8.2354924e-01 i -5.6256256e-01 8.2551242e-01 i -5.6656657e-01 8.2746630e-01 i -5.7057057e-01 8.2941100e-01 i -5.7457457e-01 8.3134662e-01 i -5.7857858e-01 8.3327327e-01 i -5.8258258e-01 8.3519105e-01 i -5.8658659e-01 8.3710007e-01 i -5.9059059e-01 8.3900041e-01 i -5.9459459e-01 8.4089219e-01 i -5.9859860e-01 8.4277549e-01 i -6.0260260e-01 8.4465042e-01 i -6.0660661e-01 8.4651705e-01 i -6.1061061e-01 8.4837549e-01 i -6.1461461e-01 8.5022583e-01 i -6.1861862e-01 8.5206814e-01 i -6.2262262e-01 8.5390253e-01 i -6.2662663e-01 8.5572906e-01 i -6.3063063e-01 8.5754783e-01 i -6.3463463e-01 8.5935892e-01 i -6.3863864e-01 8.6116241e-01 i -6.4264264e-01 8.6295837e-01 i -6.4664665e-01 8.6474689e-01 i -6.5065065e-01 8.6652804e-01 i -6.5465465e-01 8.6830190e-01 i -6.5865866e-01 8.7006855e-01 i -6.6266266e-01 8.7182804e-01 i +2.6262626e-01 6.4039223e-01 i +3.0303030e-01 6.7167939e-01 i +3.4343434e-01 7.0029535e-01 i +3.8383838e-01 7.2674625e-01 i +4.2424242e-01 7.5140030e-01 i +4.6464646e-01 7.7453470e-01 i +5.0505051e-01 7.9636397e-01 i +5.4545455e-01 8.1705794e-01 i +5.8585859e-01 8.3675362e-01 i +6.2626263e-01 8.5556334e-01 i 6.6666667e-01 8.7358046e-01 i -6.7067067e-01 8.7532588e-01 i -6.7467467e-01 8.7706437e-01 i -6.7867868e-01 8.7879599e-01 i -6.8268268e-01 8.8052082e-01 i -6.8668669e-01 8.8223891e-01 i -6.9069069e-01 8.8395034e-01 i -6.9469469e-01 8.8565517e-01 i -6.9869870e-01 8.8735346e-01 i -7.0270270e-01 8.8904527e-01 i -7.0670671e-01 8.9073067e-01 i -7.1071071e-01 8.9240971e-01 i -7.1471471e-01 8.9408246e-01 i -7.1871872e-01 8.9574897e-01 i -7.2272272e-01 8.9740931e-01 i -7.2672673e-01 8.9906352e-01 i -7.3073073e-01 9.0071167e-01 i -7.3473473e-01 9.0235381e-01 i -7.3873874e-01 9.0399000e-01 i -7.4274274e-01 9.0562028e-01 i -7.4674675e-01 9.0724471e-01 i -7.5075075e-01 9.0886335e-01 i -7.5475475e-01 9.1047625e-01 i -7.5875876e-01 9.1208344e-01 i -7.6276276e-01 9.1368500e-01 i -7.6676677e-01 9.1528096e-01 i -7.7077077e-01 9.1687137e-01 i -7.7477477e-01 9.1845629e-01 i -7.7877878e-01 9.2003575e-01 i -7.8278278e-01 9.2160981e-01 i -7.8678679e-01 9.2317851e-01 i -7.9079079e-01 9.2474190e-01 i -7.9479479e-01 9.2630002e-01 i -7.9879880e-01 9.2785291e-01 i -8.0280280e-01 9.2940062e-01 i -8.0680681e-01 9.3094320e-01 i -8.1081081e-01 9.3248068e-01 i -8.1481481e-01 9.3401311e-01 i -8.1881882e-01 9.3554053e-01 i -8.2282282e-01 9.3706297e-01 i -8.2682683e-01 9.3858048e-01 i -8.3083083e-01 9.4009311e-01 i -8.3483483e-01 9.4160088e-01 i -8.3883884e-01 9.4310383e-01 i -8.4284284e-01 9.4460202e-01 i -8.4684685e-01 9.4609546e-01 i -8.5085085e-01 9.4758420e-01 i -8.5485485e-01 9.4906828e-01 i -8.5885886e-01 9.5054774e-01 i -8.6286286e-01 9.5202260e-01 i -8.6686687e-01 9.5349291e-01 i -8.7087087e-01 9.5495870e-01 i -8.7487487e-01 9.5642000e-01 i -8.7887888e-01 9.5787685e-01 i -8.8288288e-01 9.5932928e-01 i -8.8688689e-01 9.6077732e-01 i -8.9089089e-01 9.6222102e-01 i -8.9489489e-01 9.6366039e-01 i -8.9889890e-01 9.6509548e-01 i -9.0290290e-01 9.6652632e-01 i -9.0690691e-01 9.6795292e-01 i -9.1091091e-01 9.6937534e-01 i -9.1491491e-01 9.7079360e-01 i -9.1891892e-01 9.7220772e-01 i -9.2292292e-01 9.7361774e-01 i -9.2692693e-01 9.7502369e-01 i -9.3093093e-01 9.7642559e-01 i -9.3493493e-01 9.7782348e-01 i -9.3893894e-01 9.7921739e-01 i -9.4294294e-01 9.8060734e-01 i -9.4694695e-01 9.8199336e-01 i -9.5095095e-01 9.8337547e-01 i -9.5495495e-01 9.8475372e-01 i -9.5895896e-01 9.8612811e-01 i -9.6296296e-01 9.8749869e-01 i -9.6696697e-01 9.8886547e-01 i -9.7097097e-01 9.9022849e-01 i -9.7497497e-01 9.9158776e-01 i -9.7897898e-01 9.9294331e-01 i -9.8298298e-01 9.9429518e-01 i -9.8698699e-01 9.9564338e-01 i -9.9099099e-01 9.9698793e-01 i -9.9499499e-01 9.9832887e-01 i -9.9899900e-01 9.9966622e-01 i -1.0030030e+00 1.0010000e+00 i -1.0070070e+00 1.0023302e+00 i -1.0110110e+00 1.0036569e+00 i -1.0150150e+00 1.0049802e+00 i -1.0190190e+00 1.0062999e+00 i -1.0230230e+00 1.0076162e+00 i -1.0270270e+00 1.0089290e+00 i -1.0310310e+00 1.0102385e+00 i -1.0350350e+00 1.0115446e+00 i -1.0390390e+00 1.0128473e+00 i -1.0430430e+00 1.0141466e+00 i -1.0470470e+00 1.0154426e+00 i -1.0510511e+00 1.0167354e+00 i -1.0550551e+00 1.0180248e+00 i -1.0590591e+00 1.0193110e+00 i -1.0630631e+00 1.0205940e+00 i -1.0670671e+00 1.0218737e+00 i -1.0710711e+00 1.0231503e+00 i -1.0750751e+00 1.0244237e+00 i -1.0790791e+00 1.0256939e+00 i -1.0830831e+00 1.0269609e+00 i -1.0870871e+00 1.0282249e+00 i -1.0910911e+00 1.0294857e+00 i -1.0950951e+00 1.0307435e+00 i -1.0990991e+00 1.0319982e+00 i -1.1031031e+00 1.0332499e+00 i -1.1071071e+00 1.0344985e+00 i +7.0707071e-01 8.9088357e-01 i +7.4747475e-01 9.0753944e-01 i +7.8787879e-01 9.2360541e-01 i +8.2828283e-01 9.3913109e-01 i +8.6868687e-01 9.5415973e-01 i +9.0909091e-01 9.6872931e-01 i +9.4949495e-01 9.8287334e-01 i +9.8989899e-01 9.9662160e-01 i +1.0303030e+00 1.0100007e+00 i +1.0707071e+00 1.0230344e+00 i 1.1111111e+00 1.0357442e+00 i -1.1151151e+00 1.0369868e+00 i -1.1191191e+00 1.0382265e+00 i -1.1231231e+00 1.0394632e+00 i -1.1271271e+00 1.0406970e+00 i -1.1311311e+00 1.0419279e+00 i -1.1351351e+00 1.0431558e+00 i -1.1391391e+00 1.0443809e+00 i -1.1431431e+00 1.0456031e+00 i -1.1471471e+00 1.0468225e+00 i -1.1511512e+00 1.0480390e+00 i -1.1551552e+00 1.0492527e+00 i -1.1591592e+00 1.0504636e+00 i -1.1631632e+00 1.0516718e+00 i -1.1671672e+00 1.0528771e+00 i -1.1711712e+00 1.0540797e+00 i -1.1751752e+00 1.0552796e+00 i -1.1791792e+00 1.0564767e+00 i -1.1831832e+00 1.0576712e+00 i -1.1871872e+00 1.0588629e+00 i -1.1911912e+00 1.0600520e+00 i -1.1951952e+00 1.0612384e+00 i -1.1991992e+00 1.0624221e+00 i -1.2032032e+00 1.0636033e+00 i -1.2072072e+00 1.0647818e+00 i -1.2112112e+00 1.0659577e+00 i -1.2152152e+00 1.0671310e+00 i -1.2192192e+00 1.0683017e+00 i -1.2232232e+00 1.0694699e+00 i -1.2272272e+00 1.0706356e+00 i -1.2312312e+00 1.0717987e+00 i -1.2352352e+00 1.0729592e+00 i -1.2392392e+00 1.0741173e+00 i -1.2432432e+00 1.0752729e+00 i -1.2472472e+00 1.0764260e+00 i -1.2512513e+00 1.0775767e+00 i -1.2552553e+00 1.0787248e+00 i -1.2592593e+00 1.0798706e+00 i -1.2632633e+00 1.0810139e+00 i -1.2672673e+00 1.0821548e+00 i -1.2712713e+00 1.0832934e+00 i -1.2752753e+00 1.0844295e+00 i -1.2792793e+00 1.0855632e+00 i -1.2832833e+00 1.0866946e+00 i -1.2872873e+00 1.0878236e+00 i -1.2912913e+00 1.0889503e+00 i -1.2952953e+00 1.0900747e+00 i -1.2992993e+00 1.0911968e+00 i -1.3033033e+00 1.0923165e+00 i -1.3073073e+00 1.0934340e+00 i -1.3113113e+00 1.0945492e+00 i -1.3153153e+00 1.0956621e+00 i -1.3193193e+00 1.0967727e+00 i -1.3233233e+00 1.0978811e+00 i -1.3273273e+00 1.0989873e+00 i -1.3313313e+00 1.1000913e+00 i -1.3353353e+00 1.1011930e+00 i -1.3393393e+00 1.1022926e+00 i -1.3433433e+00 1.1033899e+00 i -1.3473473e+00 1.1044851e+00 i -1.3513514e+00 1.1055781e+00 i -1.3553554e+00 1.1066690e+00 i -1.3593594e+00 1.1077577e+00 i -1.3633634e+00 1.1088442e+00 i -1.3673674e+00 1.1099287e+00 i -1.3713714e+00 1.1110110e+00 i -1.3753754e+00 1.1120912e+00 i -1.3793794e+00 1.1131694e+00 i -1.3833834e+00 1.1142454e+00 i -1.3873874e+00 1.1153194e+00 i -1.3913914e+00 1.1163913e+00 i -1.3953954e+00 1.1174611e+00 i -1.3993994e+00 1.1185289e+00 i -1.4034034e+00 1.1195947e+00 i -1.4074074e+00 1.1206585e+00 i -1.4114114e+00 1.1217202e+00 i -1.4154154e+00 1.1227799e+00 i -1.4194194e+00 1.1238377e+00 i -1.4234234e+00 1.1248934e+00 i -1.4274274e+00 1.1259472e+00 i -1.4314314e+00 1.1269990e+00 i -1.4354354e+00 1.1280488e+00 i -1.4394394e+00 1.1290967e+00 i -1.4434434e+00 1.1301426e+00 i -1.4474474e+00 1.1311866e+00 i -1.4514515e+00 1.1322287e+00 i -1.4554555e+00 1.1332689e+00 i -1.4594595e+00 1.1343072e+00 i -1.4634635e+00 1.1353435e+00 i -1.4674675e+00 1.1363780e+00 i -1.4714715e+00 1.1374106e+00 i -1.4754755e+00 1.1384414e+00 i -1.4794795e+00 1.1394702e+00 i -1.4834835e+00 1.1404972e+00 i -1.4874875e+00 1.1415224e+00 i -1.4914915e+00 1.1425457e+00 i -1.4954955e+00 1.1435672e+00 i -1.4994995e+00 1.1445869e+00 i -1.5035035e+00 1.1456048e+00 i -1.5075075e+00 1.1466208e+00 i -1.5115115e+00 1.1476351e+00 i -1.5155155e+00 1.1486476e+00 i -1.5195195e+00 1.1496583e+00 i -1.5235235e+00 1.1506672e+00 i -1.5275275e+00 1.1516743e+00 i -1.5315315e+00 1.1526797e+00 i -1.5355355e+00 1.1536833e+00 i -1.5395395e+00 1.1546852e+00 i -1.5435435e+00 1.1556854e+00 i -1.5475475e+00 1.1566838e+00 i -1.5515516e+00 1.1576805e+00 i +1.1515152e+00 1.0481495e+00 i +1.1919192e+00 1.0602679e+00 i +1.2323232e+00 1.0721154e+00 i +1.2727273e+00 1.0837068e+00 i +1.3131313e+00 1.0950553e+00 i +1.3535354e+00 1.1061734e+00 i +1.3939394e+00 1.1170723e+00 i +1.4343434e+00 1.1277627e+00 i +1.4747475e+00 1.1382541e+00 i +1.5151515e+00 1.1485556e+00 i 1.5555556e+00 1.1586755e+00 i -1.5595596e+00 1.1596688e+00 i -1.5635636e+00 1.1606604e+00 i -1.5675676e+00 1.1616503e+00 i -1.5715716e+00 1.1626386e+00 i -1.5755756e+00 1.1636251e+00 i -1.5795796e+00 1.1646100e+00 i -1.5835836e+00 1.1655932e+00 i -1.5875876e+00 1.1665747e+00 i -1.5915916e+00 1.1675546e+00 i -1.5955956e+00 1.1685329e+00 i -1.5995996e+00 1.1695095e+00 i -1.6036036e+00 1.1704845e+00 i -1.6076076e+00 1.1714579e+00 i -1.6116116e+00 1.1724297e+00 i -1.6156156e+00 1.1733998e+00 i -1.6196196e+00 1.1743684e+00 i -1.6236236e+00 1.1753353e+00 i -1.6276276e+00 1.1763007e+00 i -1.6316316e+00 1.1772645e+00 i -1.6356356e+00 1.1782267e+00 i -1.6396396e+00 1.1791873e+00 i -1.6436436e+00 1.1801464e+00 i -1.6476476e+00 1.1811039e+00 i -1.6516517e+00 1.1820599e+00 i -1.6556557e+00 1.1830143e+00 i -1.6596597e+00 1.1839672e+00 i -1.6636637e+00 1.1849186e+00 i -1.6676677e+00 1.1858684e+00 i -1.6716717e+00 1.1868167e+00 i -1.6756757e+00 1.1877635e+00 i -1.6796797e+00 1.1887088e+00 i -1.6836837e+00 1.1896526e+00 i -1.6876877e+00 1.1905949e+00 i -1.6916917e+00 1.1915357e+00 i -1.6956957e+00 1.1924751e+00 i -1.6996997e+00 1.1934129e+00 i -1.7037037e+00 1.1943493e+00 i -1.7077077e+00 1.1952842e+00 i -1.7117117e+00 1.1962177e+00 i -1.7157157e+00 1.1971497e+00 i -1.7197197e+00 1.1980802e+00 i -1.7237237e+00 1.1990093e+00 i -1.7277277e+00 1.1999370e+00 i -1.7317317e+00 1.2008632e+00 i -1.7357357e+00 1.2017880e+00 i -1.7397397e+00 1.2027114e+00 i -1.7437437e+00 1.2036334e+00 i -1.7477477e+00 1.2045539e+00 i -1.7517518e+00 1.2054731e+00 i -1.7557558e+00 1.2063908e+00 i -1.7597598e+00 1.2073072e+00 i -1.7637638e+00 1.2082222e+00 i -1.7677678e+00 1.2091358e+00 i -1.7717718e+00 1.2100480e+00 i -1.7757758e+00 1.2109588e+00 i -1.7797798e+00 1.2118683e+00 i -1.7837838e+00 1.2127764e+00 i -1.7877878e+00 1.2136831e+00 i -1.7917918e+00 1.2145885e+00 i -1.7957958e+00 1.2154926e+00 i -1.7997998e+00 1.2163953e+00 i -1.8038038e+00 1.2172967e+00 i -1.8078078e+00 1.2181967e+00 i -1.8118118e+00 1.2190954e+00 i -1.8158158e+00 1.2199928e+00 i -1.8198198e+00 1.2208889e+00 i -1.8238238e+00 1.2217836e+00 i -1.8278278e+00 1.2226771e+00 i -1.8318318e+00 1.2235692e+00 i -1.8358358e+00 1.2244600e+00 i -1.8398398e+00 1.2253496e+00 i -1.8438438e+00 1.2262378e+00 i -1.8478478e+00 1.2271248e+00 i -1.8518519e+00 1.2280105e+00 i -1.8558559e+00 1.2288949e+00 i -1.8598599e+00 1.2297781e+00 i -1.8638639e+00 1.2306599e+00 i -1.8678679e+00 1.2315406e+00 i -1.8718719e+00 1.2324199e+00 i -1.8758759e+00 1.2332980e+00 i -1.8798799e+00 1.2341749e+00 i -1.8838839e+00 1.2350505e+00 i -1.8878879e+00 1.2359249e+00 i -1.8918919e+00 1.2367980e+00 i -1.8958959e+00 1.2376699e+00 i -1.8998999e+00 1.2385406e+00 i -1.9039039e+00 1.2394100e+00 i -1.9079079e+00 1.2402783e+00 i -1.9119119e+00 1.2411453e+00 i -1.9159159e+00 1.2420111e+00 i -1.9199199e+00 1.2428757e+00 i -1.9239239e+00 1.2437391e+00 i -1.9279279e+00 1.2446013e+00 i -1.9319319e+00 1.2454624e+00 i -1.9359359e+00 1.2463222e+00 i -1.9399399e+00 1.2471808e+00 i -1.9439439e+00 1.2480383e+00 i -1.9479479e+00 1.2488946e+00 i -1.9519520e+00 1.2497497e+00 i -1.9559560e+00 1.2506036e+00 i -1.9599600e+00 1.2514564e+00 i -1.9639640e+00 1.2523080e+00 i -1.9679680e+00 1.2531585e+00 i -1.9719720e+00 1.2540078e+00 i -1.9759760e+00 1.2548560e+00 i -1.9799800e+00 1.2557030e+00 i -1.9839840e+00 1.2565489e+00 i -1.9879880e+00 1.2573936e+00 i -1.9919920e+00 1.2582372e+00 i -1.9959960e+00 1.2590797e+00 i +1.5959596e+00 1.1686217e+00 i +1.6363636e+00 1.1784015e+00 i +1.6767677e+00 1.1880215e+00 i +1.7171717e+00 1.1974882e+00 i +1.7575758e+00 1.2068075e+00 i +1.7979798e+00 1.2159851e+00 i +1.8383838e+00 1.2250263e+00 i +1.8787879e+00 1.2339359e+00 i +1.9191919e+00 1.2427186e+00 i +1.9595960e+00 1.2513789e+00 i 2.0000000e+00 1.2599210e+00 i diff --git a/methods/methods-collated.tex b/methods/methods-collated.tex index 618f443..2257b41 100644 --- a/methods/methods-collated.tex +++ b/methods/methods-collated.tex @@ -1,61 +1,93 @@ -\documentclass[a4paper]{article} -\usepackage{standalone} -\usepackage{newclude} -\usepackage[a4paper,margin=2cm]{geometry} -\usepackage{multicol} -\usepackage{multirow} +\documentclass[a4paper, twocolumn]{article} +\usepackage[dvipsnames, table]{xcolor} +\usepackage{adjustbox} \usepackage{amsmath} \usepackage{amssymb} +\usepackage{blindtext} +\usepackage{enumitem} +\usepackage{fancyhdr} +\usepackage[a4paper,margin=2cm]{geometry} +\usepackage{graphicx} \usepackage{harpoon} +\usepackage{listings} +\usepackage{longtable} +\usepackage{makecell} +\usepackage{mathtools} +\usepackage{multicol} +\usepackage{multirow} +\usepackage{newclude} +\usepackage{pgfplots} +\usepackage{pst-plot} +\usepackage{standalone} \usepackage{tabularx} \usepackage{tabu} -\usepackage{makecell} -\usepackage[dvipsnames, table]{xcolor} -\usepackage{blindtext} -\usepackage{graphicx} -\usepackage{wrapfig} -\usepackage{tikz} +\usepackage{tcolorbox} \usepackage{tikz-3dplot} -\usepackage{pgfplots} -\pgfplotsset{compat=1.8} -\usepackage{mathtools} -\usetikzlibrary{calc} -\usetikzlibrary{angles} -\usetikzlibrary{datavisualization.formats.functions} -\usetikzlibrary{decorations.markings} +\usepackage{tikz} +\usepackage{tkz-fct} +\usepackage[obeyspaces]{url} +\usepackage{wrapfig} + + +\usetikzlibrary{% + angles, + calc, + datavisualization.formats.functions, + decorations, + decorations.markings, + decorations.pathreplacing, + decorations.text, + scopes +} +\newcommand{\midarrow}{\tikz \draw[-triangle 90] (0,0) -- +(.1,0);} \usepgflibrary{arrows.meta} -\usepackage{longtable} -\usepackage{fancyhdr} +\pgfplotsset{compat=1.8} +\psset{dimen=monkey,fillstyle=solid,opacity=.5} +\def\object{% + \psframe[linestyle=none,fillcolor=blue](-2,-1)(2,1) + \psaxes[linecolor=gray,labels=none,ticks=none]{->}(0,0)(-3,-3)(3,2)[$x$,0][$y$,90] + \rput{*0}{% + \psline{->}(0,-2)% + \uput[-90]{*0}(0,-2){$\vec{w}$}} +} +\newcommand{\tg}{\mathop{\mathrm{tg}}} +\newcommand{\cotg}{\mathop{\mathrm{cotg}}} +\newcommand{\arctg}{\mathop{\mathrm{arctg}}} +\newcommand{\arccotg}{\mathop{\mathrm{arccotg}}} +\pgfplotsset{every axis/.append style={ + axis x line=middle, % centre axes + axis y line=middle, + axis line style={->}, % arrows on axes + xlabel={$x$}, % axes labels + ylabel={$y$} +}} + \pagestyle{fancy} \fancyhead[LO,LE]{Year 12 Methods} \fancyhead[CO,CE]{Andrew Lorimer} \fancypagestyle{plain}{\fancyhead[LO,LE]{} \fancyhead[CO,CE]{}} % rm title & author for first page + \providecommand{\tightlist}{\setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}} +\linespread{1.5} \setlength{\parindent}{0cm} -\usepackage{mathtools} -\usepackage{xcolor} % used only to show the phantomed stuff \setlength\fboxsep{0pt} \setlength\fboxrule{.2pt} % for the \fboxes \newcommand*\leftlap[3][\,]{#1\hphantom{#2}\mathllap{#3}} \newcommand*\rightlap[2]{\mathrlap{#2}\hphantom{#1}} + \newcolumntype{L}[1]{>{\hsize=#1\hsize\raggedright\arraybackslash}X} \newcolumntype{R}[1]{>{\hsize=#1\hsize\raggedleft\arraybackslash}X} +\newcolumntype{Y}{>{\centering\arraybackslash}X} + \definecolor{cas}{HTML}{e6f0fe} +\definecolor{important}{HTML}{fc9871} +\definecolor{dark-gray}{gray}{0.2} \definecolor{shade1}{HTML}{ffffff} \definecolor{shade2}{HTML}{e6f2ff} \definecolor{shade3}{HTML}{cce2ff} -\linespread{1.5} -\newcommand{\midarrow}{\tikz \draw[-triangle 90] (0,0) -- +(.1,0);} -\newcommand{\tg}{\mathop{\mathrm{tg}}} -\newcommand{\cotg}{\mathop{\mathrm{cotg}}} -\newcommand{\arctg}{\mathop{\mathrm{arctg}}} -\newcommand{\arccotg}{\mathop{\mathrm{arccotg}}} -\pgfplotsset{every axis/.append style={ - axis x line=middle, % centre axes - axis y line=middle, - axis line style={->}, % arrows on axes - xlabel={$x$}, % axes labels - ylabel={$y$}, -}} + +\newtcolorbox{cas}{colframe=cas!75!black, title=On CAS, left*=3mm} +\newtcolorbox{warning}{colback=white!90!black, leftrule=3mm, colframe=important, coltext=important, fontupper=\sffamily\bfseries} + \begin{document} @@ -64,158 +96,199 @@ \date{} \maketitle -\begin{multicols}{2} - - \section{Functions} - - \begin{itemize} - \tightlist - \item vertical line test - \item each \(x\) value produces only one \(y\) value - \end{itemize} - \subsection*{One to one functions} +\section{Functions} - \begin{itemize} \tightlist - \item - \(f(x)\) is \emph{one to one} if \(f(a) \ne f(b)\) if - \(a, b \in \operatorname{dom}(f)\) and \(a \ne b\)\\ - \(\implies\) unique \(y\) for each \(x\) (\(\sin x\) is not 1:1, - \(x^3\) is) - \item - horizontal line test - \item - if not one to one, it is many to one - \end{itemize} +\begin{itemize} \tightlist + \item vertical line test + \item each \(x\) value produces only one \(y\) value +\end{itemize} - \subsection*{Odd and even functions} +\subsection*{One to one functions} + +\begin{itemize} \tightlist + \item + \(f(x)\) is \emph{one to one} if \(f(a) \ne f(b)\) if + \(a, b \in \operatorname{dom}(f)\) and \(a \ne b\)\\ + \(\implies\) unique \(y\) for each \(x\) (\(\sin x\) is not 1:1, + \(x^3\) is) + \item + horizontal line test + \item + if not one to one, it is many to one +\end{itemize} - \begin{align*} - \text{Even:}&& f(x) &= f(-x) \\ - \text{Odd:} && -f(x) &= f(-x) - \end{align*} +\subsection*{Odd and even functions} + +\begin{align*} + \text{Even:}&& f(x) &= f(-x) \\ + \text{Odd:} && -f(x) &= f(-x) +\end{align*} + +Even \(\implies\) symmetrical across \(y\)-axis \\ +\(x^{\pm {p \over q}}\) is odd if \(q\) is odd\\ +For \(x^n\), parity of \(n \equiv\) parity of function + +\begin{tabularx}{\columnwidth}{XX} + \textbf{Even:} & \textbf{Odd:} \\ + \begin{tikzpicture}\begin{axis}[ticks=none, yticklabels={,,}, xticklabels={,,}, xmin=-3, xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[blue, mark=none] {(x^2)}; \end{axis}\end{tikzpicture} & + \begin{tikzpicture}\begin{axis}[ticks=none, yticklabels={,,}, xticklabels={,,}, xmin=-3, xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[blue, mark=none] {(x^3)}; \end{axis}\end{tikzpicture} +\end{tabularx} + +\subsection*{Inverse functions} + +\begin{itemize} \tightlist + \item Inverse of \(f(x)\) is denoted \(f^{-1}(x)\) + \item \(f\) must be one to one + \item If \(f(g(x)) = x\), then \(g\) is the inverse of \(f\) + \item Represents reflection across \(y=x\) + \item \(\implies f^{-1}(x)=f(x)\) intersections lie on \(y=x\) + \item \(\operatorname{ran} \> f = \operatorname{dom} \> f^{-1} \\ + \operatorname{dom} \> f = \operatorname{ran} \> f^{-1}\) + \item ``Inverse'' \(\ne\) ``inverse \emph{function}'' (functions must pass vertical line test)\\ +\end{itemize} - Even \(\implies\) symmetrical across \(y\)-axis \\ - \(x^{\pm {p \over q}}\) is odd if \(q\) is odd\\ - For \(x^n\), parity of \(n \equiv\) parity of function +\subsubsection*{Finding \(f^{-1}\)} - \begin{tabularx}{\columnwidth}{XX} - \textbf{Even:} & \textbf{Odd:} \\ - \begin{tikzpicture}\begin{axis}[ticks=none, yticklabels={,,}, xticklabels={,,}, xmin=-3, xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[blue, mark=none] {(x^2)}; \end{axis}\end{tikzpicture} & - \begin{tikzpicture}\begin{axis}[ticks=none, yticklabels={,,}, xticklabels={,,}, xmin=-3, xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[blue, mark=none] {(x^3)}; \end{axis}\end{tikzpicture} - \end{tabularx} +\begin{enumerate} \tightlist + \item Let \(y=f(x)\) + \item Swap \(x\) and \(y\) (``take inverse'' + \item Solve for \(y\) \\ + Sqrt: state \(\pm\) solutions then restrict + \item State rule as \(f^{-1}(x)=\dots\) + \item For inverse \emph{function}, state in function notation +\end{enumerate} - \subsection*{Inverse functions} +\subsection*{Simultaneous equations (linear)} - \begin{itemize} \tightlist - \item Inverse of \(f(x)\) is denoted \(f^{-1}(x)\) - \item \(f\) must be one to one - \item If \(f(g(x)) = x\), then \(g\) is the inverse of \(f\) - \item Represents reflection across \(y=x\) - \item \(\implies f^{-1}(x)=f(x)\) intersections lie on \(y=x\) - \item \(\operatorname{ran} \> f = \operatorname{dom} \> f^{-1} \\ - \operatorname{dom} \> f = \operatorname{ran} \> f^{-1}\) - \item ``Inverse'' \(\ne\) ``inverse \emph{function}'' (functions must pass vertical line test)\\ - \end{itemize} +\begin{itemize} \tightlist + \item \textbf{Unique solution} - lines intersect at point + \item \textbf{Infinitely many solutions} - lines are equal + \item \textbf{No solution} - lines are parallel +\end{itemize} - \subsubsection*{Finding \(f^{-1}\)} +\subsubsection*{Solving \(\protect\begin{cases}px + qy = a \\ rx + sy = b\protect\end{cases} \>\) for \(\{0,1,\infty\}\) solutions} + where all coefficients are known except for one, and \(a, b\) are known \begin{enumerate} \tightlist - \item Let \(y=f(x)\) - \item Swap \(x\) and \(y\) (``take inverse'' - \item Solve for \(y\) \\ - Sqrt: state \(\pm\) solutions then restrict - \item State rule as \(f^{-1}(x)=\dots\) - \item For inverse \emph{function}, state in function notation + \item Write as matrices: \(\begin{bmatrix}p & q \\ r & s \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}\) + \item Find determinant of first matrix: \(\Delta = ps-qr\) + \item Let \(\Delta = 0\) for number of solutions \(\ne 1\)\\ + or let \(\Delta \ne 0\) for one unique solution. + \item Solve determinant equation to find variable \\ + \textbf{For infinite/no solutions:} + \item Substitute variable into both original equations + \item Rearrange equations so that LHS of each is the same + \item \(\text{RHS}(1) = \text{RHS}(2) \implies (1)=(2) \> \forall x\) (\(\infty\) solns)\\ + \(\text{RHS}(1) \ne \text{RHS}(2) \implies (1)\ne(2) \> \forall x\) (0 solns) \end{enumerate} - - \subsection*{Simultaneous equations (linear)} - - \begin{itemize} \tightlist - \item \textbf{Unique solution} - lines intersect at point - \item \textbf{Infinitely many solutions} - lines are equal - \item \textbf{No solution} - lines are parallel - \end{itemize} - - \subsubsection*{Solving \(\protect\begin{cases}px + qy = a \\ rx + sy = b\protect\end{cases} \>\) for \(\{0,1,\infty\}\) solutions} - where all coefficients are known except for one, and \(a, b\) are known - - \begin{enumerate} \tightlist - \item Write as matrices: \(\begin{bmatrix}p & q \\ r & s \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}\) - \item Find determinant of first matrix: \(\Delta = ps-qr\) - \item Let \(\Delta = 0\) for number of solutions \(\ne 1\)\\ - or let \(\Delta \ne 0\) for one unique solution. - \item Solve determinant equation to find variable \\ - \textbf{For infinite/no solutions:} - \item Substitute variable into both original equations - \item Rearrange equations so that LHS of each is the same - \item \(\text{RHS}(1) = \text{RHS}(2) \implies (1)=(2) \> \forall x\) (\(\infty\) solns)\\ - \(\text{RHS}(1) \ne \text{RHS}(2) \implies (1)\ne(2) \> \forall x\) (0 solns) - \end{enumerate} - - \colorbox{cas}{On CAS:} Matrix \(\rightarrow\) \texttt{det} - - \subsubsection*{Solving \(\protect\begin{cases}a_1 x + b_1 y + c_1 z = d_1 \\ a_2 x + b_2 y + c_2 z = d_2 \\ a_3 x + b_3 y + c_3 z = d_3\protect\end{cases}\)} - - \begin{itemize} \tightlist - \item Use elimination - \item Generate two new equations with only two variables - \item Rearrange \& solve - \item Substitute one variable into another equation to find another variable - \end{itemize} -\subsection*{Piecewise functions} + \colorbox{cas}{On CAS:} Matrix \(\rightarrow\) \texttt{det} -\[\text{e.g.} \quad f(x) = \begin{cases} x^{1 / 3}, \hspace{2em} x \le 0 \\ 2, \hspace{3.4em} 0 < x < 2 \\ x, \hspace{3.4em} x \ge 2 \end{cases}\] + \subsubsection*{Solving \(\protect\begin{cases}a_1 x + b_1 y + c_1 z = d_1 \\ a_2 x + b_2 y + c_2 z = d_2 \\ a_3 x + b_3 y + c_3 z = d_3\protect\end{cases}\)} -\textbf{Open circle:} point included\\ -\textbf{Closed circle:} point not included + \begin{itemize} \tightlist + \item Use elimination + \item Generate two new equations with only two variables + \item Rearrange \& solve + \item Substitute one variable into another equation to find another variable + \end{itemize} -\subsection*{Operations on functions} + \subsection*{Piecewise functions} -For \(f \pm g\) and \(f \times g\): -\quad \(\text{dom}^\prime = \operatorname{dom}(f) \cap \operatorname{dom}(g)\) + \[\text{e.g.} \quad f(x) = \begin{cases} x^{1 / 3}, \hspace{2em} x \le 0 \\ 2, \hspace{3.4em} 0 < x < 2 \\ x, \hspace{3.4em} x \ge 2 \end{cases}\] -Addition of linear piecewise graphs: add \(y\)-values at key points + \textbf{Open circle:} point included\\ + \textbf{Closed circle:} point not included -Product functions: + \subsection*{Operations on functions} -\begin{itemize} -\tightlist -\item - product will equal 0 if \(f=0\) or \(g=0\) -\item - \(f^\prime(x)=0 \veebar g^\prime(x)=0 \not\Rightarrow (f \times g)^\prime(x)=0\) -\end{itemize} + For \(f \pm g\) and \(f \times g\): + \quad \(\text{dom}^\prime = \operatorname{dom}(f) \cap \operatorname{dom}(g)\) -\subsection*{Composite functions} + Addition of linear piecewise graphs: add \(y\)-values at key points -\((f \circ g)(x)\) is defined iff -\(\operatorname{ran}(g) \subseteq \operatorname{dom}(f)\) + Product functions: + \begin{itemize} + \tightlist + \item + product will equal 0 if \(f=0\) or \(g=0\) + \item + \(f^\prime(x)=0 \veebar g^\prime(x)=0 \not\Rightarrow (f \times g)^\prime(x)=0\) + \end{itemize} - \pgfplotsset{every axis/.append style={ ticks=none, xlabel=, ylabel=, }} % remove axis labels & ticks - \begin{table*}[ht] + \subsection*{Composite functions} + + \((f \circ g)(x)\) is defined iff + \(\operatorname{ran}(g) \subseteq \operatorname{dom}(f)\) + + \pgfplotsset{ + blank/.append style={% + enlargelimits=true, + ticks=none, + yticklabels={,,}, xticklabels={,,}, + xlabel=, ylabel=, + scale=0.4, + samples=100, smooth, unbounded coords=jump + } + } + \tikzset{ + blankplot/.append style={orange, mark=none} + } + + \begin{figure*}[ht] \centering - \begin{tabu} to \textwidth {@{} X[0.3,r] *2{|X[c,m]}@{}} - & \(n\) is even & \(n\) is odd \\ \tabucline{1pt} - \(x^n, n \in \mathbb{Z}^+\) & - \vspace{1em}\begin{tikzpicture}\begin{axis}[yticklabels={,,}, xticklabels={,,}, xmin=-3, xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[orange, mark=none] {(x^2)}; \end{axis}\end{tikzpicture} & - \begin{tikzpicture}\begin{axis}[yticklabels={,,}, xticklabels={,,}, xmin=-3, xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[orange, mark=none] {(x^3)}; \end{axis}\end{tikzpicture} \\ - \(x^n, n \in \mathbb{Z}^-\) & - \begin{tikzpicture}\begin{axis}[yticklabels={,,}, xticklabels={,,}, xmin=-4, xmax=4, ymax=8, ymin=-0, scale=0.4, smooth] \addplot[orange, mark=none, samples=100] {(x^(-2))}; \end{axis}\end{tikzpicture} & - \begin{tikzpicture}\begin{axis}[yticklabels={,,}, xticklabels={,,}, xmin=-3, xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[orange, mark=none, domain=-3:-0.1] {(x^(-1))}; \addplot[orange, mark=none, domain=0.1:3] {(x^(-1))}; \end{axis}\end{tikzpicture} \\ - \(x^{\frac{1}{n}}, n \in \mathbb{Z}^-\) & - \begin{tikzpicture}\begin{axis}[yticklabels={,,}, xticklabels={,,}, xmin=-1, xmax=5, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[orange, mark=none] {(x^(1/2))}; \end{axis}\end{tikzpicture} & - \begin{tikzpicture} - \begin{axis}[enlargelimits=false, yticklabels={,,}, xticklabels={,,}, xmin=-3, xmax=3, ymin=-3, ymax=3, smooth, scale=0.4] - \addplot [orange,domain=-2:2,samples=1000,no markers] gnuplot[id=poly]{sgn(x)*(abs(x)**(1./3)) }; - \end{axis} - \end{tikzpicture} - \end{tabu} - \hrule - \end{table*} - \pgfplotsset{every axis/.append style={ xlabel=\(x\), ylabel=\(y\) }} % put axis labels back + + \begin{tabularx}{\textwidth}{r|Y|Y} + + & \(n\) is even & \(n\) is odd \\ \hline + + \centering \(x^n, n \in \mathbb{Z}^+\) & + + \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture} + \begin{axis}[blank, xmin=-3, xmax=3] + \addplot[blankplot] {(x^2)}; + \end{axis} + \end{tikzpicture}} & + + \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture} + \begin{axis}[blank, xmin=-3, xmax=3] + \addplot[blankplot, domain=-3:3] {(x^3)}; + \end{axis} + \end{tikzpicture}} \\ \hline + + \centering \(x^n, n \in \mathbb{Z}^-\) & + + \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture} + \begin{axis}[blank, xmin=-4, xmax=4, ymax=8, ymin=-0] + \addplot[blankplot, samples=100] {(x^(-2))}; + \end{axis} + \end{tikzpicture}} & + + \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture} + \begin{axis}[blank, xmin=-3, xmax=3] + \addplot[blankplot, domain=-3:-0.1] {(x^(-1))}; + \addplot[blankplot, domain=0.1:3] {(x^(-1))}; + \end{axis} + \end{tikzpicture}} \\ \hline + + \centering \(x^{\frac{1}{n}}, n \in \mathbb{Z}^-\) & + + \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture} + \begin{axis}[blank, xmin=-1, xmax=5] + \addplot[blankplot] {(x^(1/2))}; + \end{axis} + \end{tikzpicture}} & + + \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture} + \begin{axis}[blank, xmin=-3, xmax=3, ymin=-3, ymax=3] + \addplot [blankplot, domain=-2:2] gnuplot[id=poly]{sgn(x)*(abs(x)**(1./3)) }; + \end{axis} + \end{tikzpicture}} \\ \hline + + \end{tabularx} + \end{figure*} \section{Polynomials} @@ -292,5 +365,281 @@ Product functions: \input{circ-functions} \input{calculus} - \end{multicols} - \end{document} + + + \section{Statistics} + + \subsection*{Probability} + + \begin{align*} + \Pr(A \cup B) &= \Pr(A) + \Pr(B) - \Pr(A \cap B) \\ + \Pr(A \cap B) &= \Pr(A|B) \times \Pr(B) \\ + \Pr(A|B) &= \frac{\Pr(A \cap B)}{\Pr(B)} \\ + \Pr(A) &= \Pr(A|B) \cdot \Pr(B) + \Pr(A|B^{\prime}) \cdot \Pr(B^{\prime}) + \end{align*} + + Mutually exclusive \(\implies \Pr(A \cup B) = 0\) \\ + + Independent events: + \begin{flalign*} + \quad \Pr(A \cap B) &= \Pr(A) \times \Pr(B)& \\ + \Pr(A|B) &= \Pr(A) \\ + \Pr(B|A) &= \Pr(B) + \end{flalign*} + + \subsection*{Combinatorics} + + \begin{itemize} + \item Arrangements \({n \choose k} = \frac{n!}{(n-k)}\) + \item \colorbox{important}{Combinations} \({n \choose k} = \frac{n!}{k!(n-k)!}\) + \item Note \({n \choose k} = {n \choose k-1}\) + \end{itemize} + + \subsection*{Distributions} + + \subsubsection*{Mean \(\mu\)} + + \textbf{Mean} \(\mu\) or \textbf{expected value} \(E(X)\) + + \begin{align*} + E(X) &= \frac{\Sigma \left[ x \cdot f(x) \right]}{\Sigma f} \tag{\(f =\) absolute frequency} \\ + &= \sum_{i=1}^n \left[ x_i \cdot \Pr(X=x_i) \right] \tag{discrete}\\ + &= \int_\textbf{X} (x \cdot f(x)) \> dx + \end{align*} + + \subsubsection*{Mode} + + Most popular value (has highest probability of all \(X\) values). Multiple modes can exist if \(>1 \> X\) value have equal-highest probability. Number must exist in distribution. + + \subsubsection*{Median} + + If \(m > 0.5\), then value of \(X\) that is reached is the median of \(X\). If \(m = 0.5 = 0.5\), then \(m\) is halfway between this value and the next. To find \(m\), add values of \(X\) from smallest to alrgest until the sum reaches 0.5. + + \[ m = X \> \text{such that} \> \int_{-\infty}^{m} f(x) dx = 0.5 \] + + \subsubsection*{Variance \(\sigma^2\)} + + \begin{align*} + \operatorname{Var}(x) &= \sum_{i=1}^n p_i (x_i-\mu)^2 \\ + &= \sum (x-\mu)^2 \times \Pr(X=x) \\ + &= \sum x^2 \times p(x) - \mu^2 \\ + &= \operatorname{E}(X^2) - [\operatorname{E}(X)]^2 + &= E\left[(X-\mu)^2\right] + \end{align*} + + \subsubsection*{Standard deviation \(\sigma\)} + + \begin{align*} + \sigma &= \operatorname{sd}(X) \\ + &= \sqrt{\operatorname{Var}(X)} + \end{align*} + + \subsection*{Binomial distributions} + + Conditions for a \textit{binomial distribution}: + \begin{enumerate} + \item Two possible outcomes: \textbf{success} or \textbf{failure} + \item \(\Pr(\text{success})\) is constant across trials (also denoted \(p\)) + \item Finite number \(n\) of independent trials + \end{enumerate} + + + \subsubsection*{Properties of \(X \sim \operatorname{Bi}(n,p)\)} + + \begin{align*} + \mu(X) &= np \\ + \operatorname{Var}(X) &= np(1-p) \\ + \sigma(X) &= \sqrt{np(1-p)} \\ + \Pr(X=x) &= {n \choose x} \cdot p^x \cdot (1-p)^{n-x} + \end{align*} + + \begin{cas} + Interactive \(\rightarrow\) Distribution \(\rightarrow\) \verb;binomialPdf; then input + \begin{description}[nosep, style=multiline, labelindent=0.5cm, leftmargin=3cm, font=\normalfont] + \item [x:] no. of successes + \item [numtrial:] no. of trials + \item [pos:] probability of success + \end{description} + \end{cas} + + \subsection*{Continuous random variables} + + A continuous random variable \(X\) has a pdf \(f\) such that: + + \begin{enumerate} + \item \(f(x) \ge 0 \forall x \) + \item \(\int^\infty_{-\infty} f(x) \> dx = 1\) + \end{enumerate} + + \begin{align*} + E(X) &= \int_\textbf{X} (x \cdot f(x)) \> dx \\ + \operatorname{Var}(X) &= E\left[(X-\mu)^2\right] + \end{align*} + + \[ \Pr(X \le c) = \int^c_{-\infty} f(x) \> dx \] + + + \subsection*{Two random variables \(X, Y\)} + + If \(X\) and \(Y\) are independent: + \begin{align*} + \operatorname{E}(aX+bY) & = a\operatorname{E}(X)+b\operatorname{E}(Y) \\ + \operatorname{Var}(aX \pm bY \pm c) &= a^2 \operatorname{Var}(X) + b^2 \operatorname{Var}(Y) + \end{align*} + + \subsection*{Linear functions \(X \rightarrow aX+b\)} + + \begin{align*} + \Pr(Y \le y) &= \Pr(aX+b \le y) \\ + &= \Pr\left(X \le \dfrac{y-b}{a}\right) \\ + &= \int^{\frac{y-b}{a}}_{-\infty} f(x) \> dx + \end{align*} + + \begin{align*} + \textbf{Mean:} && \operatorname{E}(aX+b) & = a\operatorname{E}(X)+b \\ + \textbf{Variance:} && \operatorname{Var}(aX+b) &= a^2 \operatorname{Var}(X) \\ + \end{align*} + + \subsection*{Expectation theorems} + + For some non-linear function \(g\), the expected value \(E(g(X))\) is not equal to \(g(E(X))\). + + \begin{align*} + E(X^2) &= \operatorname{Var}(X) - \left[E(X)\right]^2 \\ + E(X^n) &= \Sigma x^n \cdot p(x) \tag{non-linear} \\ + &\ne [E(X)]^n \\ + E(aX \pm b) &= aE(X) \pm b \tag{linear} \\ + E(b) &= b \tag{\(\forall b \in \mathbb{R}\)}\\ + E(X+Y) &= E(X) + E(Y) \tag{two variables} + \end{align*} + + \subsection*{Sample mean} + + Approximation of the \textbf{population mean} determined experimentally. + + \[ \overline{x} = \dfrac{\Sigma x}{n} \] + + where + \begin{description}[nosep, labelindent=0.5cm] + \item \(n\) is the size of the sample (number of sample points) + \item \(x\) is the value of a sample point + \end{description} + + \begin{cas} + \begin{enumerate}[leftmargin=3mm] + \item Spreadsheet + \item In cell A1:\\ \path{mean(randNorm(sd, mean, sample size))} + \item Edit \(\rightarrow\) Fill \(\rightarrow\) Fill Range + \item Input range as A1:An where \(n\) is the number of samples + \item Graph \(\rightarrow\) Histogram + \end{enumerate} + \end{cas} + + \subsubsection*{Sample size of \(n\)} + + \[ \overline{X} = \sum_{i=1}^n \frac{x_i}{n} = \dfrac{\sum x}{n} \] + + Sample mean is distributed with mean \(\mu\) and sd \(\frac{\sigma}{\sqrt{n}}\) (approaches these values for increasing sample size \(n\)). + + For a new distribution with mean of \(n\) trials, \(\operatorname{E}(X^\prime) = \operatorname{E}(X), \quad \operatorname{sd}(X^\prime) = \dfrac{\operatorname{sd}(X)}{\sqrt{n}}\) + + \begin{cas} + + \begin{itemize} + \item Spreadsheet \(\rightarrow\) Catalog \(\rightarrow\) \verb;randNorm(sd, mean, n); where \verb;n; is the number of samples. Show histogram with Histogram key in top left + \item To calculate parameters of a dataset: Calc \(\rightarrow\) One-variable + \end{itemize} + + \end{cas} + + \subsection*{Normal distributions} + + + \[ Z = \frac{X - \mu}{\sigma} \] + + Normal distributions must have area (total prob.) of 1 \(\implies \int^\infty_{-\infty} f(x) \> dx = 1\) \\ + \(\text{mean} = \text{mode} = \text{median}\) + + \begin{warning} + Always express \(z\) as +ve. Express confidence \textit{interval} as ordered pair. + \end{warning} + + \pgfmathdeclarefunction{gauss}{2}{% + \pgfmathparse{1/(#2*sqrt(2*pi))*exp(-((x-#1)^2)/(2*#2^2))}% + } + \pgfkeys{/pgf/decoration/.cd, + distance/.initial=10pt + } \pgfdeclaredecoration{add dim}{final}{ + \state{final}{% + \pgfmathsetmacro{\dist}{5pt*\pgfkeysvalueof{/pgf/decoration/distance}/abs(\pgfkeysvalueof{/pgf/decoration/distance})} + \pgfpathmoveto{\pgfpoint{0pt}{0pt}} + \pgfpathlineto{\pgfpoint{0pt}{2*\dist}} + \pgfpathmoveto{\pgfpoint{\pgfdecoratedpathlength}{0pt}} + \pgfpathlineto{\pgfpoint{(\pgfdecoratedpathlength}{2*\dist}} + \pgfsetarrowsstart{latex} + \pgfsetarrowsend{latex} + \pgfpathmoveto{\pgfpoint{0pt}{\dist}} + \pgfpathlineto{\pgfpoint{\pgfdecoratedpathlength}{\dist}} + \pgfusepath{stroke} + \pgfpathmoveto{\pgfpoint{0pt}{0pt}} + \pgfpathlineto{\pgfpoint{\pgfdecoratedpathlength}{0pt}} + }} + \tikzset{dim/.style args={#1,#2}{decoration={add dim,distance=#2}, + decorate, + postaction={decorate,decoration={text along path, + raise=#2, + text align={align=center}, + text={#1}}}}} + \begin{figure*}[hb] + \centering + \begin{tikzpicture} + \begin{axis}[every axis plot post/.style={ + mark=none,domain=-3:3,samples=50,smooth}, + axis x line=bottom, + axis y line=left, + enlargelimits=upper, + x=\textwidth/10, + ytick={0.55}, + yticklabels={\(\frac{1}{\sigma \sqrt{2\pi}}\)}, + xtick={-2,-1,0,1,2}, + x tick label style = {font=\footnotesize}, + xticklabels={\((\mu-2\sigma)\), \((\mu-\sigma)\), \(\mu\), \((\mu+\sigma)\), \((\mu+2\sigma)\)}, + xlabel={\(x\)}, + every axis x label/.style={at={(current axis.right of origin)},anchor=north west}, + every axis y label/.style={at={(axis description cs:-0.02,0.2)}, anchor=south west, rotate=90}, + ylabel={\(\Pr(X=x)\)}] + \addplot {gauss(0,0.75)}; + \fill[red!30] (-3,0) -- plot[id=f3,domain=-3:3,samples=50] function {1/(0.75*sqrt(2*pi))*exp(-((x)^2)/(2*0.75^2))} -- (3,0) -- cycle; + \fill[darkgray!30] (3,0) -- plot[id=f3,domain=-3:3,samples=50] function {1/(0.75*sqrt(2*pi))*exp(-x*x*0.5/(0.75*0.75))} -- (3,0) -- cycle; + \fill[lightgray!30] (-2,0) -- plot[id=f3,domain=-2:2,samples=50] function {1/(0.75*sqrt(2*pi))*exp(-x*x*0.5/(0.75*0.75))} -- (2,0) -- cycle; + \fill[white!30] (-1,0) -- plot[id=f3,domain=-1:1,samples=50] function {1/(0.75*sqrt(2*pi))*exp(-x*x*0.5/(0.75*0.75))} -- (1,0) -- cycle; + \begin{scope}[<->] + \draw (-1,0.35) -- (1,0.35) node [midway, fill=white] {68.3\%}; + \draw (-2,0.25) -- (2,0.25) node [midway, fill=white] {95.5\%}; + \draw (-3,0.15) -- (3,0.15) node [midway, fill=white] {99.7\%}; + \end{scope} + \begin{scope}[-, dashed, gray] + \draw (-1,0) -- (-1, 0.35); + \draw (1,0) -- (1, 0.35); + \draw (-2,0) -- (-2, 0.25); + \draw (2,0) -- (2, 0.25); + \draw (-3,0) -- (-3, 0.15); + \draw (3,0) -- (3, 0.15); + \end{scope} + \end{axis} + \begin{axis}[every axis plot post/.append style={ + mark=none,domain=-3:3,samples=50,smooth}, + axis x line=bottom, + enlargelimits=upper, + x=\textwidth/10, + xtick={-2,-1,0,1,2}, + axis x line shift=30pt, + hide y axis, + x tick label style = {font=\footnotesize}, + xlabel={\(Z\)}, + every axis x label/.style={at={(axis description cs:1,-0.25)},anchor=south west}] + \addplot {gauss(0,0.75)}; + \end{axis} + \end{tikzpicture} + \end{figure*} + \end{document}