From 08a48a51e451aa322afd0efec300e5010a6bffec Mon Sep 17 00:00:00 2001 From: Andrew Lorimer Date: Fri, 17 Aug 2018 12:55:14 +1000 Subject: [PATCH] tangents & normals, light-matter interactions --- methods/calculus.md | 20 ++++++++++++++++++++ physics/light-matter.md | 28 ++++++++++++++++++++++++++++ 2 files changed, 48 insertions(+) create mode 100644 physics/light-matter.md diff --git a/methods/calculus.md b/methods/calculus.md index fb19fdb..589bf2f 100644 --- a/methods/calculus.md +++ b/methods/calculus.md @@ -48,3 +48,23 @@ Instantaneous velocity - calculated the same way as averge $\Delta$ $$f^\prime(x)=\lim_{h \rightarrow 0}{{f(x+h)-f(x)} \over h}$$ **Tangent line** of function $f$ at point $M(a, f(a))$ is the line through $M$ with gradient $f^\prime(a)$. + +## Tangents and gradients + + +### Tangent of a point + +For a point $P(q,r)$ on function $f$, the gradient of the tangent is the derivative $dy \over dx$ of $f(q)$. Therefore the tangent line is defined by $y=mx+c$ where $m={dy \over dx}$. Substitute $x=q, \hspace{0.5em} y=q$ to solve for $c$. + +### Normal + +Normal $\perp$ tangent. + +$$m_{\operatorname{tan}} \cdot m_{\operatorname{norm}} = -1$$ + +Normal line for point $P(q,r)$ on function $f$ is $y=mx+c$ where $m={-1 \over m_{\tan}}$. To find $c$, substitute $(x, y)=(q,r)$ and solve. + +### Solving on CAS + +**In main**: type function. Interactive -> Calculation -> Line -> (Normal | Tan line) +**In graph**: define function. Analysis -> Sketch -> (Normal | Tan line). Type $x$ value to solve for a point. Return to show equation for line. diff --git a/physics/light-matter.md b/physics/light-matter.md new file mode 100644 index 0000000..04a90a4 --- /dev/null +++ b/physics/light-matter.md @@ -0,0 +1,28 @@ +# Light and matter + +## Photoelectric effect + +### Planck's equation + +$$E=hf$$ + +where +$E$ is energy of a quantum of light (J) +$f$ is frequency of EM radiation +$h$ is Planck's constant ($6.63 \times 10^{-34}\operatorname{J s}$) + + +### Electron diffraction patterns + +$$W=qV$$ + +(work for accelerating electon of charge $q$ with voltage $V$) + +$$\lambda = {h \over mv}$$ + +(de Broglie's equation) + +Solving wavelength of electrons from gun: +1. + +774 abc melbourne \ No newline at end of file -- 2.47.1