From 091772f6b08fb79bbd9262f4eb435e4518cd57b6 Mon Sep 17 00:00:00 2001 From: Andrew Lorimer Date: Thu, 28 Mar 2019 21:50:39 +1100 Subject: [PATCH] [methods] minor methods updates from assignment 4 --- methods/summary.md | 2 +- methods/transformations.md | 20 +++++++++++++------- 2 files changed, 14 insertions(+), 8 deletions(-) diff --git a/methods/summary.md b/methods/summary.md index 5cec66f..cc809d3 100644 --- a/methods/summary.md +++ b/methods/summary.md @@ -105,7 +105,7 @@ In general: ## Functions $$f:\operatorname{dom}(f) \rightarrow \mathbb{R},\quad f(x)=\dots$$ - function - one $y$ (image) value per $x$ (preimage) -- 1:1 function - unique $y$ for each $x$ +- 1:1 function - unique $y$ for each $x$ ($\sin x$ is not 1:1, $x^3$ is) **Domain $\operatorname{dom}(f)$:** set of all $x$ values in function - maximal (implied) domain - largest domain for which the rule is defined diff --git a/methods/transformations.md b/methods/transformations.md index 08ba312..153441b 100644 --- a/methods/transformations.md +++ b/methods/transformations.md @@ -1,5 +1,6 @@ --- geometry: margin=2cm +columns: 2 author: Andrew Lorimer --- @@ -16,13 +17,6 @@ author: Andrew Lorimer - for $(ax)^n$, dilation factor is $1 \over a$ parallel to $x$-axis or from $y$-axis - when $0 < |a| < 1$, graph becomes closer to axis -## Translations - -For $y = f(x)$, these processes are equivalent: - -- applying the translation $(x, y) \rightarrow (x + h, y + k)$ to the graph of $y = f(x)$ -- replacing $x$ with $x − h$ and $y$ with $y − k$ to obtain $y − k = f (x − h)$ - ## Dilations For the graph of $y = f(x)$, there are two pairs of equivalent processes: @@ -35,6 +29,18 @@ For the graph of $y = f(x)$, there are two pairs of equivalent processes: For graph of $y={1 \over x}$, horizontal & vertical dilations are equivalent (symmetrical). If $y={a \over x}$, graph is contracted rather than dilated. +## Reflections + +- Reflection **in** axis = reflection **over** axis = reflection **across** axis +- Translations do not change + +## Translations + +For $y = f(x)$, these processes are equivalent: + +- applying the translation $(x, y) \rightarrow (x + h, y + k)$ to the graph of $y = f(x)$ +- replacing $x$ with $x − h$ and $y$ with $y − k$ to obtain $y − k = f (x − h)$ + ## Transforming $f(x)$ to $y=Af[n(x+c)]+b$# Applies to exponential, log, trig, power, polynomial functions. -- 2.47.1