From 2183c3a2db899f3f99c23c0f1bb8c92de0b00b4b Mon Sep 17 00:00:00 2001 From: Andrew Lorimer Date: Fri, 19 Oct 2018 11:16:15 +1100 Subject: [PATCH] geometric proofs with vectors --- spec/vectors.md | 13 +++++++++++++ 1 file changed, 13 insertions(+) diff --git a/spec/vectors.md b/spec/vectors.md index a2122b0..8fa7208 100644 --- a/spec/vectors.md +++ b/spec/vectors.md @@ -108,5 +108,18 @@ Vector resolute of $\boldsymbol{a}$ in direction of $\boldsymbol{b}$ is magnitud $$\boldsymbol{u}={{\boldsymbol{a}\cdot\boldsymbol{b}}\over |\boldsymbol{b}|^2}\boldsymbol{b}=\left({\boldsymbol{a}\cdot{\boldsymbol{b} \over |\boldsymbol{b}|}}\right)\left({\boldsymbol{b} \over |\boldsymbol{b}|}\right)=(\boldsymbol{a} \cdot \hat{\boldsymbol{b}})\hat{\boldsymbol{b}}$$ +## Vector proofs + +**Concurrent lines -** $\ge$ 3 lines intersect at a single point +**Collinear points -** $\ge$ 3 points lie on the same line + +Useful vector properties: + +- If $\boldsymbol{a}$ and $\boldsymbol{b}$ are parallel, then $\boldsymbol{b}=k\boldsymbol{a}$ for some $k \in \mathbb{R} \setminus \{0\}$ +- If $\boldsymbol{a}$ and $\boldsymbol{b}$ are parallel with at least one point in common, then they lie on the same straight line +- Two vectors $\boldsymbol{a}$ and $\boldsymbol{b}$ are perpendicular if $\boldsymbol{a} \cdot \boldsymbol{b}=0$ +- $\boldsymbol{a} \cdot \boldsymbol{a} = |\boldsymbol{a}|^2$ + + -- 2.43.2