From 408a7b49a043970cc9ce7289900412a701bfaa3c Mon Sep 17 00:00:00 2001 From: Andrew Lorimer Date: Tue, 4 Dec 2018 13:59:08 +1100 Subject: [PATCH] linear ez shit --- methods/polynomials.md | 9 ++++++++- 1 file changed, 8 insertions(+), 1 deletion(-) diff --git a/methods/polynomials.md b/methods/polynomials.md index 6fadf11..e81e0b0 100644 --- a/methods/polynomials.md +++ b/methods/polynomials.md @@ -8,9 +8,16 @@ **Perfect squares:** $a^2 \pm 2ab + b^2 = (a \pm b^2)$ **Completing the square (monic):** $x^2+bx+c=(x+{b\over2})^2+c-{b^2\over4}$ **Completing the square (non-monic):** $ax^2+bx+c=a(x-{b\over2a})^2+c-{b^2\over4a}$ -**Quadratic formula:** $x={{-b\pm\sqrt{b^2-4ac}}\over2a}$ where $\Delta=b^2-4ac$ +**Quadratic formula:** $x={{-b\pm\sqrt{b^2-4ac}}\over2a}$ where $\Delta=b^2-4ac$ (if $\Delta$ is a perfect square, rational roots) #### Cubics **Difference of cubes:** $a^3 - b^3 = (a-b)(a^2 + ab + b^2)$ **Sum of cubes:** $a^3 + b^3 = (a+b)(a^2 - ab + b^2)$ **Perfect cubes:** $a^3 \pm 3a^2b + 3ab^2 \pm b^3 = (a \pm b)^3$ + +## Linear and quadratic graphs + +$$y=mx+c, \quad {x \over a} + {y \over b}=1$$ + +Parallel lines - $m_1 = m_2$ +Perpendicular lines - $m_1 \times m_2 = -1$ -- 2.47.1