From 4668fb43d1433ec7fae2ac4828f4affced12971c Mon Sep 17 00:00:00 2001 From: Andrew Lorimer Date: Wed, 6 Feb 2019 10:24:10 +1100 Subject: [PATCH] collinearity --- spec/vectors.md | 5 +++++ 1 file changed, 5 insertions(+) diff --git a/spec/vectors.md b/spec/vectors.md index 0b6ea2a..db65983 100644 --- a/spec/vectors.md +++ b/spec/vectors.md @@ -139,6 +139,8 @@ Vector resolute of $\boldsymbol{a}$ in direction of $\boldsymbol{b}$ is magnitud $$\boldsymbol{u}={{\boldsymbol{a}\cdot\boldsymbol{b}}\over |\boldsymbol{b}|^2}\boldsymbol{b}=\left({\boldsymbol{a}\cdot{\boldsymbol{b} \over |\boldsymbol{b}|}}\right)\left({\boldsymbol{b} \over |\boldsymbol{b}|}\right)=(\boldsymbol{a} \cdot \hat{\boldsymbol{b}})\hat{\boldsymbol{b}}$$ +Scalar resolute of $\vec{a}$ on $\vec{b} = |\vec{u}| = \vec{a} \cdot \hat{\vec{b}}$ + ## Vector proofs **Concurrent lines -** $\ge$ 3 lines intersect at a single point @@ -175,3 +177,6 @@ $$\cos \alpha = {a_1 \over |\vec{a}|}, \quad \cos \beta = {a_2 \over |\vec{a}|}, **on CAS:** `angle([a b c], [1 0 0])` for angle between $a\vec{i} + b\vec{j} + c\vec{k}$ and $x$-axis +## Collinearity + +Points $A, B, C$ are collinear iff $\vec{AC}=m\vec{AB} \text{ where } m \ne 0$ -- 2.47.1