From 4732ab1bfdc7cabb854018cb3424e02883c56a5e Mon Sep 17 00:00:00 2001 From: Andrew Lorimer Date: Wed, 3 Apr 2019 09:40:28 +1100 Subject: [PATCH] [spec] implicit differentiation --- spec/calculus.md | 16 ++++++++++++++-- 1 file changed, 14 insertions(+), 2 deletions(-) diff --git a/spec/calculus.md b/spec/calculus.md index a085f3b..c239084 100644 --- a/spec/calculus.md +++ b/spec/calculus.md @@ -260,13 +260,25 @@ $${dy \over dx} = {{dy \over dt} \over {dx \over dt}} \> \vert \> {dx \over dt} $${d^2 \over dx^2} = {d(y^\prime) \over dx} = {{dy^\prime \over dt} \over {dx \over dt}} \> \vert \> y^\prime = {dy \over dx}$$ -# Rational functions +## Rational functions $$f(x) = {P(x) \over Q(x)} \quad \text{where } P, Q \text{ are polynomial functions}$$ -## Addition of ordinates +### Addition of ordinates - when two graphs have the same ordinate, $y$-coordinate is double the ordinate - when two graphs have opposite ordinates, $y$-coordinate is 0 i.e. ($x$-intercept) - when one of the ordinates is 0, the resulting ordinate is equal to the other ordinate + +## Implicit Differentiation + +On CAS: Action $\rightarrow$ Calculation $\rightarrow$ `impDiff(y^2+ax=5, x, y)`. Returns $y^\prime= \dots$. + +Used for differentiating circles etc. + +If $p$ and $q$ are expressions in $x$ and $y$ such that $p=q$, for all $x$ nd $y$, then: + +$${dp \over dx} = {dq \over dx} \quad \text{and} \quad {dp \over dy} = {dq \over dy}$$ + + -- 2.47.1