From 6b0f2df581e1357328cf53bde0a4d011517422d8 Mon Sep 17 00:00:00 2001 From: Andrew Lorimer Date: Thu, 10 Oct 2019 14:56:02 +1100 Subject: [PATCH] [spec] add section on circle mensuration --- spec/spec-collated.tex | 62 ++++++++++++++++++++++++++++++++++++++++-- 1 file changed, 60 insertions(+), 2 deletions(-) diff --git a/spec/spec-collated.tex b/spec/spec-collated.tex index 06cb974..38165bb 100644 --- a/spec/spec-collated.tex +++ b/spec/spec-collated.tex @@ -818,7 +818,51 @@ \addplot[gray, dotted, thick, domain=-35:35] {-1.5708} node [black, font=\footnotesize, above left, pos=1] {\(y=-\frac{\pi}{2}\)}; \end{axis} \end{tikzpicture} -\columnbreak + + \subsection*{Mensuration} + + \begin{tikzpicture}[draw=blue!70,thick] + \filldraw[fill=lblue] circle (2cm); + \filldraw[fill=white] + (320:2cm) node[right] {} + -- (220:2cm) node[left] {} + arc[start angle=220, end angle=320, radius=2cm] + -- cycle; + \node {Major Segment}; + \node at (-90:2) {Minor Segment}; + + \begin{scope}[xshift=4.5cm] + \draw circle (2cm); + \filldraw[fill=lblue] + (320:2cm) node[right] {} + -- (0,0) node[above] {} + -- (220:2cm) node[left] {} + arc[start angle=220, end angle=320, radius=2cm] + -- cycle; + \node at (90:1cm) {Major Sector}; + \node at (-90:1.5) {Minor Sector}; + \end{scope} + \end{tikzpicture} + + \subsubsection*{Sectors} + + \begin{align*} + A &= \pi r^2 \dfrac{\theta}{2\pi} \\ + &= \dfrac{r^2 \theta}{2} + \end{align*} + + \subsubsection*{Segments} + + \[ A = \dfrac{r^2}{2} \left( \theta = \sin \theta \right) \] + + \subsubsection*{Chords} + + \begin{align*} + \operatorname{crd} \theta &= \sqrt{(1 - \cos\theta)^2 + \sin^2 \theta} \\ + &= \sqrt{2 - 2\cos\theta} \\ + &= 2 \sin \left(\dfrac{\theta}{2}\right) + \end{align*} + \section{Differential calculus} \[f^\prime(x) = \lim_{\delta x \rightarrow 0}{\delta y \over \delta x}={\frac{dy}{dx}}\] @@ -1068,6 +1112,10 @@ To reverse, use \texttt{combine(...)} \end{cas} + \subsection*{Integrating \(\boldsymbol{\dfrac{dy}{dx} = g(y)}\)} + + \[ \text{if } \dfrac{dy}{dx} = g(y), \text{ then } x = \int{\dfrac{1}{g(y)}} \> dy \] + \subsection*{Graphing integrals on CAS} \begin{cas} @@ -1166,10 +1214,20 @@ \subsection*{Euler's method} - \[\frac{f(x+h) - f(x)}{h} \approx f^\prime (x) \quad \text{for small } h\] + \[\dfrac{f(x+h) - f(x)}{h} \approx f^\prime (x) \quad \text{for small } h\] \[\implies f(x+h) \approx f(x) + hf^\prime(x)\] + \begin{theorembox}{} + If \(\dfrac{dy}{dx} = g(x)\) with \(x_0 = a\) and \(y_0 = b\), then: + \begin{align*} + x_{n+1} &= x_n + h \\ + y_{n+1} &= y_n + hg(x_n) + \end{align*} + \end{theorembox} + + + \include{calculus-rules} \section{Kinematics \& Mechanics} -- 2.47.1