From 7d1e263ffed78f8991751219a3f88aaee0f24b1a Mon Sep 17 00:00:00 2001 From: Andrew Lorimer Date: Mon, 4 Mar 2019 20:32:52 +1100 Subject: [PATCH] [spec] complex factor theorem --- spec/complex.md | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/spec/complex.md b/spec/complex.md index ce71511..e72225e 100755 --- a/spec/complex.md +++ b/spec/complex.md @@ -128,6 +128,12 @@ $$P(z) = D(z)Q(z) + R(z)$$ Let $\alpha \in \mathbb{C}$. Remainder of $P(z) \div (z - \alpha)$ is $P(\alpha)$ +#### Factor theorem +If $a+bi$ is a solution to $P(z)=0$, then: + +- $P(a+bi)=0$ +- $z-(a+bi)$ is a factor of $P(z)$ + ## Conjugate root theorem If $a+bi$ is a solution to $P(z)=0$, with $a, b \in \mathbb{R}$, then the conjugate $\overline{z}=a-bi$ is also a solution. -- 2.47.1