From 8860d43866393c580c567256fb543a406187fdf7 Mon Sep 17 00:00:00 2001 From: Andrew Lorimer Date: Thu, 21 Feb 2019 19:35:14 +1100 Subject: [PATCH] fix image widths and clarify dilation in translation notes --- methods/transformations.md | 19 +++++++++++++------ 1 file changed, 13 insertions(+), 6 deletions(-) diff --git a/methods/transformations.md b/methods/transformations.md index c9e5cd1..08ba312 100644 --- a/methods/transformations.md +++ b/methods/transformations.md @@ -1,3 +1,8 @@ +--- +geometry: margin=2cm +author: Andrew Lorimer +--- + # Transformation **Order of operations:** DRT - Dilations, Reflections, Translations @@ -9,6 +14,7 @@ - $k$ - translation of $k$ units parallel to $y$-axis or from $x$-axis - $h$ - translation of $h$ units parallel to $x$-axis or from $y$-axis - for $(ax)^n$, dilation factor is $1 \over a$ parallel to $x$-axis or from $y$-axis +- when $0 < |a| < 1$, graph becomes closer to axis ## Translations @@ -54,19 +60,19 @@ Function $x^{\pm {p \over q}}$ is odd if $q$ is odd | $n$ is even: | $n$ is odd: | | ------------ | ----------- | -|![](graphics/parabola.png){#id .class width=50%} | ![](graphics/cubic.png){#id .class width=50%} | +|![](graphics/parabola.png){#id .class width=20%} | ![](graphics/cubic.png){#id .class width=20%} | ### $x^n$ where $n \in \mathbb{Z}^-$ | $n$ is even: | $n$ is odd: | | ------------ | ----------- | -|![](graphics/truncus.png){#id .class width=50%} | ![](graphics/hyperbola.png){#id .class width=50%} | +|![](graphics/truncus.png){#id .class width=20%} | ![](graphics/hyperbola.png){#id .class width=20%} | ### $x^{1 \over n}$ where $n \in \mathbb{Z}^+$ | $n$ is even: | $n$ is odd: | | ------------ | ----------- | -|![](graphics/square-root-graph.png){#id .class width=50%} | ![](graphics/cube-root-graph.png){#id .class width=50%} | +|![](graphics/square-root-graph.png){#id .class width=20%} | ![](graphics/cube-root-graph.png){#id .class width=20%} | ### $x^{-1 \over n}$ where $n \in \mathbb{Z}^+$ @@ -82,8 +88,8 @@ If $n$ is odd, it is an odd function. $$x^{p \over q} = \sqrt[q]{x^p}$$ -- if $p \gt q$, the shape of $x^p$ is dominant -- if $p \lt q$, the shape of $x^{1 \over q}$ is dominant +- if $p > q$, the shape of $x^p$ is dominant +- if $p < q$, the shape of $x^{1 \over q}$ is dominant - points $(0, 0)$ and $(1, 1)$ will always lie on graph - Domain is: $\begin{cases} \mathbb{R} \hspace{4em}\text{ if }q\text{ is odd} \\ \mathbb{R}^+ \cup \{0\} \hspace{1em}\text{if }q\text{ is even}\end{cases}$ @@ -104,7 +110,8 @@ Closed circle - point not included Addition of linear piecewise graphs - add $y$-values at key points -Product functions: +Product functions: + - product will equal 0 if one of the functions is equal to 0 - turning point on one function does not equate to turning point on product -- 2.43.2