From 8f6c1394e89e16de8bfb071165a8ec1367d1da4e Mon Sep 17 00:00:00 2001 From: Andrew Lorimer Date: Thu, 23 May 2019 18:39:06 +1000 Subject: [PATCH] [spec] start collating notes for SAC --- spec/spec-collated.md | 896 +++++++++++++++++++++++++++ spec/spec-collated.pdf | Bin 0 -> 459142 bytes spec/spec-collated.tex | 1325 ++++++++++++++++++++++++++++++++++++++++ 3 files changed, 2221 insertions(+) create mode 100644 spec/spec-collated.md create mode 100644 spec/spec-collated.pdf create mode 100644 spec/spec-collated.tex diff --git a/spec/spec-collated.md b/spec/spec-collated.md new file mode 100644 index 0000000..cb7a9e2 --- /dev/null +++ b/spec/spec-collated.md @@ -0,0 +1,896 @@ +--- +header-includes: +- \usepackage{harpoon} +- \usepackage{amsmath} +- \pagenumbering{gobble} +--- + +# Complex & Imaginary Numbers + +## Imaginary numbers + +$$i^2 = -1 \quad \therefore i = \sqrt {-1}$$ + +### Simplifying negative surds + +\begin{equation}\begin{split}\sqrt{-2} & = \sqrt{-1 \times 2} \\ & = \sqrt{2}i\end{split}\end{equation} + + +## Complex numbers + +$$\mathbb{C} = \{a+bi : a, b \in \mathbb{R} \}$$ + +General form: $z=a+bi$ +$\operatorname{Re}(z) = a, \quad \operatorname{Im}(z) = b$ + +### Addition + +If $z_1 = a+bi$ and $z_2=c+di$, then + +$$z_1+z_2 = (a+c)+(b+d)i$$ + +### Subtraction + +If $z_1=a+bi$ and $z_2=c+di$, then + +$$z_1−z_2=(a−c)+(b−d)i$$ + +### Multiplication by a real constant + +If $z=a+bi$ and $k \in \mathbb{R}$, then + +$$kz=ka+kbi$$ + +### Powers of $i$ + +- $i^{4n} = 1$ +- $i^{4n+1} = i$ +- $i^{4n+2} = -1$ +- $i^{4n+3} = -i$ + +For $i^n$, find remainder $r$ when $n \div 4$. Then $i^n = i^r$. + +### Multiplying complex expressions + +If $z_1 = a+bi$ and $z_2=c+di$, then + +$$z_1 \times z_2 = (ac-bd)+(ad+bc)i$$ + +### Conjugates + +$$\overline{z} = a \mp bi$$ + +##### Properties + +- $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$ +- $\overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}$ +- $\overline{kz} = k \overline{z}, \text{ for } k \in \mathbb{R}$ +- $z \overline{z} = = (a+bi)(a-bi) = a^2+b^2 = |z|^2$ +- $z + \overline{z} = 2 \operatorname{Re}(z)$ + +### Modulus + +Distance from origin. + +$$|{z}|=\sqrt{a^2+b^2} \quad \therefore z \overline{z} = |z|^2$$ + +###### Properties + +- $|z_1 z_2| = |z_1| |z_2|$ +- $|{z_1 \over z_2}| = {|z_1| \over |z_2|}$ +- $|z_1 + z_2| \le |z_1 + |z_2|$ + +### Multiplicative inverse + +\begin{equation}\begin{split}z^{-1} & = {1 \over z} \\ & = {{a-bi} \over {a^2+B^2}} \\ & = {\overline{z} \over {|z|^2}}\end{split}\end{equation} + +### Dividing complex numbers + +$${{z_1} \over {z_2}} = {{z_1\ {z_2}^{-1}}} = {{z_1 \overline{z_2}} \over {{|z_2|}^2}} \quad \text{(multiplicative inverse)}$$ + +In practice, rationalise denominator: + +$${z_1 \over z_2} = {{(a+bi)(c-di)} \over {c^2+d^2}}$$ + +## Argand planes + +- Geometric representation of $\mathbb{C}$ +- horizontal $= \operatorname{Re}(z)$; vertical $= \operatorname{Im}(z)$ +- Multiplication by $i$ results in an anticlockwise rotation of $\pi \over 2$ + +\vfil \break + +## Complex polynomials + +**Include $\pm$ for all solutions, including imaginary** + +### Sum of two squares (quadratics) + +$$z^2+a^2=z^2-(ai)^2=(z+ai)(z-ai)$$ + +Complete the square to get to this point. + +#### Dividing complex polynomials + +$P(z) \div D(z)$ gives quotient $Q(z)$ and remainder $R(z)$: + +$$P(z) = D(z)Q(z) + R(z)$$ + +#### Remainder theorem + +Let $\alpha \in \mathbb{C}$. Remainder of $P(z) \div (z - \alpha)$ is $P(\alpha)$ + +#### Factor theorem + +If $a+bi$ is a solution to $P(z)=0$, then: + +- $P(a+bi)=0$ +- $z-(a+bi)$ is a factor of $P(z)$ + +#### Sum of two cubes + +$$a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)$$ + +## Conjugate root theorem + +If $a+bi$ is a solution to $P(z)=0$, then the conjugate $\overline{z}=a-bi$ is also a solution. + +## Polar form + +\begin{equation}\begin{split}z & =r \operatorname{cis} \theta \\ & = r(\operatorname{cos}\theta+i \operatorname{sin}\theta) \\ & = a + bi \end{split}\end{equation} + +- $r=|z|=\sqrt{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2}$ +- $\theta=\operatorname{arg}(z)$ (on CAS: `arg(a+bi)`) +- **principal argument** is $\operatorname{Arg}(z) \in (-\pi, \pi]$ (note capital $\operatorname{Arg}$) + +Each complex number has multiple polar representations: +$z=r \operatorname{cis} \theta = r \operatorname{cis} (\theta+2 n\pi$) with $n \in \mathbb{Z}$ revolutions + +### Conjugate in polar form + +$$(r \operatorname{cis} \theta)^{-1} = r\operatorname{cis} (- \theta)$$ + +Reflection of $z$ across horizontal axis. + +### Multiplication and division in polar form + +$$z_1z_2=r_1r_2\operatorname{cis}(\theta_1+\theta_2)$$ + +$${z_1 \over z_2} = {r_1 \over r_2} \operatorname{cis}(\theta_1-\theta_2)$$ + +## de Moivres' Theorem + +$$(r\operatorname{cis}\theta)^n=r^n\operatorname{cis}(n\theta) \text{ where } n \in \mathbb{Z}$$ + +## Roots of complex numbers + +$n$th roots of $z = r \operatorname{cis} \theta$ are + +$$z={r^{1 \over n}} \operatorname{cis}({{\theta + 2 k \pi} \over n})$$ + +Same modulus for all solutions. Arguments are separated by ${2 \pi} \over n$ + +The solutions of $z^n=a \text{ where } a \in \mathbb{C}$ lie on circle + +$$x^2 + y^2 = (|a|^{1 \over n})^2$$ + +## Sketching complex graphs + +### Straight line + +- $\operatorname{Re}(z) = c$ or $\operatorname{Im}(z) = c$ (perpendicular bisector) +- $\operatorname{Arg}(z) = \theta$ +- $|z+a|=|z+bi|$ where $m={a \over b}$ +- $|z+a|=|z+b| \longrightarrow 2(a-b)x=b^2-a^2$ + +### Circle + +$|z-z_1|^2 = c^2 |z_2+2|^2$ or $|z-(a + bi)| = c$ + +### Locus + +$\operatorname{Arg}(z) < \theta$ + +# Vectors + +- **vector:** a directed line segment +- arrow indicates direction +- length indicates magnitude +- notated as $\vec{a}, \widetilde{A}, \overrightharp{a}$ +- column notation: $\begin{bmatrix} + x \\ y + \end{bmatrix}$ +- vectors with equal magnitude and direction are equivalent + + +![](graphics/vectors-intro.png){#id .class width=20%} + +## Vector addition + +$\boldsymbol{u} + \boldsymbol{v}$ can be represented by drawing each vector head to tail then joining the lines. +Addition is commutative (parallelogram) + +## Scalar multiplication + +For $k \in \mathbb{R}^+$, $k\boldsymbol{u}$ has the same direction as $\boldsymbol{u}$ but length is multiplied by a factor of $k$. + +When multiplied by $k < 0$, direction is reversed and length is multplied by $k$. + +## Vector subtraction + +To find $\boldsymbol{u} - \boldsymbol{v}$, add $\boldsymbol{-v}$ to $\boldsymbol{u}$ + +## Parallel vectors + +Same or opposite direction + +$$\boldsymbol{u} || \boldsymbol{v} \iff \boldsymbol{u} = k \boldsymbol{v} \text{ where } k \in \mathbb{R} \setminus \{0\}$$ + +## Position vectors + +Vectors may describe a position relative to $O$. + +For a point $A$, the position vector is $\overrightharp{OA}$ + +\vfill\eject + +## Linear combinations of non-parallel vectors + +If two non-zero vectors $\boldsymbol{a}$ and $\boldsymbol{b}$ are not parallel, then: + +$$m\boldsymbol{a} + n\boldsymbol{b} = p \boldsymbol{a} + q \boldsymbol{b}\quad \therefore \quad m = p, \> n = q$$ + +![](graphics/parallelogram-vectors.jpg){#id .class width=20%} +![](graphics/vector-subtraction.jpg){#id .class width=10%} + +## Column vector notation + +A vector between points $A(x_1,y_1), \> B(x_2,y_2)$ can be represented as $\begin{bmatrix}x_2-x_1\\ y_2-y_1 \end{bmatrix}$ + +## Component notation + +A vector $\boldsymbol{u} = \begin{bmatrix}x\\ y \end{bmatrix}$ can be written as $\boldsymbol{u} = x\boldsymbol{i} + y\boldsymbol{j}$. +$\boldsymbol{u}$ is the sum of two components $x\boldsymbol{i}$ and $y\boldsymbol{j}$ +Magnitude of vector $\boldsymbol{u} = x\boldsymbol{i} + y\boldsymbol{j}$ is denoted by $|u|=\sqrt{x^2+y^2}$ + +Basic algebra applies: +$(x\boldsymbol{i} + y\boldsymbol{j}) + (m\boldsymbol{i} + n\boldsymbol{j}) = (x + m)\boldsymbol{i} + (y+n)\boldsymbol{j}$ +Two vectors equal if and only if their components are equal. + +## Unit vector $|\hat{\boldsymbol{a}}|=1$ + +\begin{equation}\begin{split}\hat{\boldsymbol{a}} & = {1 \over {|\boldsymbol{a}|}}\boldsymbol{a} \\ & = \boldsymbol{a} \cdot {|\boldsymbol{a}|}\end{split}\end{equation} + +## Scalar/dot product $\boldsymbol{a} \cdot \boldsymbol{b}$ + +$$\boldsymbol{a} \cdot \boldsymbol{b} = a_1 b_1 + a_2 b_2$$ + +**on CAS:** `dotP([a b c], [d e f])` + +## Scalar product properties + +1. $k(\boldsymbol{a\cdot b})=(k\boldsymbol{a})\cdot \boldsymbol{b}=\boldsymbol{a}\cdot (k{b})$ +2. $\boldsymbol{a \cdot 0}=0$ +3. $\boldsymbol{a \cdot (b + c)}=\boldsymbol{a \cdot b + a \cdot c}$ +4. $\boldsymbol{i \cdot i} = \boldsymbol{j \cdot j} = \boldsymbol{k \cdot k}= 1$ +5. If $\boldsymbol{a} \cdot \boldsymbol{b} = 0$, $\boldsymbol{a}$ and $\boldsymbol{b}$ are perpendicular +6. $\boldsymbol{a \cdot a} = |\boldsymbol{a}|^2 = a^2$ + +For parallel vectors $\boldsymbol{a}$ and $\boldsymbol{b}$: +$$\boldsymbol{a \cdot b}=\begin{cases} +|\boldsymbol{a}||\boldsymbol{b}| \hspace{2.8em} \text{if same direction}\\ +-|\boldsymbol{a}||\boldsymbol{b}| \hspace{2em} \text{if opposite directions} +\end{cases}$$ + +## Geometric scalar products + +$$\boldsymbol{a} \cdot \boldsymbol{b} = |\boldsymbol{a}| |\boldsymbol{b}| \cos \theta$$ + +where $0 \le \theta \le \pi$ + +## Perpendicular vectors + +If $\boldsymbol{a} \cdot \boldsymbol{b} = 0$, then $\boldsymbol{a} \perp \boldsymbol{b}$ (since $\cos 90 = 0$) + +## Finding angle between vectors + +**positive direction** + +$$\cos \theta = {{\boldsymbol{a} \cdot \boldsymbol{b}} \over {|\boldsymbol{a}| |\boldsymbol{b}|}} = {{a_1 b_1 + a_2 b_2} \over {|\boldsymbol{a}| |\boldsymbol{b}|}}$$ + +**on CAS:** `angle([a b c], [a b c])` (Action -> Vector -> Angle) + +## Angle between vector and axis + +Direction of a vector can be given by the angles it makes with $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$ directions. + +For $\boldsymbol{a} = a_1 \boldsymbol{i} + a_2 \boldsymbol{j} + a_3 \boldsymbol{k}$ which makes angles $\alpha, \beta, \gamma$ with positive direction of $x, y, z$ axes: +$$\cos \alpha = {a_1 \over |\boldsymbol{a}|}, \quad \cos \beta = {a_2 \over |\boldsymbol{a}|}, \quad \cos \gamma = {a_3 \over |\boldsymbol{a}|}$$ + +**on CAS:** `angle([a b c], [1 0 0])` for angle between $a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}$ and $x$-axis + +## Vector projections + +Vector resolute of $\boldsymbol{a}$ in direction of $\boldsymbol{b}$ is magnitude of $\boldsymbol{a}$ in direction of $\boldsymbol{b}$: + +$$\boldsymbol{u}={{\boldsymbol{a}\cdot\boldsymbol{b}}\over |\boldsymbol{b}|^2}\boldsymbol{b}=\left({\boldsymbol{a}\cdot{\boldsymbol{b} \over |\boldsymbol{b}|}}\right)\left({\boldsymbol{b} \over |\boldsymbol{b}|}\right)=(\boldsymbol{a} \cdot \hat{\boldsymbol{b}})\hat{\boldsymbol{b}}$$ + +## Scalar resolute of $\boldsymbol{a}$ on $\boldsymbol{b}$ + +$$r_s = |\boldsymbol{u}| = \boldsymbol{a} \cdot \hat{\boldsymbol{b}}$$ + +## Vector resolute of $\boldsymbol{a} \perp \boldsymbol{b}$ + +$$\boldsymbol{w} = \boldsymbol{a} - \boldsymbol{u} \> \text{ where } \boldsymbol{u} \text{ is projection } \boldsymbol{a} \text{ on } \boldsymbol{b}$$ + +## Vector proofs + +### Concurrent lines + +$\ge$ 3 lines intersect at a single point + +### Collinear points + +$\ge$ 3 points lie on the same line +$\implies \vec{OC} = \lambda \vec{OA} + \mu \vec{OB}$ where $\lambda + \mu = 1$. If $C$ is between $\vec{AB}$, then $0 < \mu < 1$ +Points $A, B, C$ are collinear iff $\vec{AC}=m\vec{AB} \text{ where } m \ne 0$ + +### Useful vector properties + +- If $\boldsymbol{a}$ and $\boldsymbol{b}$ are parallel, then $\boldsymbol{b}=k\boldsymbol{a}$ for some $k \in \mathbb{R} \setminus \{0\}$ +- If $\boldsymbol{a}$ and $\boldsymbol{b}$ are parallel with at least one point in common, then they lie on the same straight line +- Two vectors $\boldsymbol{a}$ and $\boldsymbol{b}$ are perpendicular if $\boldsymbol{a} \cdot \boldsymbol{b}=0$ +- $\boldsymbol{a} \cdot \boldsymbol{a} = |\boldsymbol{a}|^2$ + +## Linear dependence + +Vectors $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ are linearly dependent if they are non-parallel and: + +$$k\boldsymbol{a}+l\boldsymbol{b}+m\boldsymbol{c} = 0$$ +$$\therefore \boldsymbol{c} = m\boldsymbol{a} + n\boldsymbol{b} \quad \text{(simultaneous)}$$ + +$\boldsymbol{a}, \boldsymbol{b},$ and $\boldsymbol{c}$ are linearly independent if no vector in the set is expressible as a linear combination of other vectors in set, or if they are parallel. + +Vector $\boldsymbol{w}$ is a linear combination of vectors $\boldsymbol{v_1}, \boldsymbol{v_2}, \boldsymbol{v_3}$ + +## Three-dimensional vectors + +Right-hand rule for axes: $z$ is up or out of page. + +i![](graphics/vectors-3d.png) + +## Parametric vectors + +Parametric equation of line through point $(x_0, y_0, z_0)$ and parallel to $a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}$ is: + +\begin{equation}\begin{cases}x = x_o + a \cdot t \\ y = y_0 + b \cdot t \\ z = z_0 + c \cdot t\end{cases}\end{equation} + +# Circular functions + +Period of $a\sin(bx)$ is ${2\pi} \over b$ + +Period of $a\tan(nx)$ is $\pi \over n$ +Asymptotes at $x={2k+1)\pi \over 2n} \> \vert \> k \in \mathbb{Z}$ + +## Reciprocal functions + +### Cosecant + +![](graphics/csc.png) + +$$\operatorname{cosec} \theta = {1 \over \sin \theta} \> \vert \> \sin \theta \ne 0$$ + +- **Domain** $= \mathbb{R} \setminus {n\pi : n \in \mathbb{Z}}$ +- **Range** $= \mathbb{R} \setminus (-1, 1)$ +- **Turning points** at $\theta = {{(2n + 1)\pi} \over 2} \> \vert \> n \in \mathbb{Z}$ +- **Asymptotes** at $\theta = n\pi \> \vert \> n \in \mathbb{Z}$ + +### Secant + +![](graphics/sec.png) + +$$\operatorname{sec} \theta = {1 \over \cos \theta} \> \vert \> \cos \theta \ne 0$$ + +- **Domain** $= \mathbb{R} \setminus \{{{(2n + 1) \pi} \over 2 } : n \in \mathbb{Z}\}$ +- **Range** $= \mathbb{R} \setminus (-1, 1)$ +- **Turning points** at $\theta = n\pi \> \vert \> n \in \mathbb{Z}$ +- **Asymptotes** at $\theta = {{(2n + 1) \pi} \over 2} \> \vert \> n \in \mathbb{Z}$ + +### Cotangent + +![](graphics/cot.png) + +$$\operatorname{cot} \theta = {{\cos \theta} \over {\sin \theta}} \> \vert \> \sin \theta \ne 0$$ + +- **Domain** $= \mathbb{R} \setminus \{n \pi: n \in \mathbb{Z}\}$ +- **Range** $= \mathbb{R}$ +- **Asymptotes** at $\theta = n\pi \> \vert \> n \in \mathbb{Z}$ + +### Symmetry properties + +\begin{equation}\begin{split} + \operatorname{sec} (\pi \pm x) & = -\operatorname{sec} x \\ + \operatorname{sec} (-x) & = \operatorname{sec} x \\ + \operatorname{cosec} (\pi \pm x) & = \mp \operatorname{cosec} x \\ + \operatorname{cosec} (-x) & = - \operatorname{cosec} x \\ + \operatorname{cot} (\pi \pm x) & = \pm \operatorname{cot} x \\ + \operatorname{cot} (-x) & = - \operatorname{cot} x +\end{split}\end{equation} + +### Complementary properties + +\begin{equation}\begin{split} + \operatorname{sec} \left({\pi \over 2} - x\right) & = \operatorname{cosec} x \\ + \operatorname{cosec} \left({\pi \over 2} - x\right) & = \operatorname{sec} x \\ + \operatorname{cot} \left({\pi \over 2} - x\right) & = \tan x \\ + \tan \left({\pi \over 2} - x\right) & = \operatorname{cot} x +\end{split}\end{equation} + +### Pythagorean identities + +\begin{equation}\begin{split} + 1 + \operatorname{cot}^2 x & = \operatorname{cosec}^2 x, \quad \text{where } \sin x \ne 0 \\ + 1 + \tan^2 x & = \operatorname{sec}^2 x, \quad \text{where } \cos x \ne 0 +\end{split}\end{equation} + +## Compound angle formulas + +$$\cos(x \pm y) = \cos x + \cos y \mp \sin x \sin y$$ +$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$ +$$\tan(x \pm y) = {{\tan x \pm \tan y} \over {1 \mp \tan x \tan y}}$$ + +## Double angle formulas + +\begin{equation}\begin{split} + \cos 2x &= \cos^2 x - \sin^2 x \\ + & = 1 - 2\sin^2 x \\ + & = 2 \cos^2 x -1 +\end{split}\end{equation} + +$$\sin 2x = 2 \sin x \cos x$$ + +$$\tan 2x = {{2 \tan x} \over {1 - \tan^2 x}}$$ + +## Inverse circular functions + +Inverse functions: $f(f^{-1}(x)) = x, \quad f(f^{-1}(x)) = x$ +Must be 1:1 to find inverse (reflection in $y=x$ + +Domain is restricted to make functions 1:1. + +### $\arcsin$ + +$$\sin^{-1}: [-1, 1] \rightarrow \mathbb{R}, \quad \sin^{-1} x = y, \quad \text{where } \sin y = x \text{ and } y \in [{-\pi \over 2}, {\pi \over 2}]$$ + +### $\arcos$ + +$$\cos^{-1} \rightarrow \mathbb{R}, \quad \cos^{-1} x = y, \quad \text{where } \cos y = x \text{ and } y \in [0, \pi]$$ + +### $\arctan$ + +$$\tan^{-1}: \mathbb{R} \rightarrow \mathbb{R}, \quad \tan^{-1} x = y, \quad \text{where } \tan y = x \text{ and } y \in \left(-{\pi \over 2}, {\pi \over 2}\right)$$ +# Differential calculus + +## Limits + +$$\lim_{x \rightarrow a}f(x)$$ + +$L^-$ - limit from below + +$L^+$ - limit from above + +$\lim_{x \to a} f(x)$ - limit of a point + +- Limit exists if $L^-=L^+$ +- If limit exists, point does not. + +Limits can be solved using normal techniques (if div 0, factorise) + +## Limit theorems + +1. For constant function $f(x)=k$, $\lim_{x \rightarrow a} f(x) = k$ +2. $\lim_{x \rightarrow a} (f(x) \pm g(x)) = F \pm G$ +3. $\lim_{x \rightarrow a} (f(x) \times g(x)) = F \times G$ +4. ${\lim_{x \rightarrow a} {f(x) \over g(x)}} = {F \over G}, G \ne 0$ + +Corollary: $\lim_{x \rightarrow a} c \times f(x)=cF$ where $c=$ constant + +## Solving limits for $x\rightarrow\infty$ + +Factorise so that all values of $x$ are in denominators. + +e.g. + +$$\lim_{x \rightarrow \infty}{{2x+3} \over {x-2}}={{2+{3 \over x}} \over {1-{2 \over x}}}={2 \over 1} = 2$$ + + +## Continuous functions + +A function is continuous if $L^-=L^+=f(x)$ for all values of $x$. + +## Gradients of secants and tangents + +Secant (chord) - line joining two points on curve + +Tangent - line that intersects curve at one point + +given $P(x,y) \quad Q(x+\delta x, y + \delta y)$: +gradient of chord joining $P$ and $Q$ is ${m_{PQ}}={\operatorname{rise} \over \operatorname{run}} = {\delta y \over \delta x}$ + +As $Q \rightarrow P, \delta x \rightarrow 0$. Chord becomes tangent (two infinitesimal points are equal). + +Can also be used with functions, where $h=\delta x$. + +## First principles derivative + +$$f^\prime(x) = \lim_{\delta x \rightarrow 0}{\delta y \over \delta x}={dy \over dx}$$ + +$$m_{\tan}=\lim_{h \rightarrow 0}f^\prime(x)$$ + + + +$$m_{\vec{PQ}}=f^\prime(x)$$ + +first principles derivative: +$${m_{\text{tangent at }P} =\lim_{h \rightarrow 0}}{{f(x+h)-f(x)}\over h}$$ + +## Gradient at a point + +Given point $P(a, b)$ and function $f(x)$, the gradient is $f^\prime(a)$ + + +## Derivatives of $x^n$ + +$${d(ax^n) \over dx}=anx^{n-1}$$ + +If $x=$ constant, derivative is $0$ + +If $y=ax^n$, derivative is $a\times nx^{n-1}$ + +If $f(x)={1 \over x}=x^{-1}, \quad f^\prime(x)=-1x^{-2}={-1 \over x^2}$ + +If $f(x)=^5\sqrt{x}=x^{1 \over 5}, \quad f^\prime(x)={1 \over 5}x^{-4/5}={1 \over 5 \times ^5\sqrt{x^4}}$ + +If $f(x)=(x-b)^2, \quad f^\prime(x)=2(x-b)$ + +$$f^\prime(x)=\lim_{h \rightarrow 0}{{f(x+h)-f(x)} \over h}$$ + +## Derivatives of $u \pm v$ + +$${dy \over dx}={du \over dx} \pm {dv \over dx}$$ +where $u$ and $v$ are functions of $x$ + +## Euler's number as a limit + +$$\lim_{h \rightarrow 0} {{e^h-1} \over h}=1$$ + +## Chain rule for $(f\circ g)$ + +If $f(x) = h(g(x)) = (h \circ g)(x)$: + +$$f^\prime(x) = h^\prime(g(x)) \cdot g^\prime(x)$$ + +If $y=h(u)$ and $u=g(x)$: + +$${dy \over dx} = {dy \over du} \cdot {du \over dx}$$ +$${d((ax+b)^n) \over dx} = {d(ax+b) \over dx} \cdot n \cdot (ax+b)^{n-1}$$ + +Used with only one expression. + +e.g. $y=(x^2+5)^7$ - Cannot reasonably expand +Let $u-x^2+5$ (inner expression) +${du \over dx} = 2x$ +$y=u^7$ +${dy \over du} = 7u^6$ + +## Product rule for $y=uv$ + +$${dy \over dx} = u{dv \over dx} + v{du \over dx}$$ + +## Quotient rule for $y={u \over v}$ + +$${dy \over dx} = {{v{du \over dx} - u{dv \over dx}} \over v^2}$$ + +$$f^\prime(x)={{v(x)u^\prime(x)-u(x)v^\prime(x)} \over [v(x)]^2}$$ + +## Logarithms + +$$\log_b (x) = n \quad \operatorname{where} \hspace{0.5em} b^n=x$$ + +Wikipedia: + +> the logarithm of a given number $x$ is the exponent to which another fixed number, the base $b$, must be raised, to produce that number $x$ + +### Logarithmic identities + +$\log_b (xy)=\log_b x + \log_b y$ +$\log_b x^n = n \log_b x$ +$\log_b y^{x^n} = x^n \log_b y$ + +### Index identities + +$b^{m+n}=b^m \cdot b^n$ +$(b^m)^n=b^{m \cdot n}$ +$(b \cdot c)^n = b^n \cdot c^n$ +${a^m \div a^n} = {a^{m-n}}$ + +### $e$ as a logarithm + +$$\operatorname{if} y=e^x, \quad \operatorname{then} x=\log_e y$$ +$$\ln x = \log_e x$$ + +### Differentiating logarithms +$${d(\log_e x)\over dx} = x^{-1} = {1 \over x}$$ + +## Derivative rules + +| $f(x)$ | $f^\prime(x)$ | +| ------ | ------------- | +| $\sin x$ | $\cos x$ | +| $\sin ax$ | $a\cos ax$ | +| $\cos x$ | $-\sin x$ | +| $\cos ax$ | $-a \sin ax$ | +| $\tan f(x)$ | $f^2(x) \sec^2f(x)$ | +| $e^x$ | $e^x$ | +| $e^{ax}$ | $ae^{ax}$ | +| $ax^{nx}$ | $an \cdot e^{nx}$ | +| $\log_e x$ | $1 \over x$ | +| $\log_e {ax}$ | $1 \over x$ | +| $\log_e f(x)$ | $f^\prime (x) \over f(x)$ | +| $\sin(f(x))$ | $f^\prime(x) \cdot \cos(f(x))$ | +| $\sin^{-1} x$ | $1 \over {\sqrt{1-x^2}}$ | +| $\cos^{-1} x$ | $-1 \over {sqrt{1-x^2}}$ | +| $\tan^{-1} x$ | $1 \over {1 + x^2}$ | + +## Reciprocal derivatives + +$${1 \over {dy \over dx}} = {dx \over dy}$$ + +## Differentiating $x=f(y)$ + +Find $dx \over dy$. Then ${dx \over dy} = {1 \over {dy \over dx}} \implies {dy \over dx} = {1 \over {dx \over dy}}$. + +$${dy \over dx} = {1 \over {dx \over dy}}$$ + +## Second derivative + +$$f(x) \longrightarrow f^\prime (x) \longrightarrow f^{\prime\prime}(x)$$ + +$$\therefore y \longrightarrow {dy \over dx} \longrightarrow {d({dy \over dx}) \over dx} \longrightarrow {d^2 y \over dx^2}$$ + +Order of polynomial $n$th derivative decrements each time the derivative is taken + +### Points of Inflection + +*Stationary point* - point of zero gradient (i.e. $f^\prime(x)=0$) +*Point of inflection* - point of maximum $|$gradient$|$ (i.e. $f^{\prime\prime} = 0$) + +* if $f^\prime (a) = 0$ and $f^{\prime\prime}(a) > 0$, then point $(a, f(a))$ is a local min (curve is concave up) +* if $f^\prime (a) = 0$ and $f^{\prime\prime} (a) < 0$, then point $(a, f(a))$ is local max (curve is concave down) +* if $f^{\prime\prime}(a) = 0$, then point $(a, f(a))$ is a point of inflection + + if also $f^\prime(a)=0$, then it is a stationary point of inflection + +![](graphics/second-derivatives.png) + +## Implicit Differentiation + +**On CAS:** Action $\rightarrow$ Calculation $\rightarrow$ `impDiff(y^2+ax=5, x, y)`. Returns $y^\prime= \dots$. + +Used for differentiating circles etc. + +If $p$ and $q$ are expressions in $x$ and $y$ such that $p=q$, for all $x$ nd $y$, then: + +$${dp \over dx} = {dq \over dx} \quad \text{and} \quad {dp \over dy} = {dq \over dy}$$ + +## Integration + +$$\int f(x) \cdot dx = F(x) + c \quad \text{where } F^\prime(x) = f(x)$$ + +$$\int x^n \cdot dx = {x^{n+1} \over n+1} + c$$ + +- area enclosed by curves +- $+c$ should be shown on each step without $\int$ + +### Integral laws + +$\int f(x) + g(x) dx = \int f(x) dx + \int g(x) dx$ +$\int k f(x) dx = k \int f(x) dx$ + +| $f(x)$ | $\int f(x) \cdot dx$ | +| ------------------------------- | ---------------------------- | +| $k$ (constant) | $kx + c$ | +| $x^n$ | ${x^{n+1} \over {n+1}} + c$ | +| $a x^{-n}$ | $a \cdot \log_e x + c$ | +| ${1 \over {ax+b}}$ | ${1 \over a} \log_e (ax+b) + c$ | +| $(ax+b)^n$ | ${1 \over {a(n+1)}}(ax+b)^{n-1} + c$ | +| $e^{kx}$ | ${1 \over k} e^{kx} + c$ | +| $e^k$ | $e^kx + c$ | +| $\sin kx$ | $-{1 \over k} \cos (kx) + c$ | +| $\cos kx$ | ${1 \over k} \sin (kx) + c$ | +| $\sec^2 kx$ | ${1 \over k} \tan(kx) + c$ | +| $1 \over \sqrt{a^2-x^2}$ | $\sin^{-1} {x \over a} + c \>\vert\> a>0$ | +| $-1 \over \sqrt{a^2-x^2}$ | $\cos^{-1} {x \over a} + c \>\vert\> a>0$ | +| $a \over {a^2-x^2}$ | $\tan^{-1} {x \over a} + c$ | +| ${f^\prime (x)} \over {f(x)}$ | $\log_e f(x) + c$ | +| $g^\prime(x)\cdot f^\prime(g(x)$ | $f(g(x))$ (chain rule)| +| $f(x) \cdot g(x)$ | $\int [f^\prime(x) \cdot g(x)] dx + \int [g^\prime(x) f(x)] dx$ | + +Note $\sin^{-1} {x \over a} + \cos^{-1} {x \over a}$ is constant for all $x \in (-a, a)$. + +### Definite integrals + +$$\int_a^b f(x) \cdot dx = [F(x)]_a^b=F(b)-F(a)$$ + +- Signed area enclosed by: $\> y=f(x), \quad y=0, \quad x=a, \quad x=b$. +- *Integrand* is $f$. +- $F(x)$ may be any integral, i.e. $c$ is inconsequential + +#### Properties + +$$\int^b_a f(x) \> dx = \int^c_a f(x) \> dx + \int^b_c f(x) \> dx$$ + +$$\int^a_a f(x) \> dx = 0$$ + +$$\int^b_a k \cdot f(x) \> dx = k \int^b_a f(x) \> dx$$ + +$$\int^b_a f(x) \pm g(x) \> dx = \int^b_a f(x) \> dx \pm \int^b_a g(x) \> dx$$ + +$$\int^b_a f(x) \> dx = - \int^a_b f(x) \> dx$$ + +### Integration by substitution + +$$\int f(u) {du \over dx} \cdot dx = \int f(u) \cdot du$$ + +Note $f(u)$ must be one-to-one $\implies$ one $x$ value for each $y$ value + +e.g. for $y=\int(2x+1)\sqrt{x+4} \cdot dx$: +let $u=x+4$ +$\implies {du \over dx} = 1$ +$\implies x = u - 4$ +then $y=\int (2(u-4)+1)u^{1 \over 2} \cdot du$ +Solve as a normal integral + +#### Definite integrals by substitution + +For $\int^b_a f(x) {du \over dx} \cdot dx$, evaluate new $a$ and $b$ for $f(u) \cdot du$. + +### Trigonometric integration + +$$\sin^m x \cos^n x \cdot dx$$ + +**$m$ is odd:** +$m=2k+1$ where $k \in \mathbb{Z}$ +$\implies \sin^{2k+1} x = (\sin^2 z)^k \sin x = (1 - \cos^2 x)^k \sin x$ +Substitute $u=\cos x$ + +**$n$ is odd:** +$n=2k+1$ where $k \in \mathbb{Z}$ +$\implies \cos^{2k+1} x = (\cos^2 x)^k \cos x = (1-\sin^2 x)^k \cos x$ +Subbstitute $u=\sin x$ + +**$m$ and $n$ are even:** +Use identities: + +- $\sin^2x={1 \over 2}(1-\cos 2x)$ +- $\cos^2x={1 \over 2}(1+\cos 2x)$ +- $\sin 2x = 2 \sin x \cos x$ + +## Partial fractions + +On CAS: Action $\rightarrow$ Transformation $\rightarrow$ `expand/combine` +or Interactive $\rightarrow$ Transformation $\rightarrow$ `expand` $\rightarrow$ Partial + +## Graphing integrals on CAS + +In main: Interactive $\rightarrow$ Calculation $\rightarrow$ $\int$ ($\rightarrow$ Definite) +Restrictions: `Define f(x)=...` $\rightarrow$ `f(x)|x>1` (e.g.) + +## Applications of antidifferentiation + +- $x$-intercepts of $y=f(x)$ identify $x$-coordinates of stationary points on $y=F(x)$ +- nature of stationary points is determined by sign of $y=f(x)$ on either side of its $x$-intercepts +- if $f(x)$ is a polynomial of degree $n$, then $F(x)$ has degree $n+1$ + +To find stationary points of a function, substitute $x$ value of given point into derivative. Solve for ${dy \over dx}=0$. Integrate to find original function. + +## Solids of revolution + +Approximate as sum of infinitesimally-thick cylinders + +### Rotation about $x$-axis + +\begin{align*} + V &= \int^{x=b}_{x-a} \pi y^2 \> dx \\ + &= \pi \int^b_a (f(x))^2 \> dx +\end{align*} + +### Rotation about $y$-axis + +\begin{align*} + V &= \int^{y=b}_{y=a} \pi x^2 \> dy \\ + &= \pi \int^b_a (f(y))^2 \> dy +\end{align*} + +### Regions not bound by $y=0$ + +$$V = \pi \int^b_a f(x)^2 - g(x)^2 \> dx$$ +where $f(x) > g(x)$ + +## Length of a curve + +$$L = \int^b_a \sqrt{1 + ({dy \over dx})^2} \> dx \quad \text{(Cartesian)}$$ + +$$L = \int^b_a \sqrt{{dx \over dt} + ({dy \over dt})^2} \> dt \quad \text{(parametric)}$$ + +Evaluate on CAS. Or use Interactive $\rightarrow$ Calculation $\rightarrow$ Line $\rightarrow$ `arcLen`. + +## Rates + +### Related rates + +$${da \over db} \quad \text{(change in } a \text{ with respect to } b)$$ + +### Gradient at a point on parametric curve + +$${dy \over dx} = {{dy \over dt} \div {dx \over dt}} \> \vert \> {dx \over dt} \ne 0$$ + +$${d^2 \over dx^2} = {d(y^\prime) \over dx} = {{dy^\prime \over dt} \div {dx \over dt}} \> \vert \> y^\prime = {dy \over dx}$$ + +## Rational functions + +$$f(x) = {P(x) \over Q(x)} \quad \text{where } P, Q \text{ are polynomial functions}$$ + +### Addition of ordinates + +- when two graphs have the same ordinate, $y$-coordinate is double the ordinate +- when two graphs have opposite ordinates, $y$-coordinate is 0 i.e. ($x$-intercept) +- when one of the ordinates is 0, the resulting ordinate is equal to the other ordinate + +## Fundamental theorem of calculus + +If $f$ is continuous on $[a, b]$, then + +$$\int^b_a f(x) \> dx = F(b) - F(a)$$ + +where $F$ is any antiderivative of $f$ + +## Differential equations + +One or more derivatives + +**Order** - highest power inside derivative +**Degree** - highest power of highest derivative +e.g. ${\left(dy^2 \over d^2 x\right)}^3$: order 2, degree 3 + +### Verifying solutions + +Start with $y=\dots$, and differentiate. Substitute into original equation. + +### Function of the dependent variable + +If ${dy \over dx}=g(y)$, then ${dx \over dy} = 1 \div {dy \over dx} = {1 \over g(y)}$. Integrate both sides to solve equation. Only add $c$ on one side. Express $e^c$ as $A$. + +### Mixing problems + +$$\left({dm \over dt}\right)_\Sigma = \left({dm \over dt}\right)_{\text{in}} - \left({dm \over dt}\)_{\text{out}}$$ + +### Separation of variables + +If ${dy \over dx}=f(x)g(y)$, then: + +$$\int f(x) \> dx = \int {1 \over g(y)} \> dy$$ + +### Using definite integrals to solve DEs + +Used for situations where solutions to ${dy \over dx} = f(x)$ is not required. + +In some cases, it may not be possible to obtain an exact solution. + +Approximate solutions can be found by numerically evaluating a definite integral. + +### Using Euler's method to solve a differential equation + +$${{f(x+h) - f(x)} \over h } \approx f^\prime (x) \quad \text{for small } h$$ + +$$\implies f(x+h) \approx f(x) + hf^\prime(x)$$ + diff --git a/spec/spec-collated.pdf b/spec/spec-collated.pdf new file mode 100644 index 0000000000000000000000000000000000000000..4eafe0c5089b5dbf901f12d44468b2f7ef21aaa9 GIT binary patch literal 459142 zcma%i1CS`evgO>dZQHhO`;O<1ZQHhO+qP}nwmq}={l6Rk?e5#ZFQOy5Ix4Fwx}y7J zp3GAu^1`At474neB!{p1~!I9bkauF zCXS}~3=E8{yu6SOj`l`+R*RzbG|EE1(dSal{c)?m;==hSq_3WgC9kaw}cS( z;fDWWTnDWHm0kxf#pIa?RQ7DKso#wGh=*4E!=j$Eb(b3u)42w0Wl-92SEq(7HJw~r zFNe(rLWY~OKCa3Ekz-CtoE$H-eIO>`W{-G=gHb0KzYu~NX?WFEptLP27Dk1kId@I( zO(~iIWIN=CMpq@t>Gs&BZ#o3UI%Res+;B9tVHM{vet}FLj%_AYS_w+dsAlvjjrJic z0FyB5qC!3igL&1<6fLsL(y^q1Y*|hyzcbPXiwa=M*}MTaAi17iyk|AyzoNFIbH`xM zjWL+f)7<2ElUR(L^{$y`LKaUv9VbfsR7ii%o5}O8^i{5tWIwYcr`dL`lj|-=iRnAf zof(`XoF1Xx0bCqy&Yp6E49tm?Dc;UEFZ2}*Vu@i`CJv&6FEZc6@BoZj3sG&a%VtS4 zFCI-1ni|2rg@V{6jfo0HElO&3l4XcUh-UkIsz^Fg)#>-u!IIF5Lm%jU)pl-q>wXn> zWT4@CnGj7->A`K?HDhqvipfkLJ}i6QR9I;Wt+5T4>$$C`(o#M$KLiz`)!=_4^W-rJu-kNCpn~qgErx+V|bY&-0jwN#xbxc{w>K&E2n%w(EdlbgWIaFsO%dDn8Y~D z_`Ia#3Z6AZE1cEaJO#F5B>zbiE7uOU%FCP9$E~o6OxrkOp*nz@$>xzWQ(;w`ZvSJN zcnF_}0|{f;S>OsUS}|eLL}-K17&NVKJqE6+=pKIuix`QFY#ZsN2w{E)(WM~Gz@^n; z>SC!^Zmaig(E=5iyhM};5Q&qm{>)HscS8(t@+Cf$#nM*1qyNFJs6qR0BjPB_6-s;y28G+l&)gA}$KY zghO1(S}1J+m|~wQSL@-j7Z=GKSs}3t5J}q)0ZAJc`IuK)Vjy=?n+N)scBh?mZpCQl=d>zSE}tK2NW2%RcV% zKE6+8K~T_JJzTF>$w#_37)BSI;YN0@8;i-R-pJ+XX7J@^*XM6NJVUyckLllx58XO< z^2E|$Tw_GDqYuD0Mbx_#|ERU3u)|W>wf=nVq0MckhMl)>{GxD7 zZAwO&C6P!6A7(?gL)hrF47uTcyG|U5?e5vio?+8aACTBBYXf+De4Bc{|Nem62&Nb& zhjE5)n`n;E&Bj_z#b@nk+{`g!VMDluWUl~nW79qp;@tS?E{awnMYh5hMg2IH(7JUC z%^f_}Vw)ew5XO5}o@L&$mfv&lfxBqzwBZkGy2ewL5O_V)`{qW!r$m>et%aCh z-ZTJi4A{fKK_Hll&9erBC;fxe=t~8OWrF1XfEt2oFEUR+yv1a1IYP<)r~rU6=AumP z9nP3I0FfkbOGWs4b)6Q(<<~kX`Jpv{_G2z3ySB)Zun1ONeRO zj3}h*-mYexWAuf{sMeZ85;0+9A!u(#$ z3CAdGuVv3d6u0E3sPU5N(jvu|MU#H`p^SVr{LmZ`*ik#~EoU+O8?!@i*jmTHrCJg$ zN%i&E1RVs_H2bf3TM5Xxg@D!aa08XBnUpv6r>cSCxrG#L+MKn*kdeKR5leejVy47rpv`^8JEwLJI$ZIGjk(^qa76j5% z@(FAne|vj~@!3eR@yVZYqNe<1@QM&grR8xy_2owCE?E`RpmKD`H$2 z0`p3Vdr1s+z>KDG*G^s-1??HT)WYBl`^XCWNw?TY<#PXxvN8OJR5UAErJt&~lD3rd zO$&|P5?%?JB@$%vz54cpMT;e?fN&!e3&hfXO!+!~iGot>!M;HwLkQ(MASsyM3+*kFa4rI7PGBf zsa>7#tAhNx%}Yjsl@jdsqnQK=U#(BqNQS&z9 zz?Gf+rxpTND)7m;A;;k5(n%28mDC*`+`)VaKKiux9|rv%EuTykdKGk z2U~{^n(sS3xGW){|ELDQ-!s}tPE-UAUnU8G~ zJU=rIN9fUQxyNmp4sM`Cz%JbS)dt^6WgdR{G`A6l7j|%Ub;#&2XK!Y2>abY!-6*e* zIUUwDeaJT8H-&BHAaSV#W$+mCqQVdr9tNl;Y1jEGl~2YKk0We-xc?0{vPA;0kz%== zd*>Cdk(0UB0w&FfG2&K~zLY)-o^s>GX!g=_QpFOl3$_1NuFA!x?WN|I%A67Fg@uLU zv|vT#-f+51bd+$yZ_#l1lEU-@maxpO5uq{abWoBPd)&GBw%|kvSWyT{yR}1(M|&uJ z2JJFuEaL1TnepOC8n)twFcnl@jgw2O!6(s0hI{9NE@tNw?yH$n?3vO@o+LTRb*?hh zr;Lq4n9AK>SfNx2i3PS!;^^gr`jbYP6$Tfw1`MhBz^&5Z>u?2<6w0FJ^SoxKWWDIv zxibV8O3Ilm*<$6DHpFVGq5++(DN+JolTr1cCXQ$ z-4IpB)Y9Q*YR8`J&6Nx~K@h*f&0u1Kn4hdR%oUeahk5d*N^M_ss}Zsm$uq(ALZnC~ zY+W}wcAyq54}uT4oU?>QEwNr<%Lm#xy1gZeaP8&GYdZ;Tpu*t8lPEt8rqdb=(!3wM)ZX^|5$|~b- z=ghL1i_}KZ%YxwzIh|&9Bm6dF-bpFxxyA-AKApy4)+ngA=KT26^fgT0im9fR4Y11r zUJGm26M4CAr~{r~?rGa0?9+@RRVUQOS&wMsjZ-cQj#JSfpss(Qa(JbY?rk}##6Pf1 z2y3c@64KV5wBD}VLj7cu`2Ks>xIFYXIwCzp^CY=^g1`lR9}GiwI;ab0DiZh|KuF&n zg*Ma=O~jw+l+jQ^+)pv_KoWK{jMcDUa~w+N6I!%=@u zqrj3E3hG@fn_S5nM=c7zNb~i-;H0 z7s6RlPUqwz%0!ECVtH8jRwGlm_vE7FIIgpcyqK6=n_~s3e!gwTd~9%R$-ei+pyVKd zuJ%Y?s}-;=`Pz+Y@YMRuyUj6zR||n2B|6Y=x|FWGX^-5gHCY3_WnQ78JbeiNFTg#+GRhsV8i}MF(;rm}IG{hI$%tW%$3{T4wbn z`qtt$bBezuVy1jJP(C@zN!K zGv0|ED4?2qY&K?V+gX9!q*p*Ky0wFPot%s3jzb}K-AI5{I#pOz@K=%CZ$!B8ZgB6! z99QF*36+l896YMh^5v!hsb!*>dYH^_y-WV#6M7{VI{(hPL-3@L;B#?b0zf~W_8L_+ zA?4yE6=|b2ytw~}H!203E3PAZG8lc(C+$GnPYy8cZY(=H6K-M_TG7HdGE?~UlqP|E zQ=_MG+O}Q~eyg;;qYEl<#Eh<$1J~;s|Gc{UB|rbh5_;Hm8c1E#*JxXyX3j5HA^6s1 z`Fw*c9i;Hq-%(s1_pXTdJJ-!n7Gv9(u>hq08^LQU$^GM@P?xjI!=kt~?3AU&D zUpQUXf6M8zaxnfsobIUzelj+!ZfOU94!?&v;!Zkt=S8dSY@>`l`K<2Fo&(91Y12KY zD7HA2!r_RUH`67rb9us}oD=M+obw0V)(hL#3SS6q=$}4kwwElGe)XLv)Kl~JjEy=9f`0GtD3H2vfymf-#%-#OX1b9&6x8WucX`Rxw;*nP3sFP^Dgi?Eoqakz?&xu zW{$ZmX3Ur4(#{{x$G-(5fd;oBYU(b21vzsPcE8&sgrrS}?>5E^M8?WGktdEDA%ntzy@p-7tqSboUsc0a~D;+5Zo7NpaP9T-A-%20y74sv%GZ*h5=%msij8eLY0P_zKcaR<1P*JC2e>McT-53@X!}v z-=mkNZ^eKHTGIt6fR;C>&j$nY*NU)i1b?LDqTMw9En<%!;P^E3CD<7cb$;3Xc;WpR z=(Mr-dbod+MI2UhYYkQHeVLH+}#h>7WHag8m1SR5IleyxsRi){J6fxE%8MyiwT0bGiMy_L;;abWVq(;V-Pj}=71B$ zbbk4SWPsk$`S|_EuJw-{Up=TvFSXwwNUZI=ewKV*B)MoJN~?_OoW1a}D8o=`P&(4% zs4=>X8ck-Uzxxz+gvfM`fql{zkIU3A|%CZXKkYjnxVN0>Tv~JNAMKlXKT&IWvNv1qj@TJI>c?=RU zAbC~i+X1aW`l$r+yQfgsYVb$ja3(uKXvbUVY!_$JdZx5fOL(-~3O~Y;NxY?Sah+D^ ziM1ksC?o4-eV#LQSm1TZ#KtX9B}Ikua>1tz)jFQ>f?P=BY4o;oGwPJ&h2+%tYd@t} zMM3{G^U~MQ^_WyE0+%>NWzM+lEg5v`10|hOV{4{&r#%TFS4k7cyWjB}Y#_2M;zKS` z8qklafMT-qUGo~IW@K@;GiTC%wwT%EzT8RkWEWCBf~q{Adir}^_BT}f(**__Ors~8 zwW`#oyUgoT!jbX5&0X!;cOD0DRGxLjjfB|e;G?}mQ8eTv5T}X^=WmJp@B^WsIo4Qu zm<1;397TLVOShNtdh`}~03%f_3t@duS*e=KnzsDF(?i^YNDLVdnhYnQ=+nq`n&)e_ zt`vA2256mVs^k!AdATq|jRtVD2%_|J+i#@k}JE(l2$j zS0p>TG$t?!tU#r@m} z6$;P6mxgc3#9d`r449 zl&WyS=vuO$otwPcJZ)2B^mtl5t}?(q3>sDwBj1a1!(8*(uSg$md4|hj<0iq9r`-kA zpRA8g)t1Acz~{whYmw|hu9)uBv z1RyDg(7I}+oCfpVz!9D#xnLnT&QNN`gA`B{d4=ue${d_yI|JWpBFPrf%v_7 zVqs{9bda-zm~cXY({YRy3s%z|CO9-WqpD>f(zE8_E;A{h*@Ocxe8vH`iew$$mi7qK zOG3Ko$yv-7D99SzlW#`$!%anGhs3BqlCfxZSlij!g}vohbC&HX2^+X|v&-mwiW(sf zBtsReGQ6&rP)9xOkFoHdAhQ!w8xEpKD;*|AL2T^hvt@bTe)xqo3yvV#al^qQk%$3> zTkM5!Fulkn1vMc0y4gJ2UGozr<>SZuil1Li1Pg}$w})f?_bM3dEdN_pa7bM$=8*Xx z6%6~#Wy)dN6y14iDPMm7jsDE!J^C1{#@@)riC?L@a!I;&?OC$MCh+NT@v@ipZCWum z70`HKEaLA<0YL9516N$E|M?;z);Su+|a5JCSUX#xfK|+H{RYfMXHMBniPA+ zaM3<^&jri3={e$Nr!@B{XXj@$;%Bj9rkH*%X3<>-3LdxIQa2;Sp}`vJ!RJC6!-83! z3(}->tg|TVMd5_OsFC#rth`X=`Bl;pcZ2pe1lkqB1T&NowS^tbu+}d>DtXn9TIB>nomOi%EM{X}b@!E1_p+7XfmTKn#fg zzH;Pz&NeXJ%Tl+aeX_(OGm^GTtI*~^6q*lM=sxvhmMyEKzM_t?2vPqfKds~Bh2DrW zEHSMw+;){w9c}|sbGw~!A$qPs<{DmB@`8}tQS8bG83Q(iH{a?9#ffG6Fynb_RbjK!!cRryYze! zcSPf+u?$v|0tIKBkhvUz$ftmo4ij<@46E+IapuT*^CrLl>SUd zpPF`ZFqt+RtcTe^46Z3qi!Qj3I>lnvjVR}nKb`?Bz@|g7UP2&8<1a>PUtRL*$#by* zqU(fu!1XoQ^e&-qU6@Y3J|rq9q7Y9_nH`Q-<$=iBQBeB94vy1_@r|i04=7EILk|7A z=Z#;3mX7G^^*D07aLX!kKH2M3p66-(=*;8J^@6Y>j|tdw8JdWN9BUY&sby-nkXsoG zZ=7+Ai1~P4Tv9ew%yu>x!wXZq_6YUHIPJOS)#X~#`Yqbw1 z2Nrv8FujPt%8_uvFWtl8!uBbEV~JtpRjz=e1?kj2&Ap7d+{)ZQgvk$?M z5ysK|bT}R|;-HNv=4TK;OPT=wEam$Q}eD zsi1nDd>u?bi&+%MB7F|*LsjY%Pqd{+8ln=*@}$dt;y?%(%cO14L1kJn4K?8qn{0 zMWz^l(adJV?(hh7M;3x|qdb%Mrgf%EZLmSoeydMDgyuR;A{EA#3quQ4elz=AL_jz_ z=Js6cUx7V>pPWd3X}pQFh-8|V@8v^&o{t0u21tgvAl# zYrS1mru}5)>izqzeKnb8zldczoVIitZBe4XUb|xu$vqo+0w6fL%EG{eZLW*y01=A; z!ZvtyYw4d@95AlTVd@PxZ*E))I@IPj3v}nOzoDjNzH5&$Q+0b9&B$@4%kVUM2R|>c zPRkC~SQDV+Sj*&N!sD<_P!yR@ugJcaN_1Tc{JWogv81kxX1pL~V}`-2KIc(4=TVpA z_3_Syz9{PxkM;h>4h2sq!3;_0J!eKw&qO09*1eUMxr=2Pa5ylbgyKG0sEZ1mtTOY<#kqZnSbM;6{+u=mdqKEJexv6cUY17`X!iYbfF^xwz`7+E-&|CwfHCA%mqub_s^ zbh)_aP0<4?25)!t0?d0P=!od0V*DWof@NZ^Bgh9t5D`u%6qg_Los%b46|RFvR;~pj z1}A4g7g46R5nYa`uIzldzyCO>w7F_{Y5TbBn$bW5h%cc_NdcAm6+4b}8^E1;h7hOV zcnRS93-^yN1%R}wXuEE$2RQuL#8gl=fjyuu@UL5UwN60Wg;^$FS+Jj+LiICGztdCz zgp39b3~B_lP<9fjSlZ^9@KnqcYGZT~<8E>Rgo!W?y*L=&59<1Y)U`71=FlOIk_M$U z{cDuFW@!Sk!O)seD5kbdYJ?rcI?-_YB&vP3{Z(aHCLjQ02}?9vwJ<_f1cop?#6!aU zBY<6T2wl6)-_*N?P=hJ<5>hjJ4oHX~jyTD*TZ`-I0xyS#MYh0z0|2B{X=5e}+VhGF zX`R>rs5hVLjQi{JA|lPqP0fwW%uI}5ppU8zSx)uWcsqRX-6|HJ|gC0DmUK z%o`peXsRK7r)dC2w?6b2*a3VCOKosgdfMS+xaq{L~g5mE*i5z!vuzT`rB z@@l$GhFa6tt!U14(ukVFE* ziX$ha;F~f=jv-skxH(f^a?)Sn2EGf2+EByhUlHUDB7GN~DEYmwz{nvH@aH~;w0{b0 zx?kz>z1{XG6CxabZrHv|`ik~R0y1tnrb);HrxEX&&|U^-5OaV15(lJ=1smtbIRy~< z16t`zV+(BEi}e}+4-cUVgeneP<_lNPkGl#CDZsD_@$73Z4~8kgWC}7OK*kO-9U!%f z+4{>m;NuUnw6Dn@)J{++cwjvOMq$500u*ti`H)F`P(!#jfo^$tWQZX_2zWR|LAP1s zQgq6I@;vuajCWj4h^&xm{(xC+Q|R-h=os@MW{f=&lP z?c&&yYy#i~aqT|bvb?f#L-GZj!27}@VCILT6G9Jy+==DKx(3EniiO8Q7XC65X^-PQ zBxMYr#J5pEM+OlQ!^pQ($S##fhH3(B!d3Av7sU~E%5_&@Q!pr1Ule1;s0v*c+sN&j zMK}d^L~V!H_OljjDWJ=@DIlAzVL*q5DTu1;chx6kkVtJxMV#c7#yZ9}hG&XS8_=)2 zSM#dGS;m_fgscr(rMy(QRKJ9G2K)dO8!X$Mw7qU6$A(LZsp!S&%j$#KBejEarRXHx z2EBO05?$Xs7_L9QN!@R_5M9~Caw>V|UFW{%{^`vcr5fED8S6q${+vQQI$c^_VqU63A_H z*`zuNd1<9>zZ>Knbfh$?v@9xAOO_LxGn-SKtDPgBfpF@h1Ew*vK(jR4(Y1rE>#upY zu-t32gLLwBqPCs9)OHkeDthF6W&y1JSoJcQ(xWpFV{l>^V>Y8lW6VW*M%_noMrC7J zpo?MLFkUl#o9gSu>(86o?R9c3OxO^jSEUZy%fITt)TeyDu_Jr}^1!%ByMhKxj?M_Z1Nj!2Mc zmk^f}$j)TRWWG&bO+V1G(q3pyw-Hw3R*O^vSu#gd2f4neBoBkYV~Q(oxy!} zeY$+`LC?afA>A6_lhWhYlHN+hn#t?P>(Z03lfH`IUcjHk&c}Y_apv{UX48+=p4J}M zzS*wa*5A&7AA~v~tPr9Qw#8{Htd`c67MHdqSyR1KW`;J0(njLy6m?O0EF~>LRw$|F zM8`$y4QGamj0BJ1hI!3Any}KJ?04>)9~i6CR(4gISc*Awc%&PQP#j1PZw#dj$&sv* zT*{`(I*M0{XYRGzR)Y!Ldcm(4HXR+XCIE;#=CWyjhn5R1)RN~ z1)UXGST0|xGflkgu^I7WR4}#!E6>d+_sEO2im)e}<)|mTky24#2sb;j(sl5O(V2Km z8&-QadO~Xo2P42DRPucb! zb;g#opk*S7-%IL-Xej0V7 z)pKFaVp(NV(1d~qG!i(H?Tz>Gb!(S%z(a;krr|UDnb({(ue12e>Ckb~nbbMjS;QG8 z`;m8T!D?gcyI?LRM7AuuoP)-r{SkUkx-U)6#9?MSONx)pfp_oIRZe>53km_v`U&(I zR_n3N^)3FR2+B*=%Y<%2o7ZXRczmoPvLb7Ry2j~I^ReZ}@J{K&_lSSQsp3MLt5$&>yZB;Cs-@FfyQ6FWdDr&zHY@HlZjS4cOUXs)y1O;S&1Ua=80-{G1g;2I zm0Qts@wVZ5#;PE>pkzdANJp&^;VIyZV z10ykeJvTZ*Ge-w`BYPnmD_a|DBWp)U_P@RV(7wv+*;_gMRmJ|F2Kem%IgtUJkC)a zWh-$go+i=SI$)IMDE)C<^djB@@q)LksxYI_YQk8mS*?XQ#d1whwS(jkahPkMv+UVu zOe^z*X$Fre=5K=GAvSw|5>R(=+yYlhtcGQr zSE4BxzJ_FIbZk-%T^BgO@&owLFwK3w27f@f3Xmo3cEOmau4V;qn%|mBGb<(Arr6LO zs%sT}zet`cmQUylZqcxn5%8^TNe!?=u605CAxZM6#{1l9~GU6X^p%*fS%Fk-tw8ZQ9nCg0fXd zU^@C;^wMOoe2@k)v1IvZ=^8#-wtA*vS~bUnynqt|7d|*rn#LHUD%lch7bI_VG|+Hq zIsJel33AFAfTL8X>;%I`&h1oPB~&9vBdw7=q7&g+xWKuwmpl#r2;)$ID~Sz{Qaqaq89H!aj(npC1A_Vsk3Y#ZL+X>GkR&8*t$CzTt`oPl-&2jn^qT9fm_(0^_j zW|<9uXRR}_$W8UA9IYb8BqQ@5}B zQYwDlr~{Q>&e$!JZ`P*KZw)=k4y>(f&CPmIy*4diQhJV-$%p-&J6t}B2ZJPs^Jp?N zE`KtqP56L&AoWpaG7&;}qZ3~TPv|m`&~gk}DdlL58)G0+Z9<@10yXOC9D5=YJ>tFF z?sM0gMjWGlrwub1yb4s5)`;pNPyo2FLDRn~Nn6#!<2>Yk? zehlwvg)Cy|>gv~{A@9x;m)8#mUFIQU+-j8^&AlEWqk6#i1*m@(?;`AB=bri3h0e!M{te+W5a=9AJ{wJ!w@Auk31o~bG~8U5N?tJ z7jFZKLn`F~_vMnFi@QHm95PLbr{I}n0qzw63Z7B1G^0dKe|{uwgod3?66ZGmto)O4 zb!FJ?T+iWOI@o06{0alVq`n*SvXPSJ@!V97OE%JGPCBX@Z#cu*oj%G6c|$khGRIKJ zyI1l%dv%~IsZhC#q3ct+C9hd9Kr+43@MbbUHPQHPm&YrNkCaKLnJRdJ%vDe-R|MX? zq1!Xo*-UEh4AC8jYQgvbtZ62=U%(h2Y9%5(Q~c$zy`f5Ypkfc)j|o#F}`Zi zbq53|nI-L4-qY)rau& zv++VC}4D6dXQIJ6l(9wIx|$J zCka?9R!m^HR23|kes3l3@L2KSwX3;P1}qe2IKKG`1P^v^hux`nF0I%D6;(9J$GDc8 z#l58i_E^M)2T;LfH&Z)WOw-P{T++b|bYxUHag&8JjH5cDJRGgK)YHK)cPX>9$nVI? z>!2X*a?jRgJ`@jE^ETtB_=%5V%$4H@@=<9j8Y3;>wRn7N`#+4@DKcajBQ4!muq6Po z31MXDyp5E_E1WdG_hW<$;t6~$7bsi2S9{ojON<+8);l++tI?!VIq7VZXLS0kxnvm$ zrB76KptA{QMdHLa*T9d4*?ER52K*F4Px>n|ic98#?-%%`=Q^mB>{egOq=Nzbw+U%jMxw*Qxx5wrT~#7xLljFjN7E z2P1#6Fc{S~-ylZbwD~ZSw&fWBo-~Dc@kST8ffWf1$~3Bhw>KBg_|#i7CN4092)6Qi zN<&dDef!1VWE47$A5gOi>cbD-7c+%cIcbd7@++$QB>Zxu35D90Iz!axNDlBn#Wm?%Qa8W=MxU9$D=p9akqHDl>=LcFMuPz4tgs8@qGq%P)@TBB%*fgb!ydYSitnpkNR?z)3aXmea`o z9$y~{&p9`Uob3H$l6dlG>eHipz}t{tq`01_VKjo%KA5fdpy`WadC)@iQ9sZh@OZN+ z|FO?DZ5SlksnV~{b6T-|g78{*JHA+Ijqcz%P}h7PXnGR~|9XZ8;GldAmUVxoCeC4I zR@2xxK4yU)v(t#lIu4%{gQR^L%rJBCD#FG3dpcnbC{71(WS@dj2#>z;+B9p(bs@fBx#L+m?J;BE=LjH0L zG-4!JWf43C?eY?ccH8-!*stZ4P6xIb+@6jA*0SS+U%53qk^$o-uC?#aRKs$`qE-44 z>P)A|HMieK%E?AIio=Kdg2BdUdSpZl%;NgWh;DB@bj==JM_4kap;sP6{L`_?A<|-| zl!-PAmx%3)N@d@cB`aPmaTO5Qwz%|I^0~WXDQs5Tw}2qjV8s>VZtR++Z}__68cAo~Y-%f%4_5^58 zLo7^qj+PMrT?pj|uz_?il_PfhEWts96aMq+J|nPAuD8ib*B^C1eVW51&A!Go5>JWX z`Kr{oJ?Wor2;+xmxGxmrp7P&p#P{M-i=-63CBL)uoU$cJw6faO%Sr4fxB^B&v{&P@ z*d{4Wd8H<*jZGws$b!(oko=8-b>D_7#v1N+f1mhst>n-?(f*X(-lgzu4$4~`#_qW> zY!1GfEGj6KmCa7<@D>GFP zxE{2_Ew}r=DmtJj?T(vWyH_~FjY`F&I^4GS`IPS)+F%`~20BR`oY&qe4 zM2j8umi)~Rcdz%jJ_45B1$ZZPUrkq6RvILe%CSHP= zp`xVg00=hVKyYBtHVhy}4xlyXyI>1bvJ}tp(Spq;{L%~Poxqa2 z8iOF1^7&O-56|~6sL?+uy(Fw1|56z`MWeq*`OKV+{)73LSs6Lnn;HBQ4Z>$;{+qd1 zq*Id7bFjc?{s*;Er2GG|D#-tXRs9Qk^zZT~rvJsC{$tMn;!g}L{~dwCXJuynYw%x( z5wEh`EU{O-Ms_@y8n`@kH;*WA^T`!n5Hy<)*quCyyE6)G)7b?yiGLnz@@eFAMHceO z=lL}7LBfkg657RM2?Y{VqvHnS4_3o)IHQw<;%U_Fh!yf>!(ZYzEsk-#Y?8wZ)f&ak zU7VdyUO))u3Z<{7J&#>FUp#v7a4#>!a#hL$XFbwhp(50`y|eWEy3z4xFoeD5kqLX3 zF^TCh5&gki5q%8`jEEKo=Drd)&}l(;SLN*jsUvwU>I(UxX~A|^`BmONkRq-Q^Py9K zY%L8tL*+pVV%9(PG<~&!v9TugAqwPHKPfWM=>4&aW#{)0D`SUtT3(eBQ~X3~qoYjb zj&qvb)+CJh|KMO*qVa(^BUBm~h#*k@9er^Mq7FU;{|*$v2kVSrYsnsA=l4CY&y|`Q zQiW!_43p?MZda(b2}lhXtpkp+Vpo?IL0AjU?k+G{mH_Z88ow9e5!MF=5W8!yjA4B= z4pxfGw*YPaJd_`fVHiK=7d93xQ~?1gC;O{K?;KD(?>ode4Dbg1f4=Svh_X9Sw9eh) z%^o3m@ZZH-i35xIJJNiKL2WHN4X+sohXBw}wV-u-T#lh*Ld<(!f9ffnVGBy9F&GvvW+T}mYV}obK{*Zy%KKdJ8&(jFgRo(zZ z!=MR?2S>yxAOI|Yv$L{iIOh-ZHNOh6hCJcKjK+Xz)-7n}XGO@Z?|YYP@cRLb4A-4z zqI_xvjajxIsVh%_l>f>Fon9~CZI=q|sjhYQL)FX@!3z6`i(_oilJA{MZ~-rfS?vrd zs5hX{)YN+W)j0d|hhRN`0|cAL1oNZK6%Xk<46STenaO11W!Ko${fG!V2#Mk+Zfby6 zbD3bXxgd)fUd;dR&M06MY^1ruJ?XAR7tV&F6l@JXe6Q27OFEc>KcXLP{ymFIuOnUg z;$3@*hFv7mnNcPx&#QfB>`bvN6UF}A-17_)JulJ(@fgDTum=DuV@qAgx4RjNvVXyy zt@{Bu0x61D*g54xVkjJnL8P@9AdV;jo|5C+VBKmqY5xdtfbwGn8r=GI6xy6 z^h|Ru8fp)EzdSy=bZ?{fdUZ7rF>i!|tee_okpoKthJLEd;l!DsDG$+lB=c8vlmbKn zSZQm(o1L8)+NUS^Th?<`D2G>3(5|~HZ3oidPeFjdKsh%?ap_<%q?n<1Z6<-o!T9og z7{3K|K7(?vG9}DX9lOY^GvuB(__OVrrs|+i_{K>@N)VifIcM$ssAyz)PysU#Su93T z@1tp66G^M14>a zepjtm$Ki5meQ%tpZ{jZ8Ijs5OW|KqRgszvVV`roogf(;aWQ6sB!7k;*FH9Ctb{vT( zsHV-<&cY>RX+(~cjjFkLmvK)GNU=Ta)Q`fc0dJNl;IR7Q9zvM|8HftRw(IS%?GJVa z?)c5d#lB@i(VHTDCM1%c^kMj>o}4XL>bmQegw&%@Vb|)1Xi4$~w|8IW1Pk7-zd331 zI;?F@cE-SU_V>i9^R6$7w{Dtzud0jYrOFQ|VW}e5owX^spyLt1B#yfGcsv2<0&b)n zH_c7^Hu;NPwZ2n>L^ykv!1Wyd^hs~tjx*DG6OrOO4LixGTS4a!jp_GuQVJQDEYD`r z3|$(3gQn6u0Ta8C79Lqc*)NTHG(9VthnS)aWysVwPLG<0F7#7KE)?*PO-|9A> zPMGsvn*c+gpKzV8>W6c;WP-FOQH>`HW0oH$}IT}}oY;fVuqd60b^n2~yxNI6UG2`hrpPJI#RXRAqUNusr( zM+~})I|GByG|_}b16~aXyGE{*;k|L_!;8av-S80#=!Oq%tW6KOf?DIPT4{$NB87uN zcuRJKl`6Va7}S22@H(8g7XL-&zs7&T*kXM z^u@`t0Whz<#uW+ZjKBy@&Qr5q?SZ>pq_Utf6iB*rCne;K0TIC%g}LNPmd7XNU4+R- z?4iJKU$|D(!?!A|fcY$^$!(IN`3WP!yy{Ns;@Xp?tGj!GGhWpAXu7*_BLYzvgRcDn zGy_g7Y*&Z0`GYY4g6X1YGT3MHu~xG5;=HV`cpPuZxRIjPgST`{Uu;h;bOdAMdjp;r zlK(U5dP5mhNf#9&Z>W0iD^T6Ke$|sbStSRlI|_o&dBouP$LZ45At-6PCAn{~Bsx9F zPGA!^dQo~hogne}6e-c+=ZRwuBnMo$d)39oixJ&3%d8PKKEcL*%J#>KHNlBm-;qyA zB+A=DpXyiS{CIctl^c`J1t&zL;kaj&7^#N-d1;<31@j+ktpznPr~*CG?Aou^R;2w$ z+s+THt(KK_83PDi&wX+IceN+<-%k~Ot|CC7!13um4`Cu&f%C|uFv?rYnpY>ag+G@O&jne z?Z$M*w4J11j7nb@UH0l30AhQop=71tkcTY?VEtxnaty}v`gNE?lc}dkZYppJ=qBxF zWiK1RWs$@SQ&-dElpb`seflt%ZL%0}^Kl9)2SJI-uB z%*(9Q4y&e%dN6Rj1>c_665Z^VN)w6U-JS&!I+G@@=WHl0#MZTAcvUKJ(aJ;`G})gl zutvPqY-4e$Kcazd>oN;ANtb4oGH^T27z6Tuu=m!{aWu)kV2hcVnVFd_W?8Hjvt%(dSZpy`%uE(DSj@~! z7BjP+zPU4Z=G{B{-ojtIXRA+~?$cRSozayU8Ssn9%~Xjagv-S?S3W|~xoapV-0_&- zeGBvH62)B)i24g&)}lYx^rozR&_fQlUoG6<;U9h#-;+kOhAY6{;-tgq*J@I(blrE^ zefxwrA$)f*3$81)NZ}eBcE^%zpcr!Jk`&BPLN83Rb3J{H`3*HCnWKz9jLpLx}4& zf6YDNN2INft9R3%^pF^o2C9pqXBaG}TT7+iAOVvgjFV)GXgw~Q6Dg?nlcGQ3!&UGwUuj5;c z>Z{RixuL$>HGD^|lbiv2X?>Wht?3)rZAAW(ect}nU`IY>of$v)rj4lh{dmp-+RTww zi#)7cA?m!zZ_Aa1gMH&8wsvZRtkzJ{T?YFs*C<7Zmjji=q#!Jg8%<^sJP*W-Aj$<_ z=C+kRWS4-^i>1y3KR22Uiaaih7SRqq`npsO`WF39$vhv&$eNaR9|XhW57mz*UN@p> zw+TGM;wT0Y1fY}h7h4?3yxp;zEYeyQ?h*cHlyp0rqivfR%(Tep5Vq3N!YE2C9=$>9;ixDuaJD2?cmCsavGG!xplSSO=~JI%yKCG9Wg-{Ae2nw~B~1x+kL zAhPR&$BbpmXCxYJ*l3>`;mGcOx-H{#%fJ#9mTj~pp<2mbA{WmLMFy+9)alq}2NFL*`DS3bu>y1#3CdYKC%Wfasm#I=eOWwnHpw~c|? ztuA`@OC;paIGljmjg}lxa6Wun!VWzc%yTMEruAWlIZ!-t{f#yL)70|`8x3U|wn%w@ z6veCq<-(h>?J4Q@87{7(Og)i!W^fC;9OdjAt*(YcqMIci znj42xHd@6PNfJn&iGv8&hxPh~-$}NCzD(6|ygEf~WHtnDnRs!CqWGYB(~zRaf^px3}!Ib4+mIP(O~p&SyhnmP}eo-@gO`B=>j z&AwRbOw4EAoHLOD!#Q&n3IxZmraj!F=3MZNKlP%h6FG2ZPZa#QJk`fD!tlg8D7-IO zo#_wG-5Og2t!6~lSEG5L`1MUlu38B9OxS8A;_{i)b)9VJUZ!Lm*uJOT1nk-^DVNkg zowOw!hJPm(IHX@@z7rX}%%P=h$iXF}Z)Rgb1B-4*p$y7>Wv!M7&0c++3W&~BaJG1w zV`4g~UjEYwB^x(kU`fmB2kD@9!L}mUqs;pUU=E^C3^x6}bVDQIjn_PXdrVQy8M^T@ zgd4Ufy-wGSG;fgUt-|>91;}>Nnpyb*-p5==_eBV0m_Y9S-EQ#yCYQZz;_1rCxw$q- zLYK&vson-bb>AdUUbE0Q*W_eZGYT==4)0y!A!~O!qmU2Jv#XR3ymCwqHnP}LD0b5J zg10G6?@vE9YhJ z2p3MAHWXo-^RFM84r__R&6n_##9sjb;AR+@5F5h`fT z*P(6E4;@vYM9f}SleJ9RxnIh|>#O@nk?v3?V^};dF%#z|A>`< zW2KLuvqly{0gpMf*af#(Sot)GsG%)Uj7j#<8b|zL2etx<N-EN=c*#qi z!ZRk%W8DN@o?<0_XclGBQP!Rdc*?MTuX)PWv6?YxIJf7=_7Yfrkh49B`w}y298Dt^ ze0fc-JXJ<{HQ#c6hU7tC7i+ zmFB%}Ntmi*)Rk20KMC^-y3o7b_bVA@9OWu)t5{rtvh_$<@(TFI9vfoHjSz{R8gcuj zK^hG~^I5|)V6yKXi&IwMPsE5HNN}j@<)+w|u2ZXhhgwF{KGts()S9~;(1bWJL}1jD zlgE!3%Oami0@EY%z4bo!AMoKLDn&L;|cWM_Mk8G>KHNHnB2S-oIHFn@y$oS6A z>6VABLnX8qLrcC`?y`Uh&5jW~lf4u$Bj^2GdALT?o0ekd_eXZ;+@;Gj5QUAc^XdWj zI~gTv*xnzpqpNJ`>tw#Zb7ASvRj@EKL1VTwOC@n=O{pg$vz0^vlpXm~)N(J(!>h_& zs^C|^Lfh60Q6_(bL`BTxb>wtqG1pvzK0zH>z8C0s*T2)_Ed82%!K&F#K5j_v$E%r^ zxG1j|F@LV#)?{AE<6vS;=od*L$Ep%Jk!jNU#3&G3poS(DvnLrh>;Lb;ZkeMy#NGEVFZUbo4uCHh-UTJ z=pxZ@cKDuRX)?wPKB|okMr>;vQJ>f(QWzhyJ9F|KPF%ij;ldS`&Sb26`vSlc{!I$1^PYO z4T_hqv^i)D#7EaEDM-5U+@A6MO1||@w>)DEcUBGBS&g?OHhQ z!;c)z?z!=Y8aj|0S}-c~S?9cW0;wJ0xLSQDqW+j6C@5mp^h2*28|#!tS6tOyH@5+E z!HcRZ=g;8Z@roxsrB?bsje9i)YAM~KiRK!3-zYNJN%KY}Q6NCs^LXeq{JsWjz6xO5 z^P2?QdMsih6CQ(c`FEmrl%1*>nTV>6{GYzQ?X{Mad2Ni+Meu@Tr-f*YPjrv8-n*&$ zdqsO3rdj5LGWrbbJ- zmRlVD^kJy~Hi8o{ogucY$EH_EG#0Q8XvWUw&iKi{gBw;EN=E4_ZH#dq+}(v3-FD7K zSFPRG8!evUfYzt(ynqcSw1~yY7RHb^;-7~0r5i=~7CFqH%-_9FTAd$+bPJl;6Z#9& z_Tzc6itV2^hVVJussYq6@yWm?Wc->|@Gf11=!TIDTP)h?3A}m#%EvbHDcqBdQE8jD zlOpw>nr{s~Rs;^$QbwW!VY3_H(?0k$28Dfvi#DQFJe8q;G>m8MP8NDZ&6W@;tIPGY z=H134^-^!#m3LRP`n1XYwDT~tc^g};)!v@Rs=*3rn7%jPQUdwt>TZKJEf&?1#tlW2 zdD`kDE{tY+AZK_6dly_QGpemO{9>Z)7e)`)-M;?S>D`L{q?h?J4X}G=VSh4caPB~W zBr>!;_@}2Gc?%j8U*yx_{`uu!ZT8>+|C_eY3;yPz2md$M{cGF5{?K3d{ExPalMj%A zAb!+;6G`I!XF|vSq9!CeJJ-L4VG2KMLXvU(l~I|dlc(l&cCCX;8UTQ?{juNJYZy-* zMo>9L$`JT=r}{MQ>Q7)QgQ7u zZS67$S9?-Vf-(rqdG0@s*o3EE)=@9JF6#u?H-IdddIv z1entxNF6Eh;a~Acl?KpI@^s4#Q7=-E;SCT||xUs(a~xmvz0S zgRI~{s7uOJa9bAEqRC^W;2QYqi6e7$$tJNEsKiZjw&C+~VE3X7LZlwM zgk#%4OIM)Lq=}bnZDm4a#T3Z1ZYf&H`7>ZbtlJIH>3+xB?yAm!vau&6ij8R1|yE8Y1GAJGii9A%O zOm+k&Jo2}`W0U*d07Yw-R2FTD`aa%ZYSBY)eEG=XSXAQFt+>YL0{_=?+VVIP;EFQ5 zv;8E3r(~Q+-4OmM$HOr=?@(@HP|`M^-BA-f9950HU!S>61P^}(7E z*Su^2>+K3pWDnIVI-mGWtYs|InKN%(w=jACM*-CRcduZk zM+vC?#!tt~Z$o(3_|q0YVx7j4T)_l%PmWe(DgMkI$>>civdcMSux40y@1LrhmADAa z`wmeR!O%Xz*!68a1V@IYW)-&41+jxXt&1rMP_L#rc(I}nOyieTNOlfr- zLie}sxGq6-{Bf!3b#WE{fLqdfOhIP#lw~aM@oj3~I5!P_H~4*IQJ()9o1; zhM$5T&ZY|8cAC$e#xoGgy*D|oog1AmJ(F97%*_R?m7ZgM7nG+#y&RwNwcbq^L?q1K zX8x*6O5gOkW5T33hxzZqo`dzj3HvW%s(&y4``;kbDw3lATZ8~HD<{j}ao4acTpa%n zK>hc!!rUyZ|B?^*vGlP8K$ek^mH>c&fB+0WUx1HQfEWN85)uj$0vZYm3I+xm79Je| z9u5v32NewoodB1JkN_7SpO~DHikOt13?HAGi-w+=g`J(9h>Aymo0XrDjh*$cn}EQ; zz`(=7VM~@KDq%Y(12Fw(u z7#tcNnVFrNUszmPUfJH+-TSkDaCmflb$xStcmMGC^!yiJAONucVCz3Q`!9Td_@R^b z4;7R@1Hg0RU~IzM*vF6&c{S(ZpvFbp!n|nb)%}1)yDB=c9p_)-+pCz(Nn|2r+VMIo z!t&}@CUNfRz{~T@0vXfh`Z?5ludo(PBc<-ZjmlUSVS+n!WnqYaLpZG|VeFNpsu9o6 z*rqOPHOWsA58Nj)p6PP)^>1d2XWBMv8cMd*dXz)(yfKvy8!#+FQTzsWkS>O<`41Vt zng-8%4jw&kFLaZlqM}k(5F(L#4`fW!M*xtqcT@zAIdIO(;sEsjBO*-vk6t0`!HL+; z=!JQQy_;G3uXMgHhPeOOrGFq~XqswAZV+W22cE0B{4g*BW zNnYGBPeZy-35`H3o03j=Qfmm^f$YIO>D}&7qo`_(0PK+0KE~>^96uuyty`N99w;<5 zJjQmN+z}ymz5E)XYsd?MB4SACgHlXTpEkC$HaC2pclq@gU;Y6gsf3t(QLhq;tJ;Zh z1B=yBBuXT?lSk$%TkTNy;oA{0GG4qD7Qh{EezR`Qi=RTI#3Kp^ap0`UNjPqtpiWVI zjMzNB8^;kkn~u4wT8RK`OJrU#BO`X?{DMlj=K_CkFtXMsl(e0A-v5ED9KXN(OR$Bb zaEA!{$d|ymF{z++&XlP6SA*`2^alWh0IH?C%GQTWb&;WHf!~35*%Fx~<%JYRPzf-3 zq4O9+!0RMT=v8v8-4xmGR`lq*s6K0Ft04EBR9Gi`CDGoRf3Od3USz%bjh>-?l>5wv z?6XQ0q@!Ysz_QZ(H-K7G158*f$Yw@%r56V$BxhUBc%_G+ zLPM!#5&yxdBgE$25XbIwRxU$mzm6hwQ`Ft89j#5WMv{)n_yZdEv#(LdkG|*j6|7J@ z4mfL?YFkpVKO(Tn=C*6FkH@<*S7!M;mQ*S7bJ5jo=@r;O>BS3xM>jjMU`694!x((w zt4_5bw9wThK&a5=n6m_!5D=MF^ot*(T>nH5y|!(hzNoHi_0J@FY5j#B4A|6NRbcGD zn+*`?r~vW|kc~J^)({ogED?f35R1GLYtM$p;Jo!?H*@6G0bsy$sL1>Ac5U|_ZR`c?U@x@`Eq zyh?E2_tbb<0_s3l{=ZBPU~L4j$$nSMX4+wM7SH&pZQf_n}Dj<>RMZLW@Gfd^WJrneQ^Hg z&7*UL5N4ZuN}swQa+8q(gdK;3-ZagV(n}3dY*oJQf{nLOp6+o|6(*j=Xk3=&z4EyN z;CVqP;Pywl0Hf|#RiZ1ddHpjD{o6?)N0!s_fV**k%Hr1bJK3Z3w0$lk8NeCL%&*XO ze$e_l_%Uf4yY3Lc2(GvKrj_H+=&%)ux&qzl4 z?(NtwAO~?If;tEEzfvk~UEgs$_EIDi0JZaV_PDCJMCXWCcOln#)u1uF(CHM?0!&bs zOIcRh&1#X09zBjI3HM_6{PsfGolB}~nx6|IE8p3?8Gd|`lvzO(><|hgDu4ZPuuq%l zevK=c6V5ryCiBNC7Ku=h)ZU$7Z{$MP_g95Z>KXDZDc?ySYc}l-odZGD(K++xbHRF$ zsYR4Bl$}Yu)x-RQS$4-Jjm~(*4*>nHkYc+Z>>Cg%6t3bz#I&O*oioqOTk{iGH$!S6ZGN>K9R%Cj6^3`Q^%wV5U;Ez#moiH371 zOY_G7>LUJ{!5CI?;O&}2TCrEf(X-boTzO)YEjbEV!u7cTh(O(x*A&Dvbpbg*nj5T? z9ni41iS|zQ_@kS*o%wfx=A@y0YKVtct)>e&*h(vd@t~uk7h~KupV~YJ_BCZTcVolJ zXjjRg2ynmna%8qI4db+Rztu(8*CIU7ff%LRGdK!lfX{0R3Mb!N>Z-aQ!H5WP#e>(S zy|VRqXIfz|%w;bjM&_XdO=Q+vz@X97rdAC5rO)R;u);F|i1ix@R@;IQnX7FuVeA7lP`9(M=&clv#8GMt9Y}ieAPFD6Vu#l~?6} zHf!b6T~)0pOy<|d^vIl-M`wgQc9>-MwenYf0OFMVv;n6U71o;=hmBZlI%|3*@c{VW zs!b``7s%X|7KPF7@tT*( z7$n*n21Tf~<k9}6;r=2C9ZtaeUpEFo2;y)CgU9>#Th;- z7J%n%7d~3uUqGWzkZ$Ic4b-Pr!YkZYlYv?Et3=d?CK!{?_1aUZ z|4_&D#u@7jl~J~PqEWAic+`nsm!R94y!&;|BvP8;c1TYhDuXnpRUla4o%jgFUvE}J z$zf3;rRx*T)`w4KRwC2b9HApew^P;HUs5bvzfx5Yed<0l&9tm@24l=1>Gk;T zx^g1H9>!E7I9d|i;TiWblk01Qekdn{Vd=*BE|~+>GFgb3hl#;sZ?*i-lPqeml~S#t#Tk7qGM6lw&jI(jwRTPo7iG`V1_YL#%F}O8sKN1=K@I_8*e!gK$e41ojDS+b(hAXHo*+QK{eSr_g<| z(?zz@i`r>zeP?;*A~(H!ciViuj29bZFRRbswua$^o{3heIPpR_f483!DRc$vUMU7J ze5&!c>3pf|CvU&gG&}c}-f__KVGr3)EVpNN8#}HE#dV|hDEr8ky?m&_{ImO48X5zt z#htHLt?xN^4B|=a;nV$5C4~Pd=I*I#Z*)|TmRdQi9De{zBUZ(JD1{q`!&ufO#7nLV zKvz8rAz89$4x1#S_@s$bU&Y00@C*ucl$u<=CvbiMSO+jS?e5iwPOu&X6D^>)b`Clg z1(B^#SBqZSD!B!hUgANxU)g|JHRvg=RQ_ZQb7t+9c9ok}NkeM-Kd;_a?nbRO85qbK zn!=3(*`ebCx|LT-G#~AxW^Kpk3nP_fCt#z|1YDz+?{g5esq_A+NZCJgy{dI`v@HG% zovF`T@N_>WPbsMV0G#H$;I{2ns_$VyTDm5qHb8G#8{G#08j%SbYhfsIoAI)1XrYJI1PfMM7GCs0? z>){adjqTh}IsZuSBIZ1AEoN)$e4@yy<75j~dn zz{OXyeIf*!S?BM)#}6;RUUU`(DGVV`*QH$2=}(3jy}H zAAkUF*`23~c9HVJ)aLp)Z36VB^D+It7~;K}*D~vMiP;^-NywFzOwyGJi%sRGHf8)y zZTz5MkUi8cuN;DwYPE`&H#nJjifEk^XsTqkL|4UBKf?O%tn%hmt9rt=0R00OusE&z}cg3G2z<#W&PAG1$4get@RR0EZ>lLsd zlXuW3IWZL5I760e$5;6j!L1=_yQYvS^fYhUEW}2TI`GRCvIyAoLgn8SVFzE5bo0JR zr~yfE-HZ>wD!qm!P$O)IYDY1s@a#wM2Vjs*w-SKSC(H5y2%fjW6jaWWo@_}{ysg@3 zP7hgZh#vqEy|2bjWmbBuEwk)(PC19TN7l`Mk{N18x{Va+iCWq&oF;jSAn1tD)?WqY zTv}{y-7iSy81>HTUtH~Yf3pNzN~x3~0ny^pE-LtG9CmOF=U>%)Fmn(ontnA39matT z3EfWZ;%5nz=goNY6dtBoFD#Q)9YxG7Lqs`)EjPM(|*9Y2^jf zW8AB30skUr&&uX(Zf9~(y< z>{~NZJl)~QWt&bd5M3L&Nn!-+HIc;9EY7y#Ju;0WI2g|dK~&-6t-~+X+T6b@cU@(k zdSGp~%;v|Mk2ZY$eb4A?H_xHt>CO}RBTSVF?cX-$w@|^oUf80cz(8P)F4ZrIVY=IOXZXjLxrutFL zY-lOc*6UfWJz?wSxA1=jTX7~Z+U&zcNUpTZCOxM}5;`Un`W&CH=X|i)7$#roM zMX&Ni$6}?TXTlh~69~xMt%CF@f>HxIe+uXR?S`-{p&CA>41fu)GNcDT>v(8kL%g|{#`co%rcn1ZP? zARH~Bf7g98Ri#m^-0zmAP-s_S$=MoJUf%0~I#j42NmdAucXL5VDp=G&rMDLiktT=+ zEy1B|FYeu-%6h+kP@Sn*Rb6aQfww{=scpiSAb3Vnf#P4Z*?IiNF@)8l5x*|#Vv!MU za|x|VtBLC42z8)|;w_ln`>d_A{5bKV@GHO`w7>#tZp-A&0!&}#QptMg&JJ~*z*y~T z3x9tf=KJ*El=0l&oUfo+EiYzO5SV4jK$XFlagO2hR1=WE4ZMqmdZ5@rHWw-2IEwq>!UA7YRy;?f-mf`@;>zM4 ziF75`yuB*kI3@gkvUB;nfR!;8f8H~>!cH9x5SRZ01ZEf;7Sd_6l9|puU2M)-*U=8y z0_mH{To#^Jn{^U}=J#M1vRsTgcWYrqB+D6{r!xosn~uI4W-zas;qFsj*n_=G&K9~q z?Jngd6B6?xZ?toQ$P3$0ggo<0*%$qAe(bpci_<`07Q$lT#0LQ1s)Z`5W}w{{G#x3B zqa>YbFl~8g0Jcx^xF`XvF|UP&pQ>`mXk3QZ3v?8SN_0Ra4E7Mo=Fl za|rR3JGMKYZDi$mZ3eKPgcG-3F&3jy7FIB)7zg|`AUfWCZ4umWecr+P&D+pUQE+wN zR3jlPl;jUJZ;95ER+MX7C$hV)q6zel7bW}ss_G<#xYNu8&rtg+{%Imnw9BbTF;3MR z#C7l-9Mg(lVpe@F91%DA*dG8(L_ZD=d?AD?h6dS81tctM(D!|gXv_3bih19|f$5nb zC@*pQs4W8BaI>rZ_OA2RNZ-UpU&M|q)JyjdfObn{X50LZL)@GR0|0mhO6DzcnY=w= zTl4ru-oBHtwa#$IdbA5m*J2#8fzd!3MJ@*6D@8 z5or>A8_kL7e)Go5M&eoS8&TyI% zW~7^I&}=amV^0U}jdvNkvT*v_+xF}E=>0MnQZ8h$0iOV!LgNg3n+@+csE7^jK!gCG zJn2X7qmIJmZJo5yqG_R0<^7LR3T(pk@P3>BNm76&RV5gk8dD^7)E3qUj}FF*VZJO+ zR>|Y4Cm82xQbcFkHr|&=OD*Od%v4Pa6S`b6>9k*Nl;$2c;(kfX>@#vkE^>zep^A22 z)#rW8-ysV3*7EIINn!j|;9r?xYy?jTLNK||nRNwrup<;q!fJ!ZSTOhyru3;y#P}vo zV!bk5ZvNP{WMmMpJlfM;^{>u2$QryV0@Zvh2jbdPZ9-Vdb&4XZ?+}R`&*MEF=xe}z z0H6`;zHfS)KjEI9G4vNEVvh6&u~Znwd<}@4n}gmny0UE}J$OgXRPr$k^W((87>sN< z1PEOQTEinfmpkYuQJMR7b0PX@TC-ma5dzm6-s(=Wzx`Sl=`vD{)I6TM}% z9#ew_>*KqJXCOTaySPls4Q20Yp!M^<02Bi`nDif?LZ5$CHIZ=-O%^f$9PD8^sj?ckZjrzdiQ#AB=r2DN2sJ_vyu*cw9Cs?nXS7o8M;>O(j zv@vD@Azjv^c2`#`UEk3jt+%tG`a*hso3;XM+nVwAsOHcf{NUAWXtX++9|J`ZvE&=o zgjA$+kTSgOuBiGu$=lLqRnm0eT)yF9|BgiL@@f&%z83;;goWlv5_ zenJc3kd@=o@3uj6Nfp{|XfLor8Z$NPi_;V#yEVnLni`mOYeaIvDvXiG}hArE2^E(A^=srEK%0A?D_OHQrek zySPNyDS@h7Gk!{YN>{w94)bQIULP;e9XIdXPOW5XVQYRZ^d#!(oORiVY#ETC3%=~? zQG|E5a&5PED%q^V;^OjW0nfPXa`tgZ^91P!y0__FnFq12W?GB-2xxq5pmUn07~Ku# zk9fe{>m;UaOemCWB0j!1#@_P1Bs$Wy`AZZ2?~3bZzzBO(Mz?wAeXJ@sh;GRjm+`(wKokNt5s#Ce$oXU!WJW}H?t$` z+yb;JH`hJ>a{-yetRoY%V@ck(qfuftCe(uhE?NT>U&)_4f9$+*i7w16>LddAN957^C{4vVL69>ty(g`V>jLq(Gue zm5L(aq+Nb*)w+cSvPC?y{P3rxWqv-SB})@tw+h>3Tr9eI8LPVrXF5wECkV*JShXXwJ3^qM|IC&SIC_Y6@?yR z4|LbUSx}|zau2~K(%x;CEIdy0>)AX#W0w_JudJs&K{MPFU)_fgEEF?p>2R>Qcx7`a zeKePvvze}9P{=2Wzf8>$yD7^(hh(dFI<^3tCv9y?BjTjVcOSee2NmLV9LMW3kyIDS zQr&M)yB~Hz_^Q`DyVqWK`8LK`Q_wh#3bAl?Q|9Lk4_P(YUArltyGEH`EN)4vD~laZ z{aW9uIhVh0n%MHmLg(N_SU#l536OoeAU{zJVC_|lvPrxWi2k}mHg@=x@GosqSJB0 zkzU^qK%H>x#Q>L$65F#9#K^zI8ULFt^pCci?8xh~M~M;2q+KlzI-fH_H(JPH!|0zU zX}4C^gZSl*Uo;3K*@W@$W3~k-XO&}gq^qhg;01viTu!Mnxd(7rsa4T&YRaM|Ad&!( z?!te1Zc? zJ^oNR==I9NF#b~9I0Og`=t>~sf1{a#*2aD8Q(mG<0PjB>o1gDUAItv+SMV=Yf&UI7 z`+tfnU}59>Ph7!gJ-2^TdEoE30ybvuf7!11{|&eTdqDXAk1O~aUgG~_xPszRs}XzyY>QpQj`6B=w|1qUMr?#kV z4wli}NSLGCIiJw2EfZ!25CMyK!yzo|Th9E?*qvR(@s}QI20B@e0iQ(#Fy09#Mzr6mqPV@KA%}U+KBb6W( z!};Y)+(UtOP>&KebKb_MJ-%1o zZ#!Q5xan^9HKi|$ zpusxm=lMK)^AM2*(ap-ILMk9xd=<^R)5c2;nw(IsWu0b%8=c8JX~X&l=$jMWM+hx| zpj*YHKFh>UQwn@c5N@>oVfpT(C>yyue)pN1AqA!UDz;gzR&>mn)|qZsqN$LuvPSH_ z_w}=0+ly-soSMuBK&p0b1g|-D1Qe3obnEU=T-M9ayl55g$4QAz4mcS33^*|BJ7ww0 zV}e*`OZ3XD=C3Rdwp#8gl+;gS5^BYtB%v3R^)awl-ClO-%aIMC0!lW>&x~t(!0(63 zvKvLTdblemxxgd4qWb0;b4!CJ4=FQsY@0C8T{6L)hEDADH9ZTgafY$$)uMcU*SK{a z%dH?}Odh8p!{Oft;7U-|e;+3h493dxWRh)j-mg<6CpSKzo18Q+Y&(pOWiD^7P_9#D;g z3BR`(cjKo4%BvqUER$X1mUK8aDoY|Ymt$3H24saEP(()2W{b5`db0?1F?r5y&A8GU zPGFequnmTK^Ge>)^&&b#TPSlcH$(Sp;(hcr;utwrrv#^I_X=oMu^a){>w)n~y`Ss1qjn5UQ^H5Go)kP>Bwr4pY%!4Q*>^VOvS1 zOm53O(tQnGN>Qu-6cSV9h1SUvov7?PL^gZcgzl#C~rGxEC)e zj7a+s{K~-??oh73p<6kSTeb#s4lkub-gBlV{t1OxySC2z2U@9&x3k(b_bC1t>&C-g zGJ4sJ%D;>^nF;_hmj?KuyZG%@porsamt~J!X@E>llSZ0DxH zx}$H3;xAns3AB9#LHj`Eiq4w%AoT7!S%vi|8OC5N4&GpFklPZ8`~C2Nr&>PG zpC@h?(>UmIF-&n`i0Q^q&JSA;s^?Lx4_>I_&ljQlLKk)=DAEnKxzP1Xp)gG!VxkxI zByZh{;RkPo%9w{gP5N)8x;E$_BS>iO;g@K?v3_?Q74E?b2@J$Oe(x_}Q3U6bt9nyG z$*zXNSWp%w!h19x6l9&^Shl&vsiI(2*t}w-H5ZjW#Cnd@n9=qNYj+V$M{g2@3SiU{ zp?NC{6Cy3Bo=sc6dB_rZhzLDz7*s2-6_!MMdvAS*pV@rat4a&zZ zN$+uUqvel7zo2@OY55X9p-}f_$Cg>nW=@EAH=-9bSq>TIgoz+y9{?-&sYa*}_AR!# zHP}GA+hsZMYJGT)QeJRU2}I50#k*Dl-30{R z+ZVFJoBq*e$1Zf`tyfofY2C8v*ID{dTy1nQwSBjFIqcoae>xujT1`NM7PuVcbUAdw zrfNtzqWM9NM)u1OwN2kMR=(?7sciV<{V5FBCu)%cpc^1I4?l3knU`7lQd|*MTU)x^ z6VS>0)aDz=Eo#oTFx%UsEiolvRj^j+KIWD0%w=pV6?3pgdx`~m7~&YMu;L@KB6<*r z18me_oEMVMwZ`9e=);h|!~??5xhMQ^C%+GL6121hE)b~jP-eb1&nrjo-ySJmnVy$g z=e27i2RHmk__G2NGlB;ZE+h_h)eqp4pQfr^v}=H2DoW-*nZCptT%-}ftB^aXi8QlOdo~mEvn`P}VWacL3 z2mxJ=w0>;=)ac{XE^TWyw!|;Tw_{_blrzc55(W#1ZeL*P8&^4y|HKh`nfh_mHWu38 z*9vcXQhj4SbQ=5&+uT{&3KAcunMUU`>?c8_4YLBXv)}^vAVh_Yf<>rGz~KokK3#+V z^!@&0K?jSfpKTC=b5GZ7ZKz35nsKoVp4KGz(s*+Qy9_UEY5+3C1MYmGi!blxXUrVW zHJdp=N|Lmvz#A8s^Wvm&m;|n!1?l6Y{>4P?b$5k>o?fKbJo$P2$RtZ^6`*i9gyuUBvaml2xO52CRxtgPxSY;>xl5? zM!yi9cS#h9!e@DaQ8E*x&JCfVC#a(;Hn{~9V-AUd3N9OS$FM7Y>BV3#FoLuT4Yl*# zEOgPK=iBd?Jh4-1)(!pQJ>vDgFxLMMsY#D4~S{&E?TmE_U* zD~~Ts?gP05T$j?zyesW}miF~b(!L&kI2UyE$$(k-HF;5#LAScL#enxY%Y33m?SW;i z_1jbW;9wRA$E*q$Bt1>eaYGvar5ROZi$~pwGH5vDRTNYD2u2{n?6bLtZc+vJY|lP| zP&IVh`XaN2y@!m9{Kz_!N1$=ESZ^JoFf%zC@>e|;HFUtH>%=ZARpDzZ9>~`I+_b#2 zpA2}rm?X=E)C3VzD3tvmJ(s+Dy`JXd5>zM@rAV7pU~wY2M#2Ju+kWL6z zoXkJc3b8zi`%}Mr(e11q)YqA93%TJ+Ns4~7!`Ts1qz-EgmpQ72R?!cYZQcT>Sta-3 zRa&G>(Kn1}8y^i)QwkU??-9$;K~GZP@^(z~N(S75X1o2r{%k)TEuwecBHl0jnl#r~ z?xL;_Wu4Gs=$Ly`b%Kma1+S5Oo?%f8Pqe1CNui(|E#|oDzgyqNZX3_Rr|*1w8CCy< zs$!Z@Zk5F?dl2mXMvfum-yIbu&`&GPjaUWHCCdADL5;z3MWshff**Pdo;(ELf zo5Z(8KuI7k{@sco#Nezn^oOP|bVGxM`@@lK;)MJ&BaLB4N%K2(g`Xz8DO5$uRw$y z?DM=e$Dg>reoU#(VUE({cgoTPH)ezEkxnmk2IFS7Uzl>OQ7Ivs-p7Nlm>tKwkDMHG zjp-bz)Z>XJeKC|h2=zc3kflESIG^er>N}mzHJ_L|f%Ks9K%CO(P?B7F zc+W2b2-d=G;bO3Jq+E)RyAYF~xf|$|KmrQP*j|*2_=yl2s**QoGhg z@<6Fa?q-TP*LVlE#YmigIQo{^gB}&^nC^f?!z2Aa*!#-3s=BDpgNi61NH?e;-Q6Xf z(oz?dlJ1s}6a*eh4 zzt-KyNnrflq{+*nDD%;SxZ>X`)i%zyWsbjIY5FXG&KfcZMgIAD>}@Hh_XD4E4N-1l zN*+?%PTm$&YFANgjVITk|4}xw$1l<_nPTP+bz>`e&D&MY@G-8k5tmiAyu0;zf!MK0 z{FfsO&q-DI_P5&aSdj)i!lUu|IGP+d&0m|%bz@3Hn5@ov*%clgK?)=q|HH@7y8tO{zZEwu`?d$c+A=9VVLJFmv3olr5bOZ%O?`b}oc&RTt zf64t?-cCt}Uk!sVPo)C?Iyp`%w$Y>FjebglI4g|oK^H(3Fh;9kj6R{pl2)tJKd zJq<^K27OD*;-KJMyP0gOy!^?@DV;2h#xkhRdJ&5I>3;+A{U?7ZD)>LVUAk9a)qz$3yWvFd52-1aLF@>_uWHFR+u2pJE*q7S zwzS{rjS1gTpPwiz=8*M9Zhj@Gs#8e&`Z(lMXNSBdu?hN}Hi-w6`(^lH9E zMwzY01B>a*&(HFpMUU1V(ZQ|?kI!c@?=v6RIdonmay}gj5X*VLdN$DS|5CtSSjLuR z#k0q8v}@up{|)w(;?T1gY_cLec|5JVDG?_8L7WRoc<=jUf3Jz!WOdjyuYLV4#(pq8 zE$RKpMnZ38tL_2Z*r3t0GdA$It+Q(l7Df3tZ0d8qi`!Y0bscJfYe)>SjzP+?P-AM! zv+C~(-xAZA-8gl2RpGA+?Cvjp^nDUzVetyHoZz#*dP0^*RIhYI4hwI)p_S3C5XDyJ zO0JglC1q=zF6@ioVA_^uty`V6bq@0wE!odMiC6Ov70gXelSf{fJs@i_W%71Umzp*0 zd;SyiZhh=Vbc;f>)tQW7y^9z8YuzZLT%L2z<|HG#mldD&YR}?@pVd$Ea9rs=_cb21 z!<(PcdU*>?^SJ05IL21|x&6ii1S@5XTIco0F#>as@gv@H* z4Y_M$xAfTU4QbO(kfDD^zmlP4>p#3Y?8;2Xc_U%<_DH&?&S-VwdFkqwz(@&Ee((F{ zl58Bm;?(zSQKrI%t(YpO^N(<(vm6?0f~|#k9S6nxR|u@ciPR9^p8aa&j(l5Lb1Y>t zDjxr)-i19>6X}}v!DvHmxpDjzbG^N8;J0{I?Icf3f z)gLo)<#Z06QxF5g_Ve+@cc!pfCH5>*vH@Yp@3XWzVW5#uG{el3S9 zYU4p&HL8mH!bFASRYIX?BYyDfHy^b`Tze^Uvb!_L#zpSF9}5gAy-V!D{;Y7y!%#pz z-jLSrF>~Zyg}AC~JFdB6L#s7=N2B0rD=8jxsSs=_SkxK!Z^~qj`qy6K8XLH7gN+X# z8cg&bJm0!eS%}Dy*CJWL3|usp-`{J@`y%}`WkSxj?Q7$aG4l{vo2>F%0hzdOY%tCK zvUMDL(`3g!PNrc5wpKIO?FGp>rqVAnlQ7E?+5YLxEARr=!nZOAQ%?2!b3FNCS^-%v<0YJhd~Y1E)F) zOxdAtz^PwH(;vtW5PLe&$Ddl)$ZOo>&yXKF#eyEkc{9`7B%aTtdWyQdKd<{pqi1z# zhSC>l}ZWm2>r*C19}aVqi6WB8&C93lciqhJdza~=%vK`7B&~S zU849VeU^2=F6hy{z+B`J99C)8!=vUgOz1U{Xch5^asMKhY!1gd=2HG1@o5>Q{XF)( zG4A|jK#*oL!4F4Y3DU>KPA#tj%6N_Dk*^;=CTHT?Z4zNx@N4WCc9KzM&9+y@GNCfb zu1EVVLiAx*zMV#6zaeC4BveEH{`f+a3Vt?`+5#4n;-1dFgkWRsRV>?a5XoG?-P=7c zZm|u#tW4l73M{%LqB9Ljbi6mE)x`QcP@7C`z~qE%D)4qC>ycHVctYF_MckR#2dmQk z{r1!b7bSaevH(_6~Mx zZ~owz^2yLS!AME{%cFr&$-tP88sEqj81+Q=2Al-y@XjQ{COqp?xL^?G7!HH|KC$uo z?Z^c*tgZN%b;coS3W=ZG`R^aGeRn59$WeqPd@2)34-qk{J}z$C)h2$zko=8!%#=Wd zT6VUaNcnfL>-F^0!h^m$-FJv0(eK07;{3GxEO4H<*DNfPa${CC+x5{EW*Dh9D@jBK zqE|$?v6~}WF^xPuDDS%V72V=$DW`Po4y-FMkIOBkOL-YlNJ}F){>3SQDcjIZIIv;e zq8-mPZ}g!@dp@Uyi+^N_Tl$ZS{T~uV3-mXI3M*MYIFrUZx=*cDkYqj5Si#udShsXz zryDr1E6@ZLf8Vd0j!sPG*mho+6(6@J`UKgGMWmMRDp!UQ|15>{)=jhtkmx0~hi{Z< zT6Jxdl>gk`d3Sr}jvmjN`lts`mz0_+x}wG0pQGeE(GBJf8jOrR$K&=mrtmXl6;k^1 z54JIc{g@atLhpw|Sf7zkws{|A9V8dX^m{Qt{zKe5ZH0tH9(t8KtZap%En-=}1bH@O zm3X7{-S=nY7PQ*8iXM&-7Qua-@v<%ArXu9Z4@ZhDu*;ys{Nx)xDqeqXa>}b)V{UVq z(>m6F)A|)W8X)BPVD)(kHV0jBkx6@b87nWFQj-| z+Uzt zuYMr9c(%*2M?S1#E4lRCewr$7_C1eC6z}OqB(E2@r2A~{@6h*7=0}e$9R$g^bqn&Dv8S>CYEtr%M<8N49N_y-wC1#gAPE1ab@iS`1RW=)$!edTb?jLjo z=WmHHvqyYpul2n;bP4w9VSXDPmfy+D8*TN286UstCo`{0JHMA$hQ|F53>&L;%8}C9 zshg4_rrM5%7jkQ=Av&~yDuRUXwG8D7Hv+y!2G2O-6VGr2znf`gxb$1}^R4WqXRBWN zG!v%dZBG-J$5}J-!>%ca3~vAYuD(#?C)RZI_Hd4(^9e24X3sQj^!>2~5z7K{XX-D% z%Wu=arS9iu9V*z5?;cUzaQRh3;!Ugfvg(2Ho0LU;3xi*wOy@#$y~gd_Pf2ZV3VpP4 z((GhPnLS)>lU)AUT={9vIBPW!T@Fjro-DO+maX_{9(y&OjbCVrDoKpRe)|qJ&9km2 zxys@J9P2^WE~|xo*`L5wI-Xi}mR_sR$o+ZKO~lmALuN?4cO3@snwbwkJ@AW(4eVq;u@-rVwdqg${ z`N5xR@;Mz`at4|&UKXdKGk?3hOP1C4IF9OWn)vY8DMy2!96y$jkE&*VX`aw+81*M8 zI#qcbXW6^t()MV4X2ny@8Bce#FIRb7`^-um?Y-u3#;d7cqoec=XN)7US*@WtJz7&k zQPSna+y(w$5G&uRc0GFoG+Zzo_aX$SZ%kMk#A5bjwoMOERt9S&MvT>OSV(V|Oc{93 zg_opZFE{4yH7Xkw4_n^1^GzG#2t?d9d2rPq_E{&*$VosFIrM_uwJm6S&FINWX#V@@ z%ElLSY|N`${o;rCIr!C63SQc*of&cGod?M59`O{qlueZ_!=G zV0*cP2~ii3@oe_eb;L`ADoz^7@^QVBTV4a9Kj%&wR@likgPHLgyvpW_ZWDWk|K6yC z$NHc3|BYk+5AWUkzdICyi=UI{zrKx+PmuS2>E8H1c<1Q_{J;8GtYe19=Z?u-UX%`_3PFnR##;mDIDs_v-tY;1Mw$zJs zHs&zj24YE3Vz;3)mwSv!*q!I|qM6;QR)+P5omaoEu1m|5RG6!|@Ke=hPPqHefe;To z@sCWJS^xRZolGXSe?A2;#+dzcW`rcALixW#ap?5_`E(y6?%zA!-c%(1=eyQ7bXfm< zT9k}K|L2p_gRUEYKLrT>e{%nycmE2?k4R!j?p0^jkHJBWnyFl)vwfSfQbc+ACm+;+ zfKSqK=%ne>Rp5o7-h6tgA6WIBk?pFj&;GgCHX0HzD0I9!XjI~0V^e3>!9m2Llk4{H zMIrqFCyfH_j%b>3R%N)RGK(^gRbu~5CMKqJe*ybRqdGMz0}RwyMrS%Ov}W4}X)Y7& zvNojLXgpP`O5x&iP&|f>i%TQ={MXFc!JN%pTH{|e2o9jb;$-i5PmQSjI(Kq$<-FWu zSz(|8knQXi`r0~=?V*r7FtDZNmLT*%6VS%fU?gOSrpf#*E_6Z4BE)1hvWw??aYQBf zhxX%b2*SoC_yq-c#+sqY(XsQ}|Nb*bD;M?Cf+|IY|HaIyTogrgreN%QKryHlMG=Og z=;Y{1D&l9v&%&6{oic1GC?wRIE)nhi-v(I&^}IrOE_@0OzI9~77cL_$0N5$@@&+Yz zpARVP^|Olejyg0nk&{h+o~0CUA1N#ScQi0btCd)X6Ae`84thhly;4?c`aB%RtjV}8L_Mqa1&~l0UKWy z6BBdSw4>x1qR=ns-1Q~|N%EleO&v+_py5Dwh!u&S=Qg*r$m3kN&Rw3B7*u@%^FXM( zKLM*lO50mJWZDtEF;{^x3%-AjS{oKv+n-CmqQkebV&2D;+^(Hyj`V)PE%a> zo?b1`6>Myjq)s@wJ$(Ml0AcUO@#mp0U@hn0eV6#h56Ha%4EzrLW8*nrqqZaT4VV)A zkqV+F2$K5i628Zv_(F;w-Zg*VF>nWU9fIyquKquEHS_`wGf$Zl4uSYV&;v&x;3`+5 z&c9*LAE2HLwIblu2sm)nadC0a|9*2{5GCNU!ScbOq26AeLzt*<1HJ?GZSPy!e|*$5 z?&}*LANL1nHm7uWcsMT_)EWr($34S8GwN}CSE)&p8cJ>Orpm1dR3YdqaEy^3H46?K zonKs!ypd0eQ z0&FN(vG!%EtEn}*9nd4YnyRa-v%+xKf)v_1I>K&Y3}Zl?yGc)k^FO(~c?jL1LD`e~ zGNZ1uBH`Z=O7N*B2a}y`vAKG$Cjv4`1={b)_`Hw06Vg82fkK(t+1bC(n_QsBjT41P zOSwRjonQw{2@iK)$au==nj9TgtGwGEp2od6oUO1qsZ1C7SoKQkiAJlVMskyvI2BO0@r@qFALIH2~x)rTT;X5(Vz&R0?%DXcG`V?edms+-mBBPNWnFI#a&jW_#_ba!z*E4l-S3|yR2kN_+On4ntCS?NFb{%I*v_7u#}rFO0^3#d0QVS(#7rQ6@RI! zYVurYE+)%lN>K8?0exCY*y?%6f#MSyicdRm!@g3=!^Imdl!CtNBhf{=1tbRFY}dwW zcTj z7l^Tm-(HA?*N~Y9`ODoJ2V6Y@x7Qoq@?f`@OUwy z;BX+=?0TXNfVA2eFbE-g0p$W7$D4mXzdCBJiz4T97z_+06{Vm^ebEw@dMVbl3Op!2 zKK`G(&|3{P@zOfyws&%90i38<;&_OyV;sA19zMT!kYlPZX%rV9cWFQ0_d}UpJwZvf4w4K2TSNQFZydR~Hk?*g z=66qinA`2JGc%f6Y=~9BXGaV}9>e>kXszp3q5e}w!VSOka3HT@1ml5w{&5z$6LUX&)emdHJlL!C-O#n~XJOSZ|9u{nTJAruS?1Sp zNXPO>RN9wghu^wY9Rs?PX=&dM>0I|UcrD5G=$8DUfbL)dt>opH-RB)^$&rr+!me9t zBt-t%X*ohq#ntt^w{Wy@*&P>dY~r&5KU=j@{U2l_#iu-D2rI2=Bv z8-`2uQOGxR8{NBYYZG(9-|oeWufD5lK!jOXibVYUOgIeE_HJ$gJFfp&fBhcMT>XkK zA|}4r)StR{^t`gNa@ze;^Q>re2Y5!@2+V@*fQlEZq;8!SP*QUQ-0|kaUZne!yV8 z>%q^ZNu4hAw>JsLAeq>zj>2%(kub#0vSEFT6b4Tw+yQeDogUiRs*8NKZTJ45#^q9bz+LY_Qjz* z96Yw04h#z96*xgU%zx%G9cuFC;B+jk^J(%!HoGGW20j!a8KHOfh} zVYoK-jebbsBEF5WqAHjE?KUhDtD(}DZ4pE(POy`PEAB_lHLh!q=h^LM^HkeaRFyqF zPk*7^ThE zkFv~pWvuq~^e7i-4?T(cUgyCx_w!mvpWYvrLSoQY^Sl?t+#mzBN*pcA=!l{|82lxr zoaC$bineZ5ru|0^tf_n3SZdg!_e#{S*x}l5eHrK%(TWtci1)};yZ8Lg#k9wt7}cMI z1XNW6Gq7l;#Bv71q`rBFwg~r4EJ~b#}eR*B}96cpOD8 z{>h=K@g~OdV(SxddTGgXF3t^QRy0W3OXx#>EOGrl?+_!D^$SGxazA+9X;9AygESXW zWN}s$g4M0}Ip)kpkOS6&Tt2I?G$69Ev1!=UXHM`FbbNl^nED>3^Hs>D z>Hc$;wDfC&g~#-C7EM>Z8{;-(#rjpSS!t2x>WS)Dps18$%&Bf>+>^mhOB8(eqJE35 zMq5UYVqY0EogH=&_(_6jOH)g$>;l%`5=u>-v_}1prk_4)rj>s31QC&#n0U~5ZjH=~ zTC3>MDbd~P{F>9?eKIzCGgHpGwWDLBQo}@KXRO5M+*w+>Ir!@m@C#*ER#627_cK2$ zPfT0Zrz9uG^r9@`!-o&GELAvu^7K$rQnkOQN$QmiQ3B_y9g?Z3skyB7_q1FgsJ&-* z?m+=rr{|}6xw*f$+&-LFk>0xnEr7rtJF{b1*&qQJ8Y;opuTDGh42~At-jx{~EbY_y zF&@urMU`Hh(=$9C?5eI7EK%~tN%jXAMzKzjZYar&_=bSpw`+&zbd>8336Xe)uch4; z$MWt`*o+qpclD}1y$%6-@tBT|)$psR!x=d$l2^`PaN=K}1=39lO!uxi<-9gB&v&3B z=vvUZ+M@TPe#v~5f726x>H_0@HE&t^__Oo#A;nob<>*zj0=KQJ9V@VJh0%ErR!Aur@;>u5-_?GA+mu3S35F7q|2ZHAYxDDGUw?Qbz5$4=rC$7l} z1zgQX4&3@Z|DOp(echM@v|qO6o_yxhRHAxsS=YdAZgS zVM=iC8UOL^*{g=Kk&zx@hT*#rQ6+Zg&boRe-OKwNP07<0dSxfml|+59JHSP^?k%NO z+4*kZO7s6@yK!UvtVVHjojy!p#V`jxIw%w$Zz|3borqJZI za%lC?qh)Mm-rmej4aI&~lQ*Bk54~ogO;h=3kTR_$rHkx)E$59raj-E=qX8)pD{gd; z5}dm~6=>gFt=BvL8v&9)b#C_!w`f_@r*qq_zn`s3Q%>sJS^==dIdH`8ThkJ+cXvmN z^yKD#F18_tBSuEF#kM7wnb(hs#@7Tm(nQK)SZ+;6Mb^NiEtbqe#BdBxhNo%{R)vIw z?yh#c=o+85ovz9G_D)&c1Aa6xJvq5&dlL#wxPDW5s(=f!eh^tYM$<@K+08csIAhrh zQpK(>&U!#ls_KI%$g^hSaeGY=d&7N?wvyV&;#O!KYlDMES$}RpL@94+OqcEf*zuDE-fS^ z1oC*SxuacL%!g+3y57&C*oO@7D+vD`nywo?_ZHJXVhRkAQc#DL$K6 zM8_iWN4m9Zm)4^qDaq* z9=d}DH1GF^s3_Hti0g0*m|XoxPexO+Sia@XT*>q|U5+|)!4ozR;MhwBaMry@U0839 zTr%r2D`(n{uXEj+s`8h3NNM>Geh5s=c!MRb@76(Ys(`_hCFqA~m``&X}ZUflB z18e|M#9$e`Y3oVCJDXqaGjW%Z3HIMxHtOwdSN%94BADy1^M!}>YBjAGTaU!A%GFBq z<>IF@60C&>0F{u7BAv{!?0@(q%%Z|T^W{*4`MjmDy>A{&?sCjkhx-yOZT>t?%a~dto^t+nu?pD%@Rf1EAxT}~*33Nrg zdpBKSlcWS^p3CHL_OgPF$|8H#hZldG9T@ZR%I7^ksq|tt4$HKLF<$T(dV# zyrndFHc%F;!sGyGCs^6`WSvK!2Q?nv)%;Gx$r*@@UhMxomtoe^8=v(#QA^=hJ$MmU zVz(Faj>K-hCI{r8`gWhLkjlzvS)D0^H=xd%DYtd)Vr{NXr{tBDhVMRJb2>^&-KSip zv$d{QS?V+;90Iip=^P8a3IcTbu!*1vv`4xl#Fi>(24kWQDl@ z0e!hc(^Un)6+SA)>mki@E3cyx{l1QPY&l7>6Lar3y+MXl(5*8#l^LuK$>hMIkld&wg#WMG)0ELpR2L- z=sS7ph*58G6kX@OX*-|Y0y2H`+CWV>2tMxK#Tg5Z1DI)vQH^uo3C*wT9nMR{#z?`T z+G9ULjk)>YDEJO34#WIpf565qw`*EPKnA)Otg z1V1E(BJQKKUM(7SO|Nf_hIZwkTE5~h#39J2(D22sClO%l#&vGf6+Rx$nnQEQ3syEZ zo>{Z+-`}hOCGu?jens;!MG?7k%JJ;mXWuZK6#K>1)qFp%5}nA1h^a=q>D;bu@0};@ zF69})VqRC9XV-r74wjZl2V#T+XhlAC7Dv`c%^?S?F4c#qL+W?T7-RQE46B_RuPpY?E@=E!uBjCF|pETr>wNJRNro>(zq`2fNl;8 z`><(gN8EgWKt0SHq1YAon5V?Yi@39RfuA3+#s8kt(b?)fa{iyA)R>C_(KKR}e~Qp+ zreu)raDX`rnOuWh@Lc|IjDIZX_Pxch8&Gf;OA9(FSC$`J0dsS$6-)$=4OG zYw8tw(LgGP&&x&M=AU zMa7JbjD+3SKeXWWP9q$e>|4&Y7}UoK466*QwjCNm2S-K@L1-~nV(hV0>kxuTBp*da zK#spC?)1{g$ViI!A#%Oh`)C7{N4Qh1da$+vfUg3O{0k|Ga|ZP*m(hGg)Y0d`oKq)Y zp}dbbQ!MsPjvT_k+m(bxL{`1@X1!g@=D+-iEEu*oYVrdGi`>@SK+*twDCP-DsYxnU zel{*H!)v-XTlWaIwdgG?%4Hs{jW;!&tK09imAF_QWu}#x{G9S$S*;jy`1tWEf!*8< z&qRFk%Gd3M6-iQ*Vdbk8j{cx#(dP}Gj@Lhy!siV6u~GDlgI|Ie&L|R|1Ff{x3XOt)m9gp~`;tsBx7i zU){gScCvf4h#NuA`~jnX08>x2{|9ifzqjDMgoh8-^F_> zet!NJ(Jf=m(zrZiHVE+jB?6~n0bL`?08Q;3miY!QhUT=z)@R&zeE4_ z?0N_utvn9J71R7BC>Th_g5W9Ob%9~oTwaMGFj)Q|O`&QMkrvDaB`WnWoCcqh?J<+e z@z45CqJ8{;zx)y%1{~Si23%Rj>HB$HTAHZKlxv95V443lh)nnFZ~;{mh6Ht%oqQCy z_FB5FtlYDvm0$05kas6q1^|mrzkXqe`7jagx5!8H`|LD`?yO%SFNX6~sJJ$Vlko69 zDk&&*e!oHzDJ`EzQT*)f4RQaDE)V>2s>sP;jy#az>*EV^{P5r%FECfuXHEk)=#SL2 z`_?gyprHNFi6X75)`W7w}0I z1V-l?ITle8I5h5=f=&Q%ORcmmefss~Lz)0q)yl)V9Z)wGy{S=UIJ)=Fq zhtsQkSeYa5Vr*8TzMB1bTY|c-X&x|1bJUICIdU=ifgR6cnguGU3PnR2J5+{*b5uKLoEr z`KLM`@FGIkh5zOB`)BBQHT!~%KhlzJvqbC?$9fpk-sAuS2 zSP{MW`|M6HT0J1n2h5{EgG&|RUxyl|{C}ODtMY=f8$ioJP8qP^iR@UIV9|4_-XC6O z8HP2Wip~%u6AW5#ushzV8oD%=KVn*2-Zrr!M_s^s2>Nht#vbqMG}|>9+2OmbWBa0{ z?ZG1;8P6YRO4Fo#)~=bN6QT9~OoJ zVvF*5og&n;a6ysM;u|Os|Gqmr_;5URA}J>M;2kJaZmu(Hk7*2o@@nf|dl)ek@Pbhn z5h25@!$c@F-&*VKb`G!uF*x&@Dj}%1YW!N4hB)u9yno-8%HKCi|K3<+SOCnzlJapS zS2H0zTq_Sgc<*nC5#ppQU6NaUZO(In4-dos1Rk1Jk8isSuly%rL@-4aD8HgAdJrjQ z0`vavU|Jc>>W3(gkI&R?h|@V?X^9VuD+2~v3WB3ie3F@{>Y>G@>RRY7UF!I7l}rHY z)$M92aheag^eZSg78F6f=ah7h3LMH_dEj*=gu&e#0WhSOwcuK2<+by67uQgT0qJMS@3vR)j4+ zcooF)-UHQDD=RAyBH`Qv(JGGL<*7zyBhsMCs${!nH;vn40+@m zayOoS4XKvH0qgeU85@2F9v@Xtg=AFlGVh;uIqI9`>dqF(S4C7Z}bvrQS04EkgkUFTt%WUI@) zsQUqK3VkAM^fElHq?+nq)73?|+aesblm8_+Ej+goLbiHJ_S?s(az>CSo$1eC|O57R&apJyB0K);d|5gRM30SHh} zF1pQPimyp}P}%=;prjATnNv1@e0E|IPBNb0bI>(E^FS@s9hM@iz-EXjuN*v3p)VJ3 zz`wC=aWo2yl_)Vl#!xrnGwTd|OZlo-YMoHRtoymfF1{cHo$3bkcDAO%()C^X%%Q*4 zi^H>b^h)NsCQ&t;KTOe}K$MSL+;tuOINn4v!mRXedTa_YJJS_@1wpOsAl>n(_6V05 z$~MJlnAhV^A})l>)~n#)Ea0L2ExWrfGF<14J0l2)waK_$_?Je&G}~r=QxPp)8q_PJcf+IXIxM@@Qjk016mD zndYZV3AhYuiuDwqbt+3?CGDYZ_yr$u&>(ENydX2T^~;^&5X_L5`y&M>H*TJ6pYe%` z8rk%E%z5RHV>AHZ`*KV~vz4KBzCI!TNyO1EsAfWFsDIvg*Ly0CbPXHGVy$W-{HGry zSk!=w-==;1xUHu}t7@)mYo4xWXs8_ImFp4>7l&5!E4~Rz@PZ^ZL-+N_HQ)1NKEB?; z?@U}t>_uk#X~kq4YdY>jp43#(eR2?T-2bHKb0TKaq*(OI+DiW*i7nB*X9x)9!@d38 zkp|m=zP?hcVT)Q85kbM^j~|%{F^~2cT0(nMELlTilkw>6AgzpMY2k0-%~S~sgfhRm zxZVVXb$|NwZT+#&39E!DGq5_O)J@Y>w6wH{2n!2~ohqBuuW^Zq{BHZdjYZu32J-vM zt}obdxe^V2p1rFvkN~z6;|>%Y>H?x7Ms4mhXed@{WXKhCyW)G=iC~SQ5<69=tXgBw=5%MxIhs5r&6rQczIS|3y-v z`w;^*2c~Wo_T{X4rN`S;d2JCW{z-Ma#uTgBU&9RktSt!Hb$>|y^XK+GiWP=-&Ai-J zA8g=x5f>VPIZh_K<03rTb0 z>wKLL3h>eKvabck?|^Z@9{p=n0L;Rql@}>p`i#@zs=17qkq}c=jE#-$`@BT|Ny33X z7Ei=ceRIpdLL$q$_M-)3iN5ga+T6R=gV=X@VloOvY+{lp1w11$35kI7X}*uUO=ijK zrSmA!c|CiKt|5gx)kPu%SWwm-V38#?lzfha9d|ipUkBmMWW4u0$-A)2&H0X%hcQhGX<@kLjXiCbA z1qGwRu!y%xM51;UmrZT+ZZiVo{ggL@)o|}Ty2U`22P4ctq$*`HDGL~=7EtY4aat?4 zZ*WWH2fam_psyA5hfKLyZA7l)OFZ-eDoSF=nqR1Nm7hk zUKtZw>ZMmrRieW$af8Xp%-p-vIqEB$*_7O$gYr{PZbLUvZG|E7u`%}rU4vPDNR{a5M@E*NFR^o0;bgnm= zmC+L1++H~d7=8q!4-4M^juvnqB?}KVmDv(LyGRY~ z+C0_N1jcN!RmHp~=IKIi1{GP_%=zjmQ$-#-TkrA|h`sT8gKAk%@hGM^Hp9Q~yE`xx;>>}u%SSQ|@t*d%H$qjmjPVN%qeEI|m z{c*j%ZAR6(Nv7}jc7MOQ2|YyRE>G{kwkIhXk4Q>B6(s1CP#Llr^$Y+5u?NZ>Z4KWg zQGrMbojxc?R3Z?n3JL>-4n|E<$d0)=zn#YGl+;v9FH0r!pXNxqr(ZMlMtqhitwCqB zDBexUH}7gZg?=B@OzDK@PJK+M+~G$##+}Q*sKk4nvrEGVAlJ~}Y zlS1&*;9lRyGj|6-!rYSjaLeNfegSWh+cFo|-7{(jEGWhwCDLEwf&ytG)3f4w5bH!u zX`UZu*CB^C3ZZG2;eBsEZ#fg5zu?{O%FrKu_Mk>?jVXv_5Ks8yTB$HX{}UKHAk z4NH~tQc_U?2`{`l$rRws%cD75bGbY$u-Iuh8LR8Dj$zG*iIKwub?OyOOT5Dqdnqy` zmVb?L4VSzm1Dbs+05r8`Wqmf=zo6}ai+UI9RQZ%yB@oS{tTJ9X0?|N2`C+=`Bd?wF z_E1}@fIa9E2Iwmx2TYW~kZF-%(P0*7-n(gC1I~W)KlhKE4V;6wbwTQb@UZj$YCgRr ztE|nf-_FtIZK9<|H;LVY4l#P7nD#U$DipGo+h$A#vkX(+5E`o!)gDrT|M_hSJ$3^!*s*=hp?Lf z0n;P7A^FC$@;qPf0vD)Bo1M+pl>PQ^8DQ-gUk#G6vwcWTNyrpxn9IbNr#3}OOy52t z&k)lnG|7yV1-(`Qk3hdAbbhij5&p%T5 zU`r$)DtPa50z-Thco1-vki-@{HSya^ukWS=>y>>AhA9L6?YVbNPRg+#K2Y1DL6|h4 zkvKpc#G>^lYm7%WMkTcy6NBb**f~H52;V1TCHeO|O%dAK_P52Id>>U`Y+oLK&%TIAPa? z>&>L4`3i**&gr8CP&3BI?;LI?c``^AU5&fltE*JriWq(bykAg30+A{d@CbCpLuW+( zODjlq`TPdI5}l-E!;vWj+iJz%93Co1ZG%^STvui(?7((8nmIiMbF>gy{mC=F-SzLU zd=5i^L)vEqUiQI>)m@KE9%SLc_bd4M30xV44rIv#5sUF*9(~6)-Av4(lLt3Hce4t| z9~~?Hr2cn+32J~yL4O9iY6hN9n@Fl#;p>yA|B7lzHUXI60m-9i%6ln%^3(*Wy~4T) z%!%v6sW4QB_1|i|5v_d9El#13E-yqI2x$Gam!IB8Q5T6g4eof?7(Rhu2-~Q8PeIEiknix{FDvhjJBYewChq@n zQp?obQm)2ECjb56h9nw*J_1x2hleu!u3HW=1qulx(j0UwTJtpx4N>jw5QL6$*WVt` z`tLdpjkE^T)l7Ad3=Nt8cKr8p7`V*+l-a~~mb%ijfSZl2DmC%S>`RCXlfmB(c68K$ ztJw3y$(F9+#rm@47lz^5>%#85Vt-Mj8>n2$-wUyGG9YvS!aJ|&db4@lVrHG(sK4va z0*^;3qHkul8`+HK*f=h3~_65#9Z2lp=253Jk+6 zP=J{vs@wN@F5%wYXcAw7uQuve9y;#(GUtDHJp}Y!2XI9k?A`k)Dz@zO3|y-ptaIPt zgTwz$dxTFb5DcRLROsnn%CrRt#Cf#&WVyl72hdSbxfaus{;ak(aeeyVN6Y4dqeEHQDoT4B zL&}fiR~?b%1RaV$&qPr)AWU4KYnMxvh5}x;wm5qHE{=}W+;8(x@+OJu0S#!Hp%SDM z5`0$2%oRH|Wl`I>ksPaOV*{Wk@D~DlZXp$F4j8@*Du`;1TzhO#HBzEnQeq6O#XoX| zYVIbj>kJCZD4WhQ^jM!Qx?JT^`es{t0Uv4!O%@Rz0?m?Ohs;nrWFRg1>n2EB-BN4a ztnIJ#8=j9#i*&^$r`EiulHEX!%i0A|Dkp3|ne-awt4fGjQk#-viZl)5?WuIzNKW|D zbE>n7hGgqWg#Y~&)YDVc^epgw_b~SET)M4%S*&-VmTJic`p9cLtvb+ohAfv^6n;V3 zi^A~&9)UpUyTaMYdg}RQh`Y|Cf(DO#bD{A_zB=qD=0a{8FO3_>XaD<1QuO|0A`fJq zeZzj0Nz$uXrJ`q_%-G!>vYD zOG?PoCCncsSX7i4_pBr?_oOJ$eZxc1{achZT^NVwi_*&h#7${~M)=jrpJZeu$jc}B zKda-Sq$2ATivO4=a*=Aa*ODk;uF&C`&2ZM7p+Hjdp6y?ak&VWiMhs&LzLd&ir-8Ih%LQ?Sg36EGGVcJ~ojO;6HjN{f-%f++D0Z#{Z|0jqQ zKWcZSq?`!`eUi#4-;$4j=2TeWz#9}G5DWMQ6|Y!WxSDdx($&bT87f@QS&{y`>`VBv z8M5(gU*W8SCu^`qPg*9^kd09h*tU%Al09&$5ceGfM1%xD z0vA$LtS}s_1sz10qF9a(pTYxk&o^$z<1INO*59dS>~Lf??oi<`!E;(^HdAT5S!H>_ zUH0Ur+7Je6CV<8wtOxl4hi`odcUODdxgLpzQxw!X2xU16zJxnWi1xrl$JvZoWO|39 zA-Lf@$&Kl_EdY}N@zqoCqlHZ4w6*iGk6DD(T}r1#@rQ3by&>O_UU&up7re-}0?J+euLg zj}>CCvB_k;r*OTh+BnAivQ8bm(JQYHtrUyM2)I8y%R-TfLQgKd_!5GUuevT=b&i2s z@OPtE28{yJ&CPqrI0mW1iTQ)g6`~1H+xur-8D|!Wsx%zCoE%Ei)YJr=zZ?C7OgU@w?gkNgqV2N~dGfE>?4ml_ z4HYtmpOC(co0`7gaL7jvptyYG<_E<@b2Y)lp~`U+n0ftV_g3#)G_WZ@2Y~zvBsC?g z(B4hScHqr{TnT*MQh*a7Ky^4648xb-98YjO&HlJe4;L2z5&Qyb@lyzxxE7%i>+QB& z*_;}iNB438rx9a<==M1>GV(KOz%2C*!rgfG9w1{7K3+W3WoTZJaL%ABfmN}Y{Vmb` zPw`v3~1ej}URd=v=@ApW}pnSb>x<4FGA^c9r0&es2p z3Con1w}$)M8qoScr?pXha9|!G95Kd5tz4Nd<(~Xe90OueJyNGJeT=EhAK{nYKc67K z3dgV@kQI5*E(C~%fW96-_8b)U8I8tL!EfOI^J5{VY}v(ZW1Q0MM$V6^;QnNflI07O z0ZravsdrPo!AY<7%P~eD@tbFX44PnYn(@qi+zdD zN-#oeVesL7YmyR>gU+SG3oqAC5>=)X`34nol=r)RG%!2MG2#da>-sO>Gl0GFqNKiF zoqK>EM;4)M6F^4;yPXtt0}q~z`QY|JZQC#n&3^sy%f1I*KH%SZ$VY}v>ulsQGY!Ww z#>bKS6F+|Xz6FMbLpC~gXR53Nz>Xx-yF-AzdzHE{}IF!ep zmPEeD#p>G2v|%S)2n6E)EJwIcsbC!d3XUsVTf$cNh~;~#PkIABE@us`-a>oNvVY9y2@Mg^%2-bnun2s^@qS1TQs7^HA-vjGnV?-_F-=R@ zn+}tB_o=KRgBQMRU0#fuvSOM5vY?@b(#|Jngbon?va{HsclS+9Xc>HWb$?~DM69=fqmqLb z-<$5_1$#Y!1vFg3Ot8|?Uws5>$uDqv2}?+Hk$vtBTxPmV!*}0%F?ue$=BW)AHDe$` z{y$Y+^LR0Jg#Ay;LcRH0Mo35RhChIRM|OAKvuYbOjo|!pcZ^2tN-^hyyjs~=!xi^Qs!LYSkcoiX?BUfcj zEu(j*e!uO_7R#5g@^Xd(tr$8T!?8j!E65KJ2TOhp7b15}a3Z%+|Mbl`|iC|D=ZhbH_FDZi*u5`w46CS|Z9eMuxb6BrTq2yU_i*we>#dE@uQ%G{K zgOh`S9AF6Vja1S8`^^W!PwVf@o6!K0FGnk1W7%gC_s`KoYpkZDka};m#7nf=!1KZ@ zu{;k#I$9r}?4(H>Ce@heYNRe+gaMQQWH?&@0Y!AZ<2-_GXZFqGuo{MsissUA0rD}3 z0ouo~nGJ@oJW=#9-(%c$%)3C^?Qb8vYYJ&VeElJ{GFdnOh4v)w^zBS;a*uy{WpL-4 zHziucvZN_U85!leD&_vuaqmBW=?vyHz5X2**3A=Hw{m4623>d9pRc=Wi0ZLwa(WU& zm0a1=*Cl1@3~R$|GM>=|%w0g>_!6SUE0vR$R#0S?JUKWqF##H-jo)J7`0=4&Kgi4^ z@lVnMSIqMAw)qr#BqnOLfZCdfh{*e}1nX_uzHY~*Juf!4UAw(khY^_IHFJkSw>GH@ z-Dg&oZ~KW2(mC4sQBhh>SF|(!>ILEnY$B1gsL#FmUJRmXm%1zOPVBM+wqoAwyh^nc z`8-u{BZY&dWQywha*eZy#02UPuyZ^S%H`iQhgfN7G#c~IV-g}7Oig~}N-HQZ8;*5f z!nRRqcszr<9vYIjX&ep)2P1P|OQIw0Q$#dKQw3%WYTLRy&|-Q3|LRUb9MuCrJ%w@s z)|9LDqyljf5t;GP0u{S4y*$t=!cz_D`$B@09Vnj2!RpZLRlR)|^Zr}zzIB~|t$*O` z>}-8KN1K4Wd?w$~x5&JclPmuu=^O@ndYO`tq^P8@t8b!O;nB{pQ!FYNPk=W4lP~@rKj3K# z0U|_|!*_I{mn2A|Oce4JjlU%Fd|4`uL@Xv%ZtBsEDNUg8Wr~+U@h?u_cGKzP$ya_} z@t}JjNa+2KGeO^?cml)bMo3z>7NAvPP%90$rHEuerKb1h4i{gyZTC5zmBzCv9efNU zMgtNH|EcUlu>Hv8%Tc?x^m>_DS(E{fo*>8L;F)S^NpISPJMB)_oC$WV9+7Uru$fJd zZ)(9<2_310(L+_(<;I z1z|h(!_z5xy?!opfszz53X1KCq9(Juq>MfktBc_bW_A3~u!Mq1+hcQ$3P&4iAzk<$ z1}%34iN$_ATnohM*6I*Xz@YUjHyO`&DO;;XAkjl4bNHJo#y`7x#G*fwNn z!=(SbT5?+2@z`|58pfKVqhpqM;tS*$T&Gok!+i}zl*q^~>Dgla!=xsZu~1PAeA)+r zcE|03c2HNnsnCpW26ZI~Zw9!;Q)%js-6_bFyk)p3I9r{ttuvalRFrIY*f zbq}pD9vklN?rv>u?V55B6aAH#m}ocw+JS}Z#`209atjIyDCWuDCCDs;y<<=Tbac>7 z_Zy!*ld6&aWDd9KW;zE9^s4Kqi(`WNE6df-A5|#eh#!$F6Jp*=5RY6Jo6A~%t=W<3 z906KID;U|*bbFKsNSEVijg79<4#Xd8 zUkw^_n_ZB@t(c~%CLWVnq9C+UZdR4WsY_4#&@rvjM5Q3eF*Otm3RilY7c-L@NHI=2 z{zZvug!GttGMJ=RRa{!UyaX~bV`Y^=0d-t@r^cXQSvXh6%EkuU8|kQRwCQuo+-0{u zzsO1opRo(ui?k5)EmW&Az0;WvCy!&knVfF40S^P-hapb(Qh)PL$#T1#4Yo*Vr0v!i z^JA2bj~E#y219#MeQiYpzxIKsWPc%$3Rn&4xH{<~JUzZj-TsDjH*DAT}!-cq%s5Gs{no)d#Z3gPA5OW43^M?&^Ar zDx<~uS!Da~+ZL`u(~1=x9ulO%18%5yn5IxhX>J3l-%52rT)w%%uMQL*!K{`-4SxP7 zmU(C~qybz?5IiAqaW1>ld~mwF6NNgeyTF3EUEeyj_#h{!slH8l0U-+%ciGkrSl2lJ zHkx*-XKFf~bcG(p^0_)lPOVIxX3b>|ox4I*?57+u>oOZ#h)C262UtaX{5ze#!1MF{ zMk&=sbR$2Ns!BU+%bn$|@f<7CKs-z>9XZfxKuIssk(w_$UXmuL0_j`C)i)@#L(;Ev!qQ* zqM=8?wkM!fcM{YEp)((%Xw@8-VIR8XGUhmD6$;eF=#U_i*gZdP3Va$9PIgfwM%PK_ z#HNddEMEHqXSds@8sEn`EB1~JNk7&Qw7tb$A@n{!ICe`_rwB=8by2psuwJFGLOR~# zbYubNP{YD(JSn-Hn3fZxG^7Pw>k?Lk?JDp>9qsLfsy7C^2DEUsi2HiIL2D6l+Eq(u z;MiV*+O{1>^OV_UM`^lXr8f*=)b!%wq9GwZEHu=AUszQ1+6CG;92u_OWa=WWi89Dp zXA35Js8B0OV?!jl#G1d*zr^qJYf!dKlcnh6a8S0Wso_wbX>K0P$;t@`^Y*O^vf=!a zmEzNQHlNaTD_{OfxbBOgu;JmNZ&1HD2}$e_`@rO+;vtqWrOhek~D4%wZRU+uL}tZuIE)4 zfqRu;Cnw?w99YVKM2=+ zjzCU+<~pBQ-TM6T6Y5x%lViBx?+&SD7l^%O6w#lYMeXi#DtKP#f0YF;Y;lT^@=T1>0w}99R=bm1P7-RG&uZYDZqZt+6<)`aVucL%_)yR`@cLMqHPsUx2nsC-{fsrFOGd z)7|COWYeAe%6s5zyM-$F%J_i%lKJA>T5P1|gni^C+@)Q?Ud+{h(q0rObWb zXpHCP61MK+>*VAhx2I`kWhK{w0th;wJhZm4F`6e~);1?Ma7@QQHBGwRHRK(~1X{AM z&rdb%M*G9W;qD2lIX3M*EZn0#r&!KlvtGCaLngf(b+9=o!xvQe1jkgKWcYZTTM#4xPXzNu6%iPL`06gdWPCX=VD7qNeQKb zTes6w$U+T+-%}CpBeVIwxCmG68rfKfqw*z7D~Iw*Z|@u#2@n7vq1fSWJ9^z9Y;l|a zi8E`cFj#J&i_Z@+NQE_1BPWj-`!!bjcL^Y4_rGIB%^>3!Dcl^6?4B!TPNlyIroKw2X8B zbIQAf1W{22gI}KDVZRbd+f4R$QW@cejpcDwn2og0wRlcEayKN1!Z#fD|2P^PMjjyt zQ$tHnpS^O3TY5wJ>TS8c>CiySXj@mgpj}EO(_xY8-!k4He0E#d)>v+18qVP%)CIL@ zi@hjbHqYtIRI5O^zwj+OmYSkAFd%Cgd-d6#6$9u9a>)dKJ-MzE*S>Gi{N%aKvvOu?)Z1>^a2x;Ee zFavc(MG*CT-PlpSA&-t?PabMr>fR2ENN{OC=5;7p{wem0eTQZMV!YP%kfM2X)OslN z>p;rBkO)3|{$z&Xmrb0v)?1@eth5Gz_Aq+tfQ604*{`h=F-s~!5OO|n0uRw?8XOOW zA(H4vsBem%_z;=h@GFU;KJ9yK+3evzLLSUeACX;6R=NKiL61L`UhA(x$j2yJUBmM7 z(b3%*S1DDr8Gz~F>@VMR=M~8x%v7iHV#nm7Wh~EdZD{qUOZ!2rSVULu zwvRb`O&&UIsO>@x@&yt&g-)mG_6Vo53Y992h;&{H(6fZ1?( z0LfN0aNB8OvyvCz38UZq`3#xDPf}&3+DedKk5q?@Fjj> zKRaX9$NizQP(<{|aqaG&o?~qKN~hm=EgYPzbJyzk!3@^1HZpZ^WoX2K+=|HGTipgq zx^iC-!T7&1GT;ZzJl%gjV_{*fR@aDMo3}p}>*sP84tFCZr(vKnXvutYh7B~4T_<(1XZNWr@`o_BL>9*7&LP8E_K?nG zC7Cc&H8HjLUZ=A+ac`}jJI2I@N^@%^*aYrO=nz15k&#)b))Zt# z4G(>Jn;@U!SQVKJII{al7dn+hiKm>y;G|OCJhW~F}t%tT*u|n2@xUk(0|LB_ILInU)Y*qC{93>JTJD$Kw(HsKpBW9W6IJZYgjeiet-zC!g+I;q5)}a z;q$sW4ZmJ-ZZnBY2$#|!@YbgDm#)iC`jpFSx9;w(23T>4+^cE+z8 z@;!bRbaE)glO=z7@&cPhdmjfRPl`&2qT=H6FS)6v>8v*A^7LbKuw!*3PP+Vm2gKo` zaj-MU9tN{)LMZsx{A5ZR>Cw4GW{nmX=ZUlmO&{SrlnYD0vs!6SC6==`$IYuHnXBX6 za2m^sGHvnUQ^D2N)^=Xnr4IQ@anqS=cIyb+R0G3f3|-avRdg(CoVQLkL0-3DO$iUu zuk92WCB~1>y1JXdEHj+_=K-*e?xCTJ;bvJTEo}sRklU78E)Q_uo+md8J~D*2)1mpV zSSn@UUkEr~+d;`_pj%s8AOaa48S3hq%Bg5@L5D>$Uk;pPfWQZYl1cVgC)-fB&Nwsk z+8uXfgN7@b!AooE+7-<_md4x!@__qte!*~C>3e}8~ zCZ39?Z*_GQ{U!IW;^N|s%?*~Nn~(%HyTTP+r6DdQegRAXX!Z1WKYy0c=LbpL%A;-i z^%P0LhDQ;*hDdAC!}aD0HKrNkCkIfE?awJ7*l)A*KRLm+|82zbS0(*Pz_;XKiJJ&N znIqHr{PPgL%S)1%YIwiiS%b`XLg0@o)|TN&dm#7Si44C))n!4jOnKMn-l{DC^~&Bk zOKF!vkneD5%#!lG0x*j*W}Q++%2nS#op_yvM6s$S-H$2nPC^H4!hD*qCH7BY4R67e zjnOx`L*7odySD&^0~1{H&A$C1hjiPn9E2ROTIuj#VgZm&Jc+Jiu7`GJ@}sbLu+5rr zevw=IklVem-AYdyHwaWd&J_^8zRp|0ZHl;B`$A3K!c-6;qY-1hFHk6RL%vQ-cGg#r zpU=i_ZDC`xy*%9^dZWum@5oYHoLB+NN^&dA%Ies>9mx9j1)|R|v@AMa7Q`AVO!P@g z3Zyero11s^bhz3F_BQCtSTa$_8ww#ER)k!xLmu7=G#c`@9n#kh(JVSgJ-ahjneNZs zY&rAw^8m1x%Tlc6WRh#$Ak}jBi^h47l=8!ezjo6MP3}qsDphNI zk0f9>cF=Br7%dH+;f~pCsmxqlC^y_-(5A#v zTwQx_r)Um9qiITaz9r3TeJ3QyAt!p%mHrGBecyG!hSKGcCxFE%5K$^kvc`KNOsA`* z4)wXOmaN(YDa6lE|4AsR&IeRxE1jANosdT7WS zbOJj#IH-Sb2eZGvM`w|eV%uYYE|qY_y91;2X-b{-LPd?cYp>R&I5IJ7^b5qbdS|vyuKinh_{b4@^4#$15JNDK{Ni?xR+aH-Q$vbvX#3TCYYl!oI0fe{arTolXm_f&cU$~HapTRUg@?Pp%yqwb933MgafNh{ ze3m$_uc;dDe+>C$lK2o7w5*iw(e?F+w9G`IMu*>%M5#0Z+boF$nw0s%NSezSE7XD+Nq9Qxm>WL>Ma%e7%8jNsWp027!f#f}Tv8lzIzOhGmKpRLK^`}poGFh3k z4SD$`xf*VlV8o@sFZfV*A08@;K&r@KGp`hr74>0G+el!SUhb2G23EiFs|d`!Ys2O!HK zd>0P=g9WMY0#=10H}__cgeIOeubfM1T_W+tTjo7`O*8V6$jGdyiIqXgwC?lSXwZvn zlnE_NV2|JjNIsS;AUQLKA3v0h1OrEC168GiaB|lvI6M%KwL#1Xwj^gH3t;p=P?0(6 zfZ?OO9d!i}UM_ZuB#TL{S%C8RE*X%*Jl7u%%%+j&FZDT%^_O|vO8h?2Mq|^SO~dkT zf7}`1;kkxWCAz~|ky7CP5`Sa(AHzc`1C!Ft`Vslno@%iUD=8eHveJ^B`8AIzPP{?2n^HJ#Za>y zgr_DXqF!D{O2=apPImj`(`y!ctJ2mw+F}-q&E67e3Sh)oUmU*Fz~x^r6p#oJa&p>O zTPwKM3dc>DPbGOgdyqUNyd74dw>{27TQtLr?;>TOtGS5!mZiBPOS&g7BS2CW; zU2X2{1W2qEjeB>+YDXWp$-MORd}`i-_4d3NOg{Pc7hVuezMjd==6cfh=B7pJ1CF#S z#5;c&jMhQkEM;)3fEnBOvA&A(n{4Ga!;P88De_X~_-kI?WA3D-M09jT<~e=%%qDD( zCtqh_)jpM#+l@B@yjf?tdlG-WAcOk3rjmes&rG^L^7E(M@!Be8BlWc1#z%Ix+V8}H zERyvzG%BSlWfBUMSqeaNx$zhcmsYw?To5Sc0Oq^!=g$%h2$ncae|tMN>m7U`0Sx&C z7w`<@-jIV|NBcx=-aZjb8C9A%SDCM^0�!kwIdY=I5MpO=?u}>^S?U+H^qaYYpS1 z-H`;i{XP=MuOwlsx_W12RZR{zwWafuqt;qqJI&3^#tvGZ*P1UjkNSn7am(RnVNxlN zddm|^BBbAYDp1>t;73A&lb_hx*lJGpbiRL28fvECG~}Q3Fh%nH8>H=-jqS~f{o%Ip zMi>eXvyx(ToQfitJwb7Mwvgn_&#F5NrZguoIUMDLWrg#D!tL=It+}Nw!8s3l*T8_C zrR}Zu5}%sdThD(F!`ZCV5vP%JLK?J@74?^sx9;Q%CTOU5*LWw8)`uxB#6FAk%wB(v1>m_xjkA(c4w+AX z%#7Ot!~-SS7?VczoWW5?S$Vqt;x#P400E`WHt6JJbZAKJVv~Yx;L!j8w(HsSC3hke zb7YmLZDwaV4SSFK!03SS3GU^MCgQz{19LZW<4ScxI8Z0q15aE0WC{HI{QY0N=oOVv z7@uS^cvEhyl=RsXZKkHC#x5*$Z&paS>8^9G&VMPvw+)dS&HJPoCvr%?@hUjCeX5Ng z=7$F9HU~wfDxdlkRXH%qng2Bs=5_6N-=zH)zyTIb6n>)DW5rvz(ALvK!Qr~T95cdU zHty`~By&Ybk=)qYlSfr%*~GFq#+<*k46IL&PY`!8V&~S#tAZ{OKY+jsxD1_}X@Za1 z17)tAPiFE8IE`nkb2K%d`1o{Vb8K6yodmE$TLqp>uVW{Jmo##h z?#Octa!@+)#6?oh4_HT_cL^!`Z=4|mT0+|Cpr(4ToGB*w8_%x}Z(?xVcCHG_ke|*- z=C0h<+NvF$m8JFlPx245CZ#WU>#L``+v5d!n-cW@b5J-r{Q%+)!kq`h($bOMUak3x zA1LF`%AJz9K1fORDOb79^8(n2jE0Fxhx&vtsz*jf1_%!{`ST;(wG_xf@7`R4!bt+r zo@0DjK+h7fNH6t9AcE{yKxM3`sE7!7in+SCSU5C5NqV{kkJD}^HI~#z66fOhys*mk z`$0`t5)Jr=0&=eBrha}g>^j0*4T4E11zQtITxRpZuL*Pa#J#_ywDGp$|FOc_X6)}U zs$W?wcNvEjbOhpapER8D5xfq0K(W!iO4&A|_)sj7NF*}M%Brnfr6(2mo#ZO{6l{!mx%xVu$RLNhXOaC8uRiOi@4>iJJ5;$!txge|N*#|}isT>>(MZEH+s@HN& z?xS-~An6)yR0G8t0o-Y;_6HDnoRgivsZ#aC(P56}I(4|Wxta8%xz}$LLTgY=^#Muk~zbexLQ%%*a9tD|_s)r1Q0wKT zPEwQPk~$K~8Odua8=OgV*9VYQP))Y~M1+8_otlPuaiyoHLvEyQI7DFI_M8-1)fZ4u zWJBJtYuoG(%>g7)Ooiot;}~J+&^+i$28m`0@BtROU@ZZ#)`OS3Gnfp(_8+g~S8Tm_ zAs_~-18btVYHDE5AhN>oL_KPpO=qD!VNAxgcxcMOq0-J-UnPouoK^dv*7LKm#mhr@ z_<`>oi(6+pFZVcPyF@tRLIx=rYC3)SS?Z(6U#IjwX*f|ayKMh-E1x-a61b9 zPQ2&xG5#Zm>_lW2Dg+V%v|dsy{f&^QtgQC8Z@P}PrR|kMVGFB0PAKob!q>4Nw(T@D zF*Ey~CO|JLw3pREt7r{RmUGI_)p6r4#dHys8tHzPJ%eOZ0cdW^{N&FM5Ud7dNpN4b zjf~?lna++De|*Ht3x6}=awi2pUZk;X-tmT{Dm54qS+!HqIZaAsBuCzNd zRVrD%+fq`gGMNysxw&d|0W-y>?j}CFxZG?xe=CiTkE4{ISFQb`E-C3;B+f}$r$k?H zdzQ&VwnFp}lKT+QmW1QkEeHmCw$Gt%lmUQrCqY{T`WXaBNFD(6OPC1|aa36mO zNmd5ZNzqXu66Mj*fU+~4LG|3bd4iMk29uVlNX8d_it7Xz0q7>rYE*CeZv1t6&@lnC zz^w5~{IG1tbM~jIu0C`+HA#>kuj~J3fVv@&F&`klQmj)`dFuljVD!7|B4)%XE_;7a z(B5PN`(MC%S^cK3KM6<`Ab-V#f@$%!p#BPa1;SmtS_hi^ld2Y0P2zfP-X57j{o+s) z%Qa=XeisM2jQp%=f2qcz1aUV6`kEaK_R8n{eAYie21Bg37n~@{*(pXq8~kL$XRf`G zIDLWlj#n)&)wlypunWM8DBhVNacNrI%1=f#xv_*rhW>*(Csj$t#wa-#P5wz`8V^|Rd>ImSnKXHChgJ=>#s_sWa_ZZOb-Cb^l;7B3EG1b`by z%hvipU37D>WLd^6y58g}LTKbMiXe%hiXzAUO(s6uJN6cCfL^^hQ?{>W_KVJ&`QwB7 z7-BC4Bx*oRTC$ji%`v3O%~n3LbS(pe+Cw4V{OI64IQ!(%w{Nk3*}JV+%@M6usbO{m zMRBY0C}jhD-SFrgb$ogGxp#=4hBI|=m;e5l*^zV@2yYwISZE>cm;s^~2hRVmX+xPKiA^_4*wIa-gO2?&hqy^S6%o_Q2Cb2Yt=)P5P3?TdX@gN{fBZMX$w_+Dc@< zj}RU)AdiXS6d|pAfcf)8H#3XU$T*JSnR;XW*`FWqbF4R4((6yeVUkv6+5Zt*xhg}a z6neFJh=ef*0y|5FB~)wUE#??p?ThaB&45Nj35;D9i{k=Ma@0iI$nVI%3!1}NqqfK7eYxr+O&RGAe{R7ArT#|Fk!^3qx zeE38u-}!uv@ci`2M}*Vu_k(uHx#BB9{ZX+4JPgdqX>Nb2gFJ^ zVieA5^&&9v83-CAQ4!Ae5*)4?>T#GwOg2=aF{v|mW^HVAzs>i(DWv^xqxJ&lU8 zboZ=OJjp?r7upQWx4F@n9y112?;<$~rz# z)auw$X%Z{Y%eXfjWB(As@H&QSRNbl46#4M51|2htDmFSs?CDFqy~hd`~N4qEf! z4sSF>)OJcw`X~t6?E(RzPUdk7kZx2Fh`RtG_$9xzOk*ysXc>Jm&E4#P35x4&YU`g#T= zR0QEBA5vjMO?GlRZL?aFA*nyypmMw#;#i6Nj1ZEn3;*q+_?Ko6aJ5-SYqp^(BFank zlGGmw|HuRtmzHL8R#L=qyQRY=)Hle+3J`c?+)jJ}H>MR80_QBJ_=Mfp69OJRETy9h zXAF#GLRPNK|5v@UYrMvipo;b79*7|#8RT`glr)!paZ0~W@|lgZC;zxlf;|U0$f&m9 z={^cJ_wCZ=NOx*wP`_^&3E21Xu@ORG9C`YPT`NwN7j}d>zV)wC0zOg4fQIZ@g@Q@D zb2_x1_45;m{yRFQ?3n+ZMul~SGjgh`@usH6RvPldH}Fzqx_C2J!<~nw=!8&Ygx<6x zzp3F?g`Tv-u?1T8j)8{^1JxYjo(Xm&R)8ezrrdOH7PPzX&jGso{}Hw@d^tMRC=!jQ zAiMrj=sztAY=MI6iMpYx*`(z5;y&=wuN}bOffL1EojqKJXF4dj(im;Z%8BagGHbn` z7?|L3H4kC>-n^4Vd6X(aPGVh8gDt12_<3Ka&N%)r{S|h(*4Tas1O~hyBcG%4bZBxi z2t>fV6{Y2c9S$JS{4Zqc`Onk zk-QT^q>A!i>^2Ph+oo$v#-ok6Dd2?Jz#3owN7d9tHUNg&0I+%4uA0t{!uI5sK7m0# zpY}(3>Wk_e_SLmeBSBC7=sWGwWX+}T-+8$%R)D*Y0CxqQ*JiEvdLvO6&aRs8t9 zeJ%Q}T;TS?Uw|1f1!CVjtrTrm)^!d+-9(NX)v7l*Z==~x8TQvr7Z(e^tNs26-r@tD zlB9;T9}x+Kp#=|*yns(>rqoF0-=3&5?2qnno6$$y)5poYa|5z7j%65Ju+D72KA29Y z)k&(vLBJC9Uo&CbhWZlAE*`Gw_=e7_G-^*okZlUJ;WcNABK1THS9 zzHr7a72@fH$)J1n14uGp%o~zY6YKo#je)wI#;DRLjGvg>AOoK?or@0lBiIG+Y0U-} zKD1{E_bxSbb5P(!M&u+9S|o{}wy~AzjQ)md*B>XkvV1e13k8-gkOx4(HCF zukZDvmKV&(UupT20Io95#@yVBwca+|TGF0^@-{hGJw$-;V1bQPi)VM`fTs{Cyxpma zB0VELM&0qOKJD%IOO%7U$i?v*mUB~15?^NSXoZRXd|eb=yp7CCLS9Qfge)ipcQpq@ zB}P^fk?E_+hRagOjkB<@4}gSWsFM2rMRxx_XEOR8Nu|#5p1L84j|BCp<<^)9(}`N% zk4L}MO(|bJe+F8@2Y?4tC%TUzNSvq3SJH`e0%I~(%ZrQc1Ond-7Xxj@-UF=?pC6Rb zs8?@Lgp7qfJFPTeWw5j;JEcX%0y$M6SRpzOllBR4rn3zIV7YguOq6uPy~CmKgAD`| zm?{CMBAU@i2c=f?SwB-Y_qWTF4`z*@wSl>KPp4%6;9qEgj-&oPw}#S4rcBn<&=78| z&Al;BkU0y4$u>zbj1eDBMG^dyNTn<~Zy!Y8AyszU67$t6FR9t2E#ksyzUrU$i z1B?BC00o}31a3PTbNN32)(PkLEqwVQ#R^`Ig0MF6ENI_N&BH>(Kb<@3Ehhwh5pOVI8 zMzQ6_SZ~nBM*0H5uidw-cc5#65syh&-hg#pk&=T!(hOxJdTcuLp6aw zC;%uTThny5hYV)UpEe`tNJ0O68!b0bcXgd+yN^g@vmRZc@KI~r?xH{y#vc@^)nUAO zo6VA6st?T++n8kqXw3Uj04cl%#`lZen>QG}(Iu=T0&>f2_U2z@!^P4B;G!j41}MkB zap>Fs{!Nh%iVO=op2|up^jD7o7wzDHyVfK~#NTmQK9+HN2$9SHo>urPacFdQcH4so zN?2Iku>ih!LaQ-v^alc0H*j@YKor;QLQDLPG5D=Nz6rPv@WbcNpnd5LNBre+#fPGS zle4Pwaw6bZWEts{&VPr8qk;OwbG((#+Z*7fqWa^dFkmMzL5UT06bnmcwoSDb~GwAsf*;pPV4r= zubvuobs=3}H{R{g*QgfeZ*Hz()NApN$QL}N1#LJVLc_wi-(9#$ONW-~tIl&Nfg3mG zrla|hFxRy8DE%)lFTt>LJZ9JW%1S2S;FG6;juEoET~QN#)ZaW>1!hr{KmNkqt zi-}~W|R}V5WvK{yxLE8{{u$PhVv^hPb>^d z;^5$b_v2v%jv5h^ip^68NTqYiouSf+oVHZJ8nklXaX88u7=iMI=|AS+pM?R$oyL8+ zF*{YpPnl$Attl-%eC=>td0nlfWUQ@+iS}kT&&~|wDu0kZlOTD7kxB&Naw^yC1m$cV z>y!?U3`agjCQeaE*4BP+55%Q6jo0!#cnCR24erX_1xVA$&=tP6o({L!jQBm+@+^soy2gCm zuNL5^uU{9T;M1Tze?|p1{0AB``W+U%+;J(U&XKW8X%HSOHrmH+P&(|^0xfZ%!HF60 z@j*a#pcT@UI|j-w+>UpifLqvMQm5CWt=3@wN&ou1>2ya5ga1GN|N9}_^*(7{>zymN z`0iJiI6W;SBBIi0ZO|KAK^G$`Ri3M0Hhr?mJMZk7{SahRo!VpS;8J5kUk4H*qHII2 zFDZv3x|Q8s{py@U>(WkAq7(kH2TV?8n25ge2jz}cD{W4>h`a6v`qFTS( z>^mkqal>xU{fky*t%1cBQi%jZef_Vp4?tF=U22%q+uMsG@T(qNZ962)Pbro!H!h+z zFkbL?e*W3vVRx!u%#_!{!s7hAR!MX)XeqNP<|5GrT}nEtDex+NeJcvi1H$() z!d#u5#DV$NfP#jbi9C;cObzSdV=$~39HrWdTljH<7~aNYGSi=k zIt?0~J)S|_*$Bhr>Uxoopa(4|;AjBfy1zgLNwzP664R@Q-cJ};mdV1OmIDODRo43YZ zeD{ZRxgjD?IEsQ&CNY$NTy;B3-Sf#vbF%%=h?7)0Jk>NmdapB-} zwo_4>do~?B0fWJwfy2XI`I{g4_wV1wshQxO$dwL!=isO~1pygxb7rB$kPni!ZEv2# z3bq<*r!j-rnCB!gX5(ykHH%w5|Wc@BH3A_<+-FoW1Oznd_e8Nm1sjFV@^3; zfY|)=8&EGsa6`|Hv!3zYYLq`d1ugAE1sPx8#t3Q6Os7GRqGnf)SJeO{g#Xis?C9<)2-cD{E7Tv%OuU<4%& z_?vn~O{+E6GFO*XJeetek)a)M^Dk(ke9bum%z_Fq3z^_b>P22?!0+F*ni{URp6?2ZO@5Fp8W(%swpZj<#|tK^v^K9#Wj-7P@A-gKo=;NohkQU37r;~}HEiq54`#&Mkt z4vn8pH<0=M{reYW;8RB~qoaQwILNus=IRcdL0zL_g$F=YX%q=cH^uOWk^VxE^))PS`h*y5rD;_)@bb~`3S@{<*@Z6UJsAFV>~c_ zaCvzdG((b5szO0PSZ^+BphQgcMhIMw710v~Bt^{;=C}o0wY(T26r@$Fmz?PC9_uTZ zl?fEi7$!$0y|LODbi)_>!9mO)9F~^*3LE=bZ=W3KJ3*Qe2vnU@MSSsY6g1M+PJuEL zdsgfWD=5;S@t)mK6&|WWo0QpEv*F$5yDdd+|)bZGQlMmvJ9JAMXlRTXB8Oi(fazty&hK&WTPfZU=yrzF3P$Af*Y%U#3~%28`X&+SS!Hf~ya7 z)790~!7OaHXEVwU3{XMj;g0DoD!*Et6j^D|@(UV}6n1oUkr0&b z?(Poh?(RAZ{QduXkMq9!9cO=Y`QW&HxSu=LnsLoJueIhye=_?>y`cZPJIb@g zMcn%PdZRp`qtp}>GSM%dGE{y2IXDX1u`|72M1ocof?KA$^Il_R!IJS=~Pkwxv^P5 zdF?y}w9=rda|L65zBi&a-{@tF1XA5joa=xweBI&?3JeN+jIvDjE+-p2S_?$1XpRQ9 zV4_OEL_IHPpeLcF9q?R}P@OXtG(5wt*xw!pTB?i{RA!x1GucWmJQeaN}3+dt4I3!hyMGX z6w}R|fbRrrxz9T1#K>fpZ8gxEtft+)2@*7qE$1(@)Jo( zI5JWca(Vk7=Nl8}&LsvQ_!%4Q@9ONl&}!{8oyb?X8Df9}SdsZj+^^hpBXVcwuoN!s z^kQt+)$Xs$9h`PM6iyd#%duf1br1X*FE1pP?7O?|f+ur4vR_a5`AMD|8S}SON1Q@qO*CL^q(H5a87=PD zTN2Emd6(IJI@Kt>f zaRDaTdKa(i(;nFExxUUdWn1wnE(@SKI@sF-(!98M(Ahh1bsW#lym2om7=?GW0Cibs zbb$6e?#BbXUxm^G@y;BUb|aFL!Hl=feCvKv2v+~hUu3qof^Arg6gkPw`u|Acvhpl{ zPhhs>u^Qxi-;-@#16y0aWH&Go+Y*%? z0PXgEnmmresF%Zom9D>93Mwwh$jh4nTL=&;RY1WYjFuQc1K(nT4=$H~-}pHfGx-yZ zrQS@=YmuJb-W#ozPOvN$is}O}qOV5#RR}Rk%({k$&*I|}c$F*L$9{trseXQbLIe;m z)gTE)=F$UrAsW>me?SA)Yw(U&XxK9Kf-hgZa0~C%riPL zQupS{f;xe2O|!$pUp4Gb)ma@b0h(iEI~WMSR8V|bZF_yTv#@Y*c?|YZnC0e@KdteY z`2cdVkljSU|9kzc?;|KF;Tdtrr^VGX!Z%#yMwLYA%w+5@V`>081So_CfSpKElR%Jr z@CiKo_cG0bDtAuntcH~0$trOyMqAslId#s>XgDBM>)^6ngkZLpz>++GxMM^_085e5 zv{k1lAwdo2T`j<30NvPBC2oKO(=N=d^{9r*4RBGft?{O;yd<&3J1R1hEd`^>6k%sz$y1Ofkn#50ur%wrJyN_oI z8h(~fbhP3Dp_OvNh647W)E3-HOpq+^Mk<+YXg;GrFk1@16){rT_mY4WJNYp~Pu7@E zM&@vPdu!`#YgSz0<|>cY*2V@FO{p*$m&0(*`w|#-p_d>_*$?Y%-rK~{HSCqE>Qyuxj>ty%-J7cr(__0iJY#ADqNm>iA&k% zEeiHm5Y63&c1O>{+BQH=30mJd|=>x=*zeoQ+z2L#U!;TjaS_t3Z{lqS!ogX-C z^m!bpg{H@mJJ5O@eJ8rdvE_<=9BhKWqmTADdR_>R!}&!B7n+>apXTj<%^+30JV zKO9-=m>{vR5YZ7m9B^^b3LBf*>D$l>n`ztW3+d}x>gm%;=vx@t84=O5GO+USApP@G zr|CKs$*?!f=yk_bSFwm?6EvQt{-PzwqE;aH-fk01@`^+Y(;Dh4OheLxjQ;f1Y?Pb)98Q==z)VzNIgT1%egGWvVF1wa4nCdx&1Y+-~8bASJ1 zX-C=SjBkn`j0J8X9{sW=H;UwxNnF7kMmxq&HJa3SlWXuxn_aOEVf<4F>qUI(=_&l5 z1rKVFtJR!8->J8g&E3rW7T&MB&Om$~U=WDUgqX&P=)s~~GxW>eVrcYU!trN?he=9J zHH)p8+V$APYNbKCZj$j;C<~|6`ItwY8M$77K6lOe^>h;xJ|7a!E~Gg(-1RnrGemeY z;1G~TC&LyTEzh^Ba)^Qpq!P%6re&UsSTiBpaF;_1^%sBiFuzPL+4;g;j(S6?i&G$> zI~k!}z+^a?S2oK^EtL*|!I0vTQN|EW2)9p0Z5Amx5okyy`Vm}_Z^-U@Zh{1#-?;yx z29`=9G0mbyn~6*p?O7go3FM?azV_DPjl2AEwC@5tE8oP6ZjC@vcP_jv7WH8h^GRrp zV)XC$Li_V()T084WN?P@gNeZ*>Jk zSW9zFbvOeSe9*`{MOZBFO0mcU0Ya_?VzG#N_x1oP8QrM=ta$G0NPhK00{vTBd(Ce9JaA z1xK}gLG}IOVzKfW&Zoxnz7_}Kwpxsj7#e?m%10+E5)=$jev;>|qi$p1mV}a|5aWM$ zTK27`xO$XhOjXrp%VKK*vaT9s{0+(5L%(@ zQY;a_Sy$gKn{X?i{Q*|Aag*wzU^o6r^>{_2Jo3vw;uh^}l=}G{##V>=iS5`qn5*h1%3WAP zxPx{DHW2ZtH9|=CPFO$vZ0N)PU3+NAVB4#afHg^ZC;T%kK(as^Lx~2@gbj7fl?nT~ zErEw*@4J!mL2Ia&F;(9Vt}vTV2*qQozrel>%1=|KLG9V*#6rmb4wK>tbpOZ?%f^PB^MrLiq1^rc;^;pDUE#jGoN1oG7w~CkW0Z;MF zhj+U=kf7f~+kE@}{K(m6a!{fb8)-ktN}J*E>McY`up81S-E|Oh@WM&Is(P7JTTm$x z7EvR(C@dwT#+~O&v(K6(l99(fC9hjsHqxRLuf9c9jIr81}jMHws(x{F(lPG+@ z!@8%jTBvbU=g01-l%9j{(D%w%A{S0r<70o8wGoSz&W}LBJweuBpBw<4t*hcOp|q;FW6K^X?}>)!pkS)Z)e+9}!)!)q|0s zzUT>+qJ{*%oG<#nx$Nn zns@or6;X=Rw`#wYlSe|UCrA38C{^_^8LrLRP7w_>LP;_Szrp-2xt}MXlhO9JD!hm` zrL4EQnwlOrw=Srb_Ph?eJa=_#CvcL$VlWChw^aLXE!EXVq2|M0MLeMr6^(h9IfWE; zS$&kjOj+{pW3kCilGFW=<^Ba2+dnEkT?A{Mp_8-qmNM<@%jw0{4O?4$%&PrJhQk&} zW1+kKRIc6;NPblV@1v{xU)*?Ro#=lxY5bbXl}7O*Ro2gNq03oU&LNW2>)R!X1(Mc> z{w!NIXL_^1%a=i;dG1SRS^7N2p-177@z1U`O zVL-?b{EM^L=h^H0NR8^uE2z87Jn0qfSE|RDsGG&%QIjT>)|&3;zx)gCvF8>w{nXaU zy}TBL>bABv-9xNjw~8KnoVR&)!&nLbZ=4|ee>g#TXDfYLWoaD~eO)_RIeQ(uhyQ;t z*EZCrRWjCl@P!O?bhM)S#)d|AL~P(t(9+D(M$SrGSD#i$-@#Z{U&Kb+nO4Bq&Q?a> zM$ppS%F;sL!VZZI{Pn@5%4pk|+X83%e?NhU?eCRriRd2=?9DB}(Zj7|Z1nYvb?q!| zh!}Wy{%aqNM9KyHv8 zj}NFGkHJ3;(ErsR{~w?D&s7==NWkU)kC*)4|M9>7U{4+&8(i(bcfbGoUH^**6N7%d z$A5n${<{wr`9D+iS3dt|ivCB7{!zyNzIy+U7X4%8|3{1dKcPilkqA~9_^AIYIANvx z4{-9oU=3Lj0a`gpZCg_!mIn+YOZ(q}FGvsY<$r@i{+|LB#{UASAkj1bpO6X>GaD-# zz%u`lPS}}s{iHULbna@$FW}|-YzY+}uh9YeLI7`h5;YWqvnZ*T$vU3pYm~usYn>s- zK-@%cl;PT`OY+FX%}_r(qb-MV_Q>e21a5X8Q&AL4JxS4WjqVOCo~{n37ww-WQABi6 zQGwwpY&5ecX;vcB*T)_ol~mQx$ETlb-j<(fh%X*rrvJz*E|$Fjgr9G7LmgF)D>~P6 zf$fLo7AkQ=vd(;!MYiiwXGC=wVaH1;7SAkhG%E@bHu2p_5T<-ir2O3Fg`r~cKe)W} z0sSWspk&aYZNA05z|}G3ul`I74GH%F`^-ZbGi;WTvVU!29L83Q+1Vq*qBJks*cZiOJ4H_S3*xhRK`^f(AsF}`HRfWe; z(YXs8(IfK3zCnPpK@ZPPlM_ByVhQ`PfJlt0$?5PN3K}9h$6S+)2Mg&eC9a-W~I}o+nPMZ-`AX)V{(t`j;Bkz2QNZlz=s=xo0I-WQC9&J+9!iyblC$BS!LBUU5liRZ=W z5t*&0Qi`}J|00bbjKoOX0B1+mLZOes?_a~nzAqndpn~PwQY>lRjO7E}8xT$78t^+! z$qkB*wv*or4|YYk3msC@x_II{y>&z<1c88&fFmZ7jQfx_Znx;m1c9(4dU>OV{~G(! z#S!v$BP%jds2#NaodI1vjda`~NCJFI5-z)E%7Rs#`pz}(Ck2I_)0v)X| z`FHC|E_?HGgPuXSdbmwL=;$T5tlz%|^@1mM*hkoGv~T^=N6j-;mhtJ~=)(R!63~J2 zvwDxE>bA9;{WDBr#1u-+R`1$Irk4iT8gm*Xf9PfsYg4@n-#?DNbob)KdVb4k`U^bS z34&n&exoy9K{ALbAPfJHe5MPg=|O7PQ*a?fhV`E{;GuxH2$lp# zuaJZ~jvHC`LxcH7E$MU4@BcKxaS~cW)MDlN@s+JP%p#czBi$U?<3wy?`Gys!C{K)Y zp8blI(A{ZYVtNphK-J^9z@ZNbThnG8CLGCCw3aFsuYF*A!)_|~G(rOLU_1Hw{QSti z({Gm1TD+xeH*Lj58h*;_WJd`DE1?oq<#~Q+3MGey+7A(t@KHmHX%OK!LQKHjQx;$t zGwa>|Ol_%AJGB2xgBgD4A$qAiw@cdA#+3RF^^XC0(!C^qS30;v2W<{>HK!yTgvMon5Kb8y5YcGL3ia z;LA7codiD|8FrQj$$iJ3jvum2luc2@LqUcO9JYb=_2PQ^()S&vNPx&_`56N!vOFoN z%IE^$yCDl?XkaWo6RwNa21YSfYM1yyE}58|RR>9REDV1L>%T_)Yz(vm3-=f5#NbTd z(idc)`N2=nEtV84&>l^P8FDjoP}IP9yjt~+F6%ypW-B(7oI`2Wt(HRGEIXUqIiJ3` ziuTbNGxC>;SQJ!r9tNEq4P9z>#9n^XIn8h7WlT|cu+1HVlo`#YHX_c+^gIWxL+_{< zqgTlogd0acRcg=LW?7TK`74Y%)Z1r$2G%Z6b&(X|b5$3Anh*)X=L4js#rqzXw%dcB zt3VqkDyHygq=6&(AoV(B6K3S_>gzWD40t})Ki|8zkrAo>C7S-`)KVDr*e|rM;(KqQ zI)vJCaeu)Qqx=0QGp2p9b$MuaT7~`kUuG)gp?MK}D!US&9 z#Sihph*5WGSCc*1x9UTKym^_{?||N5gU(lp>1%J!(he6}uV3|5023aM@TIJknlUEO zO2$W3zQj(_A2qYx;~tTj9prXnrJ_8GyFOy`fRPYUNu%Ud*PJ&fnS{4{WzS!oJn;g( z{9lF*iSi=M(vvJ1zj8|F{%|IxuJWfBv-9Uoy3Mj?tYwI=C$s3I;tEzsHY9hZRo3W0OI= zd{3R39-Lx5oOXbM4g?a;Ro2`?1Z?vw?~fIVs80_Aevy#*Kxg$Y9xz9VeDIY_PkhlhG6c9i zbktE4C^}q$UOCzyL`tMkB|qxwZdbaZnnS=&TkUO!0x&=kHNB(}KdXFHGsLN7y?&mz6Q1058|cdq zR+6lL|Jx8U>#q)zX|-xU8t8tet@2;J)V*|cKx0q_bUatm58{g*r#{7fs0RL3L#~nf zXMX-&Uc*(M@g4eKfy4B@rb=k*X&Wt@+B(y8t~DbTvG&?rcnRAJ<==8RDkm*@><@0m zj@UW4D<^EK=ITR3P+gJ!ak3TAO`E6Y?{DWdtL;8iMu1JP%2FPDpPo88ykwI$@Hs$S z_$E2rE)IC_k9m<<>+f&(c`sL@XG_7SecAtV}(?bsTJ!QCN5& z!h1FJ%@g&(W7_i@IiiN12cRcFAhDYBcV`urbG4LzChJ@s&CGWGeG=Q80R2beiI;G6 z&m;lOudj;@!njw_aJ!peSx@=rViC==(qt@m^M>N_rJbv}dw_HGt}b7|>a(N}(~tG~ z$u2WylUl5Q;qXhbPG7(M_PsMkhEjKG@phdL(RE{v2so2m2jgI}EQ?iTy7$7Osj1?_&5^JZ=-7_;J2e%+N~t!rG7 z<;7lC6glZVx!(kld!mYX42^n?!*AK2czAejdsXXxxSFoJ%w?+hSGcaOuJcaIAztl) zfk-v8JZ^#o6Hz`Vp*)d3JNz!>Ej({UEZ(u6&41qrP`vWnZ_ll3R!@sa$BFeGaMgj9 zwNlpAw5t(pxq!%_V_?{x&pINHrCMEg@ZKG6j%0tq<-NZgc<6HWhBxIe78vDp+(R+4 zspM*I;0O_ep2f{y1MFDRD&PfcME94&&c@l^H5rmgh_ddu>2-C^78US61_^2E)pncv z_jmi24XMwcw-VltjgF$sJFO=<+Su5fxPYeFGrl$OKH58`eFh~@mA>oi>o5IYc?d67 zh+MukVWE%nrWp3PPSxE%DWgg3pN{?Evbo;OPC>njy}#tW&py~se;?$B z-2CCMj-!zZLVAm0jpj@rg9~l`K7csWh-T^Lg1@L_DYpYaV!u7EUTHz>e?}@Du zpfixn4Ys!DND5tqevC&NKg|>~WLVs@$xY6;y*O(uZEbIl{`L)a_FKHm^{M@Yx?|s{ z9wUfd_?p@DU&Oxrg5#HJ8na8G`ORD>0ub~7;-H505O6BZs>?5%SUe)x)ZL>LeXh|P z{EUuS`d1fa*9R`ek&hGOc_TT+kxM{3iQqodiToo&gTT^r$g?t#%Bv^*PA@O{MdvKy zOwa-=5ptjy=@`|Rm^JNLAX6YK=`xP=D7XM}7Z5hEICyIjBV#OQRD3s}mxXv8oYPiF z?7BXG0mu)4NYd_O?*{P~o z|F0jD-gYhH!xBltZJiM9fJZS(w(u075Sm@qNA}_I-Yox232?*xbqMmyvLpc{;iu}! zdc3M5cNuleYif>AzPSH-FYk~xV*$)Sv>Cluy7y;AHOjm%V!hS0Y8JJqsuV0N^m1n6$5Y*qo3+2- zzyp^XT3s%~I9g%HjwnEs2;w(j(flKcA#0P9az_7(W1oKvw?M2?7(j>mCtPLHPgn{* zj89Eq2q{V=hxsSmjm#X$arj32s%A8D@Mvib8U!xD@F8M+j_Qsz@4qUa!weG4R#?s6 ztSTgkeYIG2ToHz~%RQnztA%f&qHZ)@%n-Hu`(I)(?+qqwdz(BzsNm$C=)^u~6>A8u2k`l&?x)Ebw@$dDP%)npooNu)o2&D;9? zPvEreEmN4mwclasiOB@lgCrUJf{yZK*;?JpkT)YQ$IGUGpXbsj4_CtY2fpYT*+mbT z$^8jRK!T1|ecSZ`PlFG>v6VUQ8pQRObk22FN=8g!yrytomw)3fK@a2++8#;jUS*A$ z=^3-l3FA??&8xu)c?jZ`mcq7E!dbHMN+0RJF0YO*JX;+g5Fof1lm?Y$R@)OUU!}4L10z$cv3Ldjs;QwHd+POWD$ShI({({7Jkf@ip=c2Jl=C1G@ zQst+m@n1OZn1(+>`#(k&77jJDEv&5tLN?)ZLn1a0->-~xG$wM+b6M3|*qxCJ2HT88 zR_?SKi5Y6imYTG!ky@`_7O|QO=Fw$tj0qsOK>PCk)vS*((b1uQrZlH+Hv7iG2HJ;j zP&LD@W>&>tyAYFE6K0A`*F`xH`iFh}8^_RggyIK<66Br~7Z>|oi=qy5UWuZDKPCOS zVsm+#HnoOl`Em$kA1ISRTmgI`M9-*{h)ZpTea?rPB|GlDE(8+!__aEExiTIx!Nhxz z`XLGVYi)WZhUvk!36Iu>fr+EXNO8C_re~Wew;2V-2TnpPs_I@x*D>LdPL+T z_=OkVU+hs$^eH+)Iou-0bQ}LV^#L+bYRR4@8gr?R&{#~V##eohd5+%xcS=Pm>q~5H zKZk#T3Y(PqR$asv5&=zS;i+%ShlGSGUyis7qL2Q+`qXZz?UE#X8WTqSGlzMi?9^fE z)8*!&0F6x~3LPb}K|a>B5*As)iK_4uMCpIW3*TSH`_lTs$Hrf=s0I9fhsnv0=*#{% z*q1T@BK8(f!V8$0m!B~HN7m!RRV=!ipoA{sKk-9=+2!WdAq%}NHvo+QNpYnZI$|?dK=P zQlk#VUv);oq@xr#dgj5``q#IR7x_-H{PhEI!F@vB#_(Cdi_!+8V9**KX5UIz`A7pQasPZRq1Di$|V zIO@>}l>n|yA^@MS`+vpZleQ!ls@$xo} z%1@9Tkr_~M_r&^G+UR8)VS#~ufSTq7rX}i?+ArrU7=-xP{^kzt`6(!R=@2zhp3*Uc zz#2UPxR9Iwa3KaVAPo}mTb%{#@2r7@=V3hpe0$%)$pWY!R^xoE>P9Q&Hb5p9+F0u!?srxnH zW23NQ*%nWWe=`MHLtX>C4N`!=V3QdDz6X)E$YhdF4eA)ZG6d4~03kr43c!DmapWhQ zFe_q>yT$<<%=kWJLIErhnEv9l;e-QLQZWIIg;X8Z_zf<;LOC29RHH}Wa;P~r@Xsr; z9W)3!x~!cjKn_{6$a~Gf;nDRu+`N{F4`q?9L;Q5qmI69tdS?IeH>s>2GZQ68xo7~iIx@k4^QX8N^ju{C);bCYa?f0zcx z*UDoNuCH3v>bSWD`JI+s8Xe!0lWi4aZDG;`cXfw;kj~~wq?KH|gQ}?TdhhhP6WkTI zU}V$C!iI@uxG3P8sB9{UqkyoSTbIx< z5G+^QdOP#_mun2IW@zW^u;H;r{Ysq+vxyc_Yld05wUowl=%evSL4sg}K7&;}icn;W1C_`iM~ogk`<5+O`TNSL)a zKM09Xdd<#u@5ZAk;=gZ_R57x%UH+CV#fLk^;}xmf6JE-*7 zLUVqkX0PjnnD#pR`iWJ-FR#XAILD5E;bI@mR_^^Q2x3Su%rD{nkY8D& z#9E_xj)AkOVqZJwQEyB{gq2V;EB%WuxK9AG=!cg$AU0@ns$R2Ir%I^b;7-5JbZ>;} z?pmRc^OieB^O=o|N~Lnq1}a<%PNWZ{6;2yuwD?AHW!IZ>qf5#JnZHV90QKXl(f%kz z+sRoTwwTpWK5n!1EJL%r?B%YgFUvq$l zFWt>~>WmIO;cemic!$f!W~sPLyjmNTi$Kk4rk^(+>WY}I;dpvzz|~{P zYUu6@FFyt67g}?ZTq3*535&C}9yha|2!H93sc zWB0=vOdsOuaG(VT&fN6In=R}{-95NQmU0vdKHS`UbID*~>LBlr{UiNF@d`Tf&HC%5 z7;1eipsKw;1$8WSGe0+1)bGsDIgtPT9mtGBI2$!=1Y#gBQOPU#B2Rp($d>%p4gmf@yc$COTIPxrF6wG>z^w| z&%H(Mt7FD8XU0lemiG%?TifP!eeYy-wB|p0c(@Zkg_*tj5&`njr>@T2b#ALcm2io^ z$l2LXzvtBPrKH2tCuv5(nzhOo&n;XL;LVh1W=u@3woTlViEQD(P|sa#QX%iv&zv-p zDd5F?1%e4jY@m7Gv2H=YwqPITdPBWge*~Ae_ci(JPfaGWDC3sf=9nIx&AS!d8AIm1 z{QM%c?Vq_X0)>~|S3hizQ;l+wW|1;}P@2HJG0T+DrA}di@JX+d<0G88CIKfHUVEA5 zyGjK*cQ8@tO9UTe_|h)&PMi*H?uGFZ?Cd^q3Le-lOXi%AQ-9a0zZCCU6$ud<72?)m85xjoc(ybu)nAFWxI?Q^zDpE1WE@MY`@cHujyPstzRgU34qGF|EgWsM2V|9yoK&5~ggs-QT7XqU2&cm%t@d zF4WQgCd*#a;4d3jsFRtdry{MOe@!@#Q!}ey^ygxViW1FIrLa1!0(x|;1?ktBb#ON)2iT+Q1K6%E(qGvBFjG(8v=rrjmN z4|KXD-f}38XiS*cR>GG=F0s7G#5BOh#v$?!_hIbRt*EF!yuQ;qu0dpvy*W@6{P0z$ z9PR5>P|cf$h1G^_4*OxZlK@Mr!2$<-JTuRA^XoFx%`k47zPK8SWns`)>EA!EQQ} zlbTAdyX5zghbv0HoqFU_pFb4n8<-Q>MEEcorDkScp3dqP{K4&R((f4|aF@r)NQlvt zNRuV~ZYioeec8+#2M5Ld@*Jz=qu!ox35LU#(dc^#q-Oj&O`3OLc+8$Do&SXUM#fLbj3 zDc!r9G3SJa4S4Kb2GjDgYmO~!Sb~|Vu+5aLv6$V*RKvx`% z|EGQ!JOS&ho*zA5=W)E?kurf>_`y?YD4p;I?RJ>6WxXPVisI8v!~H(&y?vseN+_YJ ztLwm|2EcRrGC9_$ z&EE(fTY6$xsZv5jtB6VgAm^$sFN-0*7O*g#2=Tm*+Z{H9+I^cub8R|c$a89kt&xx& z5Gv(qc0JfMO+O)iBClA!;}Jp)ON6nqaN>*?3f{PGedPG_K6^T|$^cKyb<%#{HG&Vn zjm&SU>tkAdk5kIU7?jCTrEBNq0uM^NKyG9{OgL>&ALfrUV4kepj-jzN0MZV*IH=i++WdvoAgZx6FU5zjaBtn>g?P}o+fH(DQu~!L|4`Pt;Wp~>Ecb#c2M9K zP1&eKyum#q6O)U!2DE9j9ZkqE?L)eTr&fo3Xz-JPZA-&_O%3^h&R1Z2Y#L6Ja8yh^ z%8lh@kLs^)V|yiv(Y?4Ld`9TOF0;#6yo5$*pH`(k*VU`$FD-w>qkCR+B$OtbX)%kb z(sM=09RJ7CbHb%OeR-BQq_6plrswDH+k%WUiLL`o@~n2q6;UVCk%_IpGvjK%!oG%M zXVc%?+iTandwr0TBM@;k*wSvl{U+y)V9ZCZ!_~?*@#(o6+CzmC!PUKnd$qG;O~X|e zkk*fEltz>URbj0WSY+B|5Vr(RIQjALU9ZwY=khl-V>t+Kyx#ws*HfJA%%b(Vb&-0f zAWuImEW5ny{Jz#&n+-0*qEFEi6s5?oX%O6PpAex$_{cHZh4$usUhkyP)nQ1vG0{`- zd4tl{rZT`ySok8%Q7hGYBJcLpe#aWz-wXr-R7{|_!skXrK7xG>YU_BI_|o@dS6Q0- zM;u8WZ*YHiU9MHwPfbP46kKGAm!#ZR%jP}pY+jo!0KT+j-UkoM%Gm)Qm4TrT^V+l{ zpMi((2N42!&(xfUsq>Qt9LIEw=U~dX-L0)x&Zua3dDq)4bL~9j7B1is)I83wCWA=$ zQK6rS;g{O0SS%I)878xBIA~_sDkH0lj(8iH zUv7J4q{j;_H)A>GKJ^pbSC9{ct+Z6N~6D?2v^joPiE*`YxLQ);3_~HqJ(=C z<$U#kz(h+APL3gpx;rooI}H~ujl&Wx9U`;iG|6Z!0t1QzV{C=*F3pIIeT&F9WFhTnanu)r&wdgV~ZF*)CH{Q1G(uj+54E_mK_b1qcK)Uc3} zo+r#l_u??<{>YdHSi;Y6Hl406cxK45HlZLF+fPEp_GPp_Ha5tuvGN0leLdm`z zhmTaIx@4J9It>QEul-)0NXc-05}C4#A83UDzw*bKs&$FwJi<|e925GP3r1EvpSiX9 zhCMUWQ)&K@^oAR%56Q$BKggJ{G3yV~WgypMzKW(j`yN=Ns&z``pvGHYYTngpEu&j& z(9<0Z>h<4R()mbUBXm?V51p7oMg2s1-!joa9D^4eM%dlN)(}L3Fg=5NzpO;y?_-F_ zjwm#jQkME#U}u*@e!{HE{Z7zc@VqEKw4(xsB*inxj3M0S1~ zecKg1)%eBY=`=|Tr;z&#f1vG0W|u8rsj+dKG%v>BWRa)leOX>@K17I#7~$P=BGKD* zywYS&Lw5UNT7>Un#E5n(Q%88=v0#@A`~i3-2X{MFrZE)WJeLHI3hly4d^RS9atMnz8 z`J|n;`5B?@okn)aC2PZCvkN352oGfe-->Df&b+Z#8vxD^%JtrcL3jO}QQfQoYQC%} zk`1>{qby+p7Q6>@(8|1JwEg%MVOH#G5*+Tw*BydzF%*AEOk42|Bx`3~v$oT!zqPPd zscEmbhj@wdqh1|e#?N24H|mJDmzjoaj~~n9MBglAc}a^Qn3u0jc;H%5;6Pqy5mAd0 zvTg~OMdl`4&)M5wB|(1nbQ{q0LE@x66cUyyWC}9U(ssl4JFO`2Xa+v#MyKr5+^{zM zb~*K#&S2i<;`Ry0baRA2j%NF%dNt z)Atn;c=r>=)uU>?eqdG|SIL(!70k@mMx;f$JcKtJDS|`$@1~F6Ce0(sGbGvp`oNu$ zW#8xS=xUaPS$5^w!Mb&c4D`UG+9kw*Pb&+E0H`M2VdOqxkF8r~PbT?nnGLjhJsC~e zCwJZLB|BSfBsowhWqt}LhnDoG?>z`Fu$P%VuP4>X>J)hdm&=t^&+A_f#$JwP>sNNR z3guutFLvOA53JSW5EjZ8 z0;su5%g%nmFU^?@cuq^{gqGS95Y9N`QF0KRhH~1 zAEsW^Z;OHrh~+gZ9^g;u7`eGJC8(KCDO*7xAVClesCmQdJhIl0Hb;mrTu@;?kg!6; zj_6w=lg$IbPB)TdGqSP+)*wQS9moX@*xd^!)2ETKJt?P@H!9eS_ zQWfBXUP<&xBCN$a7*aIz@MyG)$EE^-W#iZJ-nE1!!ORsRFT}Tq`ldUXJ|;fI$3G3B z`(gNHj5S@T7k;U3PX*RfDUr+{=JQ~=5_&P6s8{^~;G7TD!2Oic#_BZyCb`Y`$Blc^ zJY)}yOX1+67}U4&xxWmP724Vv*f5Aul;#{8u;@PhwyfLSjJZf_lF-dD4EQKDfe#gM zfp^p58PdnE9~{~gCxa?1vVMO$AKcf(p8$d@K7Q;yZw-#vVtrEy12P{*>)gu9VDg47 z)JOD$qtT$iAme1bCneQ3TgJGWRpQ+7^) zB$Ef;Ag$}PX|)~{`tX$Iegm|T8qbP6OKpV2S$ z!k(^iE@S9iP!I&jA9Xjat$CTyb!!nJWGDON?H!hv3EMk{m7*wmJWq;vrY`}K-M%0B zK|7mQc0Mhu&byOiTkwkolQMVedx2NIxgLv6HvlEI+S}Cf1Um1WZ4=h=#xAhpip`1h z0wXV)>Ui81mtea*@3D3qOe2!_vx@D@R7Fcw*yjcl`Oz2xJk_|0p0yVm)M?q11UzJ~ z`0JupO1{l?RfRoNZt73hDX73U+Js$AX?Qnt;?t!}$tiMc-92@8BT8;QJ{j!F>PgqP zG2dQ2Wq&O0V3W0TYaN3^Vuh^Lx3)F6)y8$%B<4!p`5K>F4{~-r5FA}7`DjZe#77?; zU^W;rC2*qc#kh4yx|jo?2N&ZNKvsk2b}kLY9t$GX=7v`&wy)%Dv`|%RIL;cxfk>Qt z7p9MYn!wbfp{}t#0A#Qe;k5nk?{izoOPGSzMIMn#HN-is%;)X15wsRX$(-c=Qx#A` zOjWC?yTh4tL1RnN07gG0?QtUO3TY7YER{R1{kGuqTKyWA ztx6l}l>Vd-Z^{zh+9u;Mk}h`@1Sh$J71^LVji^@K-PBZHe^zl0yP|caJLCMSR|BK4IqM2!^Z(N&UbxyxIMG3GA!H{bm#&y{mc0Rk4BWlt8r;$GJ>enzcCklBJ_# zjGplTwVjEAb9n^@21s+1n@u5zDc#Fbg49rYqPO>Jqt+XP*TKFj9M(O2rg>#cC~si2 z=HN6P(m@5jR!)Z@WSCtK`$TW3l$N`FM2Cfh_e93B@4fW=hJO*rK6TKlye;w>1av2n1rFm&0~>)zLUMZK3Jyk(S%jQgFfT1s~OmAviU z+-E3lEYU0<)R=V;QSI}1sCPD3v&;;|pAk0PP9-yj?6?p;?;=5%nR6N0whL4nuHa1z z{<`>t4)?`dg{x%`B?A|A8cKCO5Yj}xMTDcZprH^w=Oh)*{`e4MF|2o?^if}JI$Mi> z(k5oi?aQ6KaTB!uTA6v?oP7%wL?rS{i8lwIlRORGACQ=)PWeb8-B8cuJ%&AZb1O;H zO63Ct9B!%Cv@|rD#Tv$XcTP{sgRlTi;#ib>4n9ib`fuG&%?t*xB0pH@cvNc`eG{(m zNv4j!yTITgHc;Ej@ErFno71fbD=pofb?wl+MQbC8$wgx=`(4Lxn1h9Pzq8i9WH+t@ z{W`SN)@nm<$lYVzDCeo)sCiiNyrEim^lx`1njqUk-TRuN%gg3#P_yH6dgpL82H+Brls|l{zG^>+aPyWCz{d>Xk@QrWc}RB z)vtbK=ZgJ#uB04W=*B+aR~1p{_Wo1-z3izWkImdpz=o9lY1L#2dMw`SH`=$Nx)vm}H7sOr1pnypcu=P* z0^Xvp_(LVOz+!{I@+b#!_^f}1C(LjqAJnkyw^@>5j|J020USme+ep;asNhVG(S3j} z%laO9Q8>%Y0!YPVv_w#mT}@}a^>1#9@NdO`$!2MBk0c#s19=z{K3R6BOIgj`^`&TFZA~Jhrh1Ow zCq%y8@y;K~7FNXrE6{BXF_dCJJ#S4SM;bBgli9rc&9o>Il5fm;!(PL%-d#@Xa5BAPa4BBMdafS-k9*hO0_nToT$X?Dghz$$0O0s4@P6j6?8^IY;_*k?% zFRX(=Ksl2+fQj~%kqycL2NVo0>Ye-h)a#*u!cuuR3jJ@u*Pk za{yTgUa(C~-TK?sr@f>YS?rZ2-&siC{~5l#bA2%KbbG}ZQ(2YXc7p0^;m-LW{~iCD z6p>aVxOgT*=sUb^moK??_79#Tqn_;=5mi4$X&!q9F+!Y_RTe-}6D8CpeL?RN=Uh1}`+oIYblBZg3}re+kSHPmbT zY5v6UEZhef6MNzhr(IjCD5^$HuCf@o>U*&dXWi?Ev1s^5*T_BKtk;)KlHJ%zm2Gcw z(OTq6^#2??dlP`wEhRe+*I$sa&Oq~SKvzZMy(vsfYg#|1r^dfNgDVBYDI{9$soVG* zkO90@GNbhhs(E?ViygkI$(CE_gJ(@0HHl*79X-r;6i%qFc6m#MAtv5(<_MVC<#uob z0=is`tdNqk3b*w{IhNJ12SaaE#2KRp@bFGp|K{ z{f5WHT}VlXz{{Od=mrNAUGZ*5v_M=Vrsrl++ge;gILl)*X=msEV(BUaqUyT!fHVjw z-Q5Dx4bt5m(%s#m3h(Np%dl}?c>4aU z+1Nxp@=00o3uo)&Jajdusg2lIF;2MlZ)6R+>0@m;S9`}r&+Bt)?&5N?(iUdH&uQqi z<#!Z82llXjqf7$v%iLU z#w2%`#;tU_2c5b!+py=)k!~Pk>GCDr<{6%BbR~?G*aqKu0m=TXBWKS;F zoqk6R)n;AM0Hl?zR_lGTTD|DImk~z#dKN&QZvbr91>q?YBw*sXJ;XP|tcY%BrtBO( ztr7|8@+xSTm(Pkdk7pzf;#h!k`c=d+mm&@{-*y5J$L5W`a`V%Wyd#NbFk*8{1@&&bHAt<|k5 zvl+_)i`1@{rAK|bEqS_qxLU$ft zpJ}iq8S%=>e}lmlv-uZph#1PF`I5!Sx~drQA>WvF8DE+XmM2+VZGXx_nm?tZDh@W| zYuwUgs?&U%x76`Y+kt*ZGV-9^sOID2{+kW-+CYqb+|l@A^PQDdt_li@g$bxG+qVSI z1>JzdRCA18N&(c!{$(-NV{XqI!`C<^TgX@upAyrz7e)B>?TBxb_>JFv5Jc8zCH4FA>m?FrkBUbRb?b-8~f^?^&mp>tgR+S9cuVdxfu zH#kxV%?n;j4=spfQPmgwGZk$-T7^l6?NM>@&`l~b-={mLoOc98szo|I6*R$a$B$p8 z(8)f(RxFrwF%AM1a}fVq4&xb!gWihAd`%HYn5Hsd028DKi}$&Hy-s`NSkHW(0~@Y+>=Opc)wMi+D=fX_EJ1kv_6L{teY1^FO=`1i5bHC322Y3#% zAgjQWNTZNx|N4R9J#=9sXU}@OS~fw;rOO-k0%6rT>6mff%Gm_Xf&dgradD_K51sVS zJ|&qtugrk+o5>`BOp?sIsUNY!hUJ2VfkTg?*#kwmhHpMuEB_qiYB>Tkk+Y7EZZGy| z8WDY7j&|vqvHu|TUj7J_apmva!Q*6g&`#3swYRA|vsVcvV)lr1=#ZDwmf}S7HesJ*O7X>^U$}OP9|BkRWTkIz*38KHDZ)z#ulor&FRaOSF!f< zb)RIBo>t(|n=7bujCAplB3w>yKCuiZDS?g>^t$SiX-;7@F2OpCs`$(@$Q1?HYXp?m z6alYKf$er(B`HN0b&iI)ssNX$u4Ro9hVH#^X!msfg!cK5r-SXR_)?I~wWoze_OX*q zKIax;yyp?@t@lHGkcVewOeJ1t=Vri&x|gHI_|JkEBYEXxyGkiZ2PPxVmZ|Q+<87oN zHDA2i0DBvonSUO39v&CR?=#-a*ZZ7xPu4ji-+tjvJ~-bQYyASysF)?~Z$Sxf%5Tj| z#N)H;TUx5Kj3fWVsr2?+?}Mj1yu@0!EFlrv&1gKs@SlsaBkSbg-qK{5jm`XOKrFDH#%2g&4(j=r->`{qBi%NsnsB@`f2)xOCW#sOf?DjWC7jP~hED|+o1twR zGXa9vbQpe2ge1SA*$~T~jz~Q1Vgo*dmpNHk8k(9B1uX=xHupsQ)wz$8Omib5~4+{wnUmD{YnT!1&afd)W6%(QA`7^KJcP^-eW= z#WzB{zAK+R>J>e=i~)xI!sp{mF~U^wd%KF6kU4Ow@!jP?-{4^CmnW6!&GezQ+MAX; zP#fup^gwmKVC31Q!%HI1zPJgie;#QSUyLbV5F&G<65<3>+*752REjv-Ftmjzn4iumK8o(g!45nYk-_$l~0IfH5sFX@wtRlgC4w; zjamxL{6{BOaB>K&Rw^|jOm_h}wp42T+0_tY_qGDXAwVm?BNyuyt$4CwM`qHpRp=4qp-zVK)w~iU;wdxi%(Bw(-=C`f37brT=cTB!TUJ{iWx7sl6^J=|orR zM3d;2+D`a0H~w`zkGg=(EoMH&`;5T7$sP^-?mDwiX81LG&|c? z9CqlXO{A>+7#_}?tyHdN#V_7eoxh*JV_JL@282JOul2pyl_1U08oGBGDjjH9|Kcx5kIH}{ zL_H|FVl(V<3J1imm-gp(^hB$nADy5=w!lX}5BLQl>W$r5Q-gi1LYJj^CLJgquwjxG z6dEur68TJ%e*!T&hV(LEV$6v&KFnNIvkY<%v~9E!C=ZE>HPGa0pM&U*8k|hcD$~PdH1NIN17(d<;v>?rPXBL`NuEq_Cwx^cZ-IYp?7u?P8FT? zwfvC-(M=(Ch)HPMZ~QnNtxcZ3zX0Cyjsqft!598YoURX`;WpFB-}ES=m2olI9J1tW zmD1m**0KGAFX(G$7E1Hq-#JRVTgoaP0KD0NdX8R*1V32VPbi^cGtLEw-Wje}b)`V% z^_h#o)Q!vmc>U$EYvuV-%FzBJ(Bhos;w$9BNaK!=Xw!#h)L4o)x z$7#*f9raL`*>MMSEBd8G>CG4W<|28pv(dXUj*oW5#xT;K!ebLO|BYA2vHX9h)6k&Hw}=G*mhHqOHL%l{zB)DeF!29ro7jSNfgGbrn@9&srn!q1{#tyin_H z^B;BExKVs%;s%_JMR4Eip=1p|H`OLl{( zop0NPw{U9^1ln2Zn65h5830sFD3=hSUzn?W^LU4HHzQ{RP#B2s&?$*Q4KM_Usht@l zz5b+tA^naLo+3>0BvgUuFh-4D>Ts~7Wu!lA8dG21_4Nz`U>o(DpgW%TiPkmb{`pD_ zM;;m++x9yN=}V6}J>#k0ll$&^At^Bk&WS#&L9MdbJXyAW{0GRVH3bi|`r4&$I4r~v z)Kth=&c@tfMog%%k5*sXEW* z!hD|N5aiWh%m+Zlvn0#ss>ZL=mJ_m)`>d0A+w}+H z{s8pLUm%!bbCD%F#KQ}5jO_5d`T96m2Uuzp3aj5osPN{3mDuX`&5JcIVV zddb2hU+F1GSsDa3)^zxrdX}U^$eG+gj3!J*hG9C&r=zl+2$haue*>{BBnM*)_!n~k z#E{@=z@7^a(a%rn5bQEmoJL^N_2F>K$j?Y%6bRU+_`G*Gswa-RXcwwKHhdWVl(T^A z^0#VsZ;t>M!l8l*sw3j|4b#IyYfV2ku3b*vKfISD#_hoSJkU4BY_R<#!H>If#>NiG zu_1Lm4lzOpeds^3a;DPcoFF2=3fhKkJh^QLc>nipFo zlJ0YfJUrb&gRr#}l9a*>>WcvX z_s2ukKc!Ucr7!yK(h7QneyCU=63J5>!mM^Dy>aG#6t_&SC?3!PV^o-?&|#1`+)|-* z?Oq|U1>fh>-) zdPalSX0Q3Km!ShC51#9eK@LTLGQdp}5B$m`HEsNi)=$k?QuF+5l8s2fltFt`np6)A zldQ_O;keTx{fgIQ9>G1qdf6`>)4x0f3YY($v0jQoPfbfT%@k_yW;fp;GI!mx+>RzG zw5D-&l6~uL>G;TJ4cIOUP2|}7^9H4WMbf?U97*8u;PmgW$^)>m&;)2dQ45o{n=@d` zKH{YSd~?dd0mo?t>wKx!xM#FOwE!Z9mP;H0xy#vCD99=;JsezQ)J74Sn0Ec_Yz-_q zfUSCSkwwZZvHaYMwz~|>C?2EBltAsue~A#_f_#VkEt{1w`ti7Q&XmBWOzW5I-Kg2v zQ_sZ9H6@myzmxZ1j0OT(Y-w$Gi+Uhm-sebp9o^n;vvM>^$&|2fQf|Xr6~qER0oWQS z7R+~(i#hLzthjU%t8o$v-nB!ZL8DYULd%}PAyk98fB93D~@vz>ZR46_-&+k#X$w-!ORch zqJKFz4?-^%2^bLrQX>Pu{b4w)5r35#37aFDG4TiGVe-w%{nD40V#AiA!{7zEH zLOrLjh;Ccb3s(+xKKgr`(@6vD>bz52NzlY^O-k6dwpcNJBCZDz2u$_F1SN|@_OQN+ zEd?_V=)~c7;?31|oolUbM!1{|zK!nrIR~NoX_ULGZ9o+E=;6Zo z-L~O(uZy%tBNutgLL~sP@SJ)+!5;d`svgUFUl4^$$H^0}#h%I*XK%h64KY`#V4J z6y*&)viXmvRSG{gW9B(4Fg5xWn(^dJ7NeyfU2{N(2k~ zBlQ1)tI}gb)$eGC2L_@$5nLkUI=0!|qV^`?g_j5k@o^#Q+-rQ(pmjGh@@!nZ$kw6= z`dX?2`FH_QH%aNgUXEP_`~tPPiDZ!vN|VG?#M){dNTAAUefEj^vEM6!4w4hj4$xL$ z)YUnN_^kPMynaS;b1`#^q-AvWZx|~n7^A0}>Od6A$nAGrLq2oPHJb;e_s!A>e-Vv! zH{ugO;OMIvJmRpL%a(Vv!)t>zMzIt`1hBP(i;G9T?k;GOi7X7C_YYv;CW7B`N)OA1 zi8_aI!4Kf{vg&*YH~XI?0YI^g;ToWBzuiVIV?Dms)Ckvq-8V_Eaj)1?s3IXv zS8NDk&f+{wvY6{u?E9X^J{S&JB(Km;hF=s2UH z_^U#6UQ*D4PLdO)&sxABeg6;m0_T0?ConSP;b2Yj+k5}~y3=oQF?OEVPz$saTC>(T}w) za)zVwF=RUg;Gz5qSpOsN__;wx-hvtNKqT>|% z6ql+1LvAY;c}BR#wdSyD>iaBC1hz{x2UScMo`q1?J|Oj_Xj^0VGBBYjSrUY!bG#IP`2&(M4YE<^c_L zQ);y#aPRHKMBpKN@_)-w(iJ|vQ=oMmAz`zzdA?EE5KrGprqT6#Q1wO-f@S1HNygWN zd>hp~iCZ%ITKHxq(xhcR9FT>~PW8#M_tyWn9NhnAMqxG5mP_OV=1)lx4k*K#sB!f( zWIn+cG;nbN(?goe#Pme4sx({u+2}U(0MU8BgBB$n z{2+vA3$OiNT7JHHcNC*ww|?dwQf&o@FrY$1@bi!^1hlbuRc0tt-~R#Q0(w6VbqPr9 zder@Uz+2%e*3DF5oWV+xZ&e=z>y~Q;dQq>mg%_BK>1Pp|118Uelz^EGS>zvjHq!ym zWjDx}v&{aBcZ7y9i>pdD`z@>QjK^lb1a3ZPkE4i*07wKF`O^6pwH6e$xwfm%wKOA^ zJW+#Ua0~y1Eqtg=^d1tDJJ@DmF|796P7;Fjd!lP;`w{=1p#9zp;096Dn-qvs^Gw38 zS4f;el>o%#@GI*YJUZg`>~q2Xi>5bEGk#dx+{Jf`WT?oP)ShDV4071WYOiHgvub1$ z7?{dPbUg|69luR_e)~HlEM#M!JFq+Tc<1{wN7ilhl5fz?SB>W=%jI;I`tP^Suf%f^ z^fRwT)#e%E;22m|Sxga;Fz=p%W5YP0lJgN8cYK0^9C%QRKDx+12jlnF_8=6{IjcVH#zq3-T@e`AQ5{ zt{=kDAbFU@P=W@k-po&!uUNiB|9gqxi_CPw1`&ujZ4V&U^RgKFIxxEw2H4YohoI3t z$XoNocVckOEWWXy`m9S|VoI&{PtLjgnxJ6~cnUPp!i|QRW>#xA)tz|Nxj^Lm z1s3vm4Ejl{Q&LK!hKHFI!vwA_^j-FA4y-$ZlK0{|5Sf4as{?|ywrP}VP6VqmTESc~ zGxkJ;S&7DfkxTdJm4Cgxa#t_t8yg#})iq&Rd$hNR8m@1{*;ds1Nf(d~YqkvoAv#&^ zwa0p)fME(Q>7!Sgw;}>1sKic3K0MrznVDm9NKac%Aceg~!FN;9=`bZt^9mN+PA#cq z_0Jl#EF$4AAf9+?S6Dc>qw?q41Z{qXP7Mz!XW{|ha+cA|@c6ABr-CkvEmGMa@7POO zFbIp^XJZV@y^5p>W5N_Ktux0aGxnG=wP*=Ngn1WwOj_?=%x?5!kkMYHU~m$5SRPjQ zufXgM&F4<3er_03m`VTP$w%Rm1yX}aYmY>PP2IV$BXp#eLJHp5B zN0mNF_m0&&Z8vnwqL8m2zYjFQxvcE;5})E(5PkbJVx*xLfL)>Z0iVKIe{wpj?p%L% zs*3CEanlAW?(~IMGvFzU;ns^36070S>gPLr+;WG8L7Kmrn@ibWM0hd zfl4MGT8PG8s_eNiZbWF{bR=+j9;PF~^Wu5$W5>}uxxc7UMxB1YS9rCG0GUogl$5-C zI|moepk~fKd5?uKz~zkz(Lkz30AfW_FUu-gK_4!v1NGTAGkaZ^slbEl584Th-b zU^%X~B=c<3$UW~92HzM|Uax4}0{Y*pM@6D$&9RzE=xs;Dpg1I-M0!}6&9e#k;}bNU zp8y1^;P>BTa464%Y3t>3MjH}pI9Gf2u15A(LsQ$aW+;UE1%v)00IFYIOwI*-ld2ob z?3ZCCBmI*h^vB+|)gFtSTa}X}?P-HGPt#4=Yp0Fut``eOq)||q-3l4^HEXIJqpd~( zCJUtbrw}h1MlkP(K21*Ug<9vpDzRywhV>T26;X%^g#nrRzie$5G%R=oZ9GdnCsu|} zHNkGJx)fb~8)p_(U6}5e$ub26NA&@5Kgnp4y!1Wp+aqHVzOi~b+c)qle|`r8Sr(0r z?Y6VUTM7u0l`=%P?zKP&Gi&z*}R_c7uj8r8OD#RE{T3I2KXH0vANIq$tt>d;>TfymxY61hn zX{{2wU~Tf_aNr!(X6Abq1^(dv{;02Nz7hF~&}VDa4xOBTaZDcW0`z~UqXP|tolX&) zwkTGkbx#`8WozMm0{I#l%=@lI0nv$w^fGDS`3D=W=N)5SlES%ci*Ck*Oty&rCplAc zjjkRBA#?54xEncH8l(c@&d}+wrjjguontI3ikrP-#$UvZE3=v*@Q_j;46X453JG#_ zLGSda6;Y9)4`j$NGS+JR0s_^$RilD|OXVHA=Wh3bODO`xX)(TeZ#f)X+i~6bhn7I8_ z`=SZiRLA*wr5{ZOrS9}sj<}VU4#|IrsO*x*q9$5TJqLtm4&S7UD(|1OVj z!bDN88OSCuZ*i&~W2RrfCbjJr2X#bVrI@D+(gKT_t^rK9nt9_D_OPJE>M35{&({#h zyQCJ)D3+40Aja?fMx{)2P7u_EdvH6{#jw9zA>O9R> zc*?Q@?R-pLNA?~jT=%;vOaPZ=MtVXvapFej%hL;~?-0m{OY*?q42sUGY~*hv(3*4O z&jy3X%kM-4ksypASG2>v5=2sIl<^T5rn5AdWEuzR!`e5mk+0gKY~vX$PdlX6=poCg zNqQwN_kp(H=GX-jzyL{Oa zK~%?f{fDS{-~jYFqDzZ5z6|}`&pH6P#=r4i=e_fd*pxzFGwcLU13AY-{@oScA9iQR zyM6N4$41`g%S1)hceF=JbSaF9M;wZ&iYYIPeM!(yX%b2Er3xVsld|*k>tBPK7&$q; z(Iikr(R*JNa_xN{rBs}Lc}E|&+@HIbAJ1;MeDREX z9Ijk^>JOEr#^Yw9MkYRHBs?iF)-8O)nN*Pf*H4Pq{H>-PqY0(;6>? z9D(A>%E}J4n@l&BhjWz7RY8$&%kmW^ir zb>IA$BC9IrqJ#3!5rN-=E}hHGY!J5S`V-!OiP5>Ws<~HSWEx3Ho5{|eg#rKWF1Qc_ z7VK4WsMTFkFZaX{kiKt_5L{P$zbwT!V2@h7UmPQ&qeeOq_K~%-&@N?gq zOPM}P>%p+3_Kg2GBE;Ccv@S9=AdVF`vafGNG!~!q`_y=;p!L7SkJ~V@Z|xP;2(a7? z32(~yZDFhbP)hbSi&3NgIm_ZjFy8tx%G}^;k|cK}T{F!^#8CHwRr6ir=%)fQ6&fkU zg4Onb@$Zb_n6{s}8mijL?F^@>sbF#W)NH`1{{`sy=<)|)ty(WbtXPXY@;ET0{ z@ zwfnk8za)1-*iD!8%|LuBl)P9dPcYCZ91-!AEO46jsC!#2QD47m)c!I&z3D>#G>IGm zpJvb43Ih=s>L?~ifM>w_8rCW-8T*4lE0L|~k`Nr|=X@31tUyP_!XzIjvrRK3q=AAF zTytssSwX6C`uz1IH525+wME5yserz|xKAVMAZ|+>)I3+hpR42#>nr$^%X!EMwbh4Sp*?bOJ{{ z!xWNJtkn7T_T2rXMckxXuv}U65!0n~FT?@2VN2Y!ieHlUENMU^qD=AI#c>y=GUO|< zn>Jn7mi|S$&M(zJpAbc1eVr|6ajIKNcUvz1{^}Br_J+kgvj5wc7r_e4#*J4XX!IlSA3IMk)(b3qQepdpqueyu(LYp33=rAKd?*`H za@IXLQwo|O((7I*W!$-pM|v{n02C-c_=d|sXAlJ%i4<#rzE=f(*)q=(e!70_FprJz zO;HOyRu*h2LATIk1x7-7d9yYSgYeUIi{D~knX4pRAobJ^rW)kyw|6`rlX-p{04a_= zCN)S+^x6g16+~@F2kfnoi$GD>}-eEV$NygZ9-zv zi-*zO%y2%4Y^Z}o-)XwNI8{E-aWB&Eq(!x7mvh2b3v%STZ?DejclTboLB1AZhQ?m*dgVta#1M)WeCf zj7$<7G04}KT6$bPE#k-IGPoEhaHD@1)weDt#ze=SO+9!q|Dt>gwf2@3eS10sNvW~( zMyZ4}G(%?mT5xs1XsdvO(;^ z@$n^$LnM!24EgBJ9w<^pC_|U2<+OhQOvYzU_}w2r1&K*ZVe}l|l)jO1DYLVbUlh~O zpza^cNyO(W3KxX*yy%01D-q>@oCuOCFwtXLvI%zI4iH0PyK%&thPssK#)fM?nw)z% z6>7gG+hQ6MM@7{n;1x7}AtBrL_BEeRo3HBIARL}6cd9Bhh%Bri(sE1lRAYX`hGtD-4O{r6k08(q8HXUO5lhWy$YBfB{l^5}_)GG+Pp%2_tf-3Vj8em2E$ z(&!SDY8Bg)ltuZv-gm#34$zCi<_$CmCH=ztU~Vic(0@!GgNPAqe!d*HD}cwMl5cSj zyhDNd$aKi{i`Z+N)*?cwAux!=t@7g_$Uq|Ba|Doa`*Quc;v^ds+hahIWWdF@FP6b@ zn5a8eg9j>Uc^i8h?WutTBZDwaD(Ie+mWqxMoOPD|j=ZQiCk;L4^7*rH>B%Vz&bLv4 z-bsd(OL19hEh{4dl`NQq2b2sH8@wSOB*oXUZC~ogy?4+opi>&wPRz|sK|Ko>fkY_c zV@ysQG~WSnMgZb$uF$_%U$I;hKy-pg-og~}Q58#{Gb-?X2yNeL;d!|CMT07_So5m8 z1&bZ05~iB>-@nGFOEO9EDG6!HtZZyyI53dc7?ax|9iXm4tZjVmiP~|Bi0^qzHNI&N~iSErfL}}RrSEDZd4;QJw=0q?a&t9Q7;EQmO%@pRLbR0 zs_)xMPaVObv2U|TKfuwBLwiYf$iX}IK1t6mnc8z+#)rW)Dl|jOa5&zaM9(y$^4&ZA zL7=o=ZQms2P2a}O7d4RLAb52P^n zco9pw_|xPZQW$rZGUkpN=uNlo56occ92N<1?CVa+Z@P75nW@0Nf6*qzVt#1vm|pBW zHkPCjMEbe_g3mb3<1XKFcpkR9}r*UTcBLAE8{+E&k9g$(v`}aNuRKWhq=x$oEC?z@uW8kIV_#7&QG6ihYX`?W4wrqt;hBW3+sOL zN~#WB#|@8;K`AaE)cEbt{Yu-5FV8;$EmiMBI|mQd{)!9@V#c;*5Qbd^L+0HDDN~hg)#CfWi{KVsrk<}^ z)T1p##Ka0wBrd-9)$S~PK?-P-A951xm9!$d`1k-;(G2CpIF*+RfbwVy@d{QZJV)-dj3FTH9I1BR zyQoe`w7OV*G7@wC%e_H{PQ{%;2VX22o+~4qX2h?{ zplA}9R8#z^kZ$y%kfs=S&RWlQ!Qx82__|6TmikfQSZ$|5D;JL~I}KFB)*aY1WS zbZ0eg?v`hLmNe8>F2U4uobUcS$EHmOaWMj42O~g~Y~%a3Dson$xj-#V`e*i*h9r7H z2>mxlQIy|pM@^a8UK0?zFo}2xCv!)xY*Cxy_597%VO^KZt?uZr)IvG;(iFn(;nqWT zO>?$H-2-zI`GPKFjjuuUmGBW}>6Co|3IdU5H58B2(qO5-D400w*y8Xq)K0A@GeU-# z{_;~0FxfRWpGnZr>bPbl1zDXKmRpHIWOgpo4CQ{xTPfQgR8uDm3u;-Y=OAZJTq2|n z0(%i%sXM9{8xrc+V*Ix0V)G?P5NB)1IjDN&JKp!Xr`Kj(;y1KUM&(gyB2TCM7UQ6oQZ?Eexa7(1 zjdKM>(pTo&2@a}s7L)9a|gdk?aaFWp%gfT&9=7YtPcv+^Vqw%JUK}saYKdF z(6OWpx&T@qWf&+ZdcS2~hhsB%_@H-@G$3Cs#UUr>!UjWb$P^;=t-r2kPyu z#sTH5nQpkIT%kIcvk{@SUjL?8Vn&WIx*w(FK$UIrcYwsuYl?`c+8oN;NOjIU&9WIX zTK;@jAE|s_8wvUNq}e$Y3OMpWHukYU@Paj7tb#}wtPOf`OrLT{j#Sg3_+Ko%^1Y*Zbyl0x zU?PIyvr+n+GSvKz>JHmZgxEwJuX1Ov=-c__h&s+p+##bWnIve=h*{UNeE`m(o#A7p ztemKpknkpyjM}=cBTw}L5DH5F!Lr{9Iqcl|OmV98nTefHKtKftaGd!|OQ;EoI}zEzQhSFr&N!rhU89l7?92{Q{`|_HB8iS@s zmZrpM*|~Onw>S1yzh)AGX~c`SNiwGX-<~_RL;Gv_BM=?*n2Q-9?Qd42Y!Ry zh7XM(gpHTDR&aBfj%IrEY!Pi4Kx*~9Cic*0eRqb!sTJao=@8aQUZvL*qT%5}R&&I*^$q`?pAXApD=LO#TUodZ zyO?Y{!~PD*ZOxuz>A{h9(Vy^@`W@D>8#M_-rO_7WYOX$r$_$!ci^KEL?)sR2f7SOb zJqA`u6^!X8LaUKZlIR@1b?@!&;E0v)OM)7v~=!sRZRrepVRD;8LiQyqq^xRRIOw2e3@>O!6LPxE zNh@yJ>g3bP8WcmHMFu%xku+_tc9!6ILpe3W zAGAh+);gZ=pHxT22JW6#28c2?)~U*9rGI-LW~kl5b*+B`#_l8;-7jp}73bn*1CBw|MHG67I zeps3I%}8B}3g;iq8@Z8=V%MJ0?5Fanos&aCIJv2-n;1;Cj^G1q;A)f?wt7y+onws=?Nh#2` z4r)J!iYlS6uOxVwJlA= zEdh|OHB&hG4q<>xwl}B;K3os9DJv%u^V^eb=cXCtVZvhGl?o;$q+$HG3XR^VA>#tFGDxBq|7Qi{${SORnHvjTv6p0e}Nk_K~Fa~t1uzpw+h&)%7xhZ z$T>Gs5yu@!sTw^;EMW+2AW_5b+H%#syIlsEp#2xbXBlp#DVlU(kNZqX`Qn{I%XW`L z{bGw89aVmzSd?ev#b&P7maL|AZ4}LDBnA>YhxXJ%;3O*sJ1N5X> zjh5J@4jOaqs-eTeo{{lNQid^s>=656F&)3CKBEIl9AdQ?aJyt)$0f_$Z#LHNbRg4c zpf-1|35tuE17oO=@FJ9qvXmc6Ii;9w+c4An$O#FwMTJ?3=~MI&HhCF6&^i4u@Rcz! za>4?bOBWT2^Vx&RlMqZTSgkRz!S5)lKJlCAiOb-uDvoxtl1z|B@OX1DG$DeeVg6>_z zOK`tV#*o0KI3LU2KQXTAYM3ODzi?V>^q8km7CJ8y zz|Tr*O7X`Wc6>lAz{G|8O+c&qnWBdv@){PC3P+6U%>Mh-G)6W6IJ@18I*C6C3jPh0TSk;U5sM%^nc= zo+rQ(LQij@HDr@(@mexdp3_O1M)i5>0gIlMr?f#8k@M@#BWrl8V){sn( zN@E118YJ#t)uNF;x1GKEpsbr)pM~uaHuwS>(UZTtfJ}=z&XPz3j@uH(c*#(Ufo&r| z4wErF0)U;qO1^yxH>mV;Y%P5G{tn?cVXg0CY@ROtNl+<%`@`054T&S(*osy zJE972XcKm1A}#PZCu?l!=|?O6sgMJcduH!;hSzuuPyF9~>B^L&nx38>a0H*fefZY# z+sPBHoV4Fs$|Dyur1IdN4p>P{? z0b~jgfqhXQ2WG|)$UdR`AECzY*tQc}oDU8x3jbB>+8Fz)TN=HryU#JMrwu~_*;@}tzy=j+ce(~-N z=B_Ac9-fi`|Ll1o#Vzz+qjHFiPc%MBU>0O?#s~MCJWc=4|CWuHq5cYviEFwAOv?V* zuUt{7thoB>a7g5kx=3}(S2;PnM{iVUIwvQ8DGNq-16vv5t6~rs3w@Ib+2=p~=X?7n zy95JdE;>|4fHVjWbW`EFX$-JcKPlm6yv_RuzEnyA`kM1$|U5%g%?lXGW)i&}! zku1}>9~3zHCEykP-G5JiiQo5pJ6HH3e;Fa8Z5wC(&EA1HKFqX-xwIYbQeg77(*#s# z;q(>(1XIk^^@!Tjc)r%)&xB2`R*5Nn^Dd^!yx=1kpiV zdV0Jn(qhuRp5GF_`r_nIMMoE=fh3Dlw$}FQZ0X_9OWQ7HO8nD^Jasq)qzs}=9!tvC zdQ48c2`@WzFjvj`{@?jC``t?9PS?w;`bz?(pP9tTGC~jqwMSD4IB2e<{uHI)zIH41 z?sf{GhVz}VVRQse{~@$Z6pY)FSM?vv{ciAkMF9DI{CwP6OQ=;^K!Rc5{&d;%6bq62 z6^s(Y203c*@FVdi=b8QAib-MM$URj!xkiq(wABg~BT!IY5yXa^UtI<5$Q#{Wlmrbh zK3#%y^6t-uP~nIO9!M9UL^q+s#%}?MHe?ckkLjSQqoc#k&5bt!Qb_VqF1|5Hqyf&S z8m1;UqEe4pH&5^5#r6*lt6)?-7K7yw5-B6CXna^qf&aYF8SojLgfHXttQ}&HJ6Hox zR>H_G9j*UnZIjM-vxWrScLn)xDUqu_W{8J1UNsy|Oij7f8l3Kk+|3Lv*87avRz3El z-S^y_ZPnrzV!YEBOcj!6?%UfvSX&zh;>EKUSK%LrqzX&^Mo37gC3LMTCQMilU`Y(f zwNSt~$Gidz^h`uZ`**}Gt3`tga0tO<7wJdP=`~^h5eVj(@YLL2uf>4#3!egPZ1NWz zpPrX!6?AEp^>t!&^z>N_GHfa{K~2ASE*uLBtLc7&m5<4%K?IPL?v9#7n3)ynvAKD8 zj2iv@_ zYi~gXBn3q25Ky|2?(S|0=|;Lix>LHOyQHMMyBh@QknZ|s`<`>I&)+h8o|!c(?|Usu zki{F^9yC)cG=vsDf)avE69NjT-|g&qT<5Lgv5n$ zb4*ew!5xA2{zB)8rMP?(kilhB+4!;kF4b49jJsT&|88gu1E%xzTTgGVIfyXP>a_^8 z;EnJeR<2q^Wlw8GQ1IA}p;IBRWxV||!Su_>$DPQ(^+|rccVS^)J@Z(2qX_>B!9u9L z*c3yh$Pw*~Z}emnl@bPlYrRI16Z?!vg*&l-`{CR7wf5e>)+6O*A`t!;p{ zNrr?nGQJ}a@<$^@ema+Z!rUd!pPZkVK-Z$xd_8}Be5@f;TvgA``nVSvZj?YZ<*Uig zz+ITraR>HwZ)Xd-jV9KJNk4#%HrzbPkGk%4YnP9wd>ccRemJR zbI9}l{{Bon>{}Ch1l-8Z!Z;>RUL>iGP(NcxS2Y~6S#Hef4=?wjeH-AuL!M6Qp3qZW z6Q&Yeiur1T37 z4VC46u(!Ffe!8^wRc`5dSol7pcj{v;Khp< zQ%)&^n=gg0-CD2Ql#JZ>3<&5o*#z{yeq~Sw2pJ^+G+_uc#G^f`UP+H1pi(jIL zva+&iH(?Io!NJp0BTEQYR8*C$*8=9s55-&UQa7^y-ZT%6hI=_A?@tghSK^QfGmgRo zBCXfMz78s_+>Kb_E8+(sM3PU~4or%vaVk>>2Nt%saqhQFndPl4Zv+(dxZN(PS;(eT zTW^)|*deUmk)7D~ZUi}T@1VwSNj$fC#nsJVB&&{tiL7HnYq!_zR0&-#=kQ34`v`@m zzJbHHc(>y_6N?L~(uR-=V%qdPPZn-c4ZxdBaG7SiqN?+4eB$G?ppuf7_UFMFnwUu} zl#-Ope$~CXDfR)DFYM3BUEp$hS47n~#*9&PSbX0N9$ zsu{k~PE&w3GCCT&psT7%B-|oIa0){}7Sl81WQG#P`+ zF-Z~^da@GH43EqCu~S*k(^#GBj<;(5f`WpmJlDDvG^|uq`xCj6hVRNzV`3cA*yJm2 z9vn-1hQ^u@l^xcdv~cRKFpx@u`nw<{lO7+!$dw2ns>$vFjY3nRg$ zhvrMHq7ckXtNk?k2^ul42RdF)HjBIB&dmq;L7H{RBEMh9^?_3bSm=z5j4~NK4~t-! z?A~-Sux(1H6GYZ6H%9tKx@;WE#8T1yUAbmm$li0k2UnpXm+a&p3eXir;VAu%blGD9KhV3ua#w!bA-yL<8Pz1-le3&K%QC%hThX@n|~ojQX_M z1!x?y>(TN|jB>_veF?+G1Db_yb^%!(pXZt!cjV!&#jzhV`Af}|ju0Bj^x^p~!Be3Mens5p;a0X!6MzMSYTb~*+U(V30Mr<%ScPQVJZ(u(~$kZlHPW#>T&ANo7t3E32s+uTd5! z<{2x{YICa`oEfHk2sH+T{07W|Q)lReUCd8EO8UJ_0SIO$SJ8s$tROr45gZNY7CVju z#h^s56%K655u&bn8rZY;o~a@d7kzcCn~VaT;6Or8wNe%H8jURRy2XcFIuG$&h31FL z#f*mohr$`m|A67Ezc4tAnPy0g~^`oHMJYl8fuVp)HuHqg8BftFI=-W z9Rp5W;+0*-9iDm~4)<)3!;e+bjDETzxXz~YlRv!=o?hoy&WAO#=`LGIzfTG8+Xu^hTz95v6jHbqZ}tYNKfHV57mv0lfOyKe&j{I!`c#Db;-fRw9}R)U$M$JEo_ zHW>MMHNdASvr!HEMQdzpS-Z| zwIdvh2L7^7^{McwTvj^82bt8Jqa$92JKdV0)!L4}N`{oUFw?ZR8bI|pNIhk7lgtuUy7t%5-1>oAP& zpm^LM)6`yWT%nc^$lWrb(~`Zcx6#2#%vYhaAK{XVwktEW-igmlliiWpjaSouLm9g9 z-Y#Bjahq!1Qf*@w;2E%extDr&OFS7<<7!8lSZCaaB}AAE zC(kI4_8aWNMa3g{vkCrCFvR>X->>W1v03B|ssJ3>+1Xw<30~M*kJIIz7dzRJRtFAh zy9QyjpkqsVX$e}({psKWsJ@GqlLQAUM-E0)ye-4!R^NUxLgqwYKxx z3$q(hD!=7}qsPBT5|Wbdo8eCYI#8;3#fGa0ZuT>Aj%U|K$;Jh!@H#lKfSB9jXHT} z`D~ZQ+Bc^a_P@7&?RW=dzyqU4E}@)xV5{`gZ%G+cb5Q^spxO@H!MDx3xI9WFB%wuG z{E17arq;RR!li!5pd||l5+w~piQXfO(+K!;mc&_3CA$L6izDo|&(F_?zNJ$r=6%?e z&7Q)|R)SY2IKO?cbQL_W)7J4H`*RXjS_fD+He?OH!#( zs>BYG&r{R;v=8wML{S=fH<%Q%-fTjZIN#vC9cZjRD!=9rSpLOd`f72)#UNvyDw42e zj%D$aDbm1CK=f*u>l56!{5~9$GbKW=J~!)?SD$zveFyo8=fU^l^%hEGg$ZitQ9etxt&nSf&?f+>}}WIhiW>asCSc9;dtR>On2O6?Y#9DPGoXi=s(r!F2W!~jqNRp;YR8~M?c4=fO{uZ@$7f)^`GuCcF5eGu4N}e-=h%S_rB@tc&pN;3bhR3W61t!^`StKgEt z)f6vd3xOB*p-;#Ysga<-0tIAbp06}CX~FH$9wB4n_j;cYIkht|0~|dVgrt{QF80{B&U4eiLxK!pC}t!ic3o64jFk&-u+UK3 z(>#hL@E~jW&NZ^8ES~$Bm9HzRyvB3H)0BaZ?GA-)@juL){UgVqrl}mAWvKhDLDe~@ zmdI7Rre-zh`M7#oPaFz+Zau>l85ExKm)14-=Pp|dh(nv<_HlRK2<#8zuDp|>fd%4w zvcnJXL31oEPY*}2PovydTHh_Z3=I#a7!NIrBHfu^I&HgepWFY!V#)6XH6(o~%12wQ z$r+#?4s3$#q=gYy=juI5DzRDEyp(e6S0sXoN?=z1Cg&;;8A$jUo1K2roj>fHSOq{# zMa9ta=a8>Q?Y2fCEE%IyX7tj}DUO#N}&` zoIsJSlFZp90LN2P@A&?u9e{>=rfOK^5k?5#>}HOI!E78i+j<72qsdx30O0*W&ETKP zD#a4hgq%PssQD2Z1IC9X0B&)SjUfpJ7To!tDc@^UuFsgEzC(Y2kF)%906-Tvr1FGUiNRBgVh+o=4!B0>#&ufYi z>+%|%WhTL>N8pJpL1z1xN6OcA`Xi!ekgo^rw=X{rk`4G0RJoYilV&S{47Rh4Bv&H( zP-<)e5()}52h1?Iu|c}sd7wOgB9ZI4Aa3>8O{ai2SXs-7lEPlS?LY166tA}YeTL&L zgS<1!>!$R{!rm)8QFhWTvCBKxyfmj0E4^2AlF8s@Z;VHdqduP(O-XT6&Umvc?0G74 zr60HcdG)PMN{=zCVzFniLBGky(*8y=fTuMsxBCm#5OW22NTH!hkUka`D%anizHNfz zfk9orLqN5f@O7f{Ga-NwU9QE&xdDy;bP%>`^e3d7;er@-JJ&(hzdUbiP{EHv3$OQG zj$E|FW0tkPlPITSoqgHzDsuTOCx^h(_xn>{wqFp^?{L$b+8X|2ob3HIi}egMGSX&CEms1G%aL2seMeFRpj# zP@yaLF92p{Q?}yc1Cs~?RR@Nsw~+++_zm^R8Uda1E=xuDNQhAHFbB?;s1ONq0!b(? zu+~kzNt=DpJ{oDd0XQXK7xq$^rS}gvB1;~Jy)MyNezIa9T+^k}d`J*>%@peMC{c)M z!;*Rliql|H>qPd8qGjt$W8~}vC8e@uAHZT5BZ};mshr81ubg58wfV$3X!61Pnuwk; zvCg%__0VyDIEC}L1;lEA+L*Zs=z&Fu*q=Wa3^?yk7_{i#TrM6Dd!c5**ea>ukW&j}dSoMVdXe4H^knJ&1GsD!>I4vy|C=zo068}g2 zSt2Sg2EhlQ5ZBvtd^5u}rkWVh$RZt2NBHzWE2bo)x&_=9fbo7;@{O38tbTnmu3j%+ z#`Ex$%_A=lF^ws5YK!+LH*$ezWbeeZFrA(QB`kzA8R~^B9!K?>k-ZWA_lYO}6e%(` z97;}~0VrKLTg}6r1R^@>{-B0N8V47CXz7`O3RQAOTtQIWybvggQq>Ic zJzX}ZiM3e=EhSIO6?MFRW`9c_E>CcnMsIbv$o_T%G8UFuY z1f+@AI?qAC+FRT5Cstax1Zjak-DIhFBz8T>yC%Di*7^_;XK`VtxTC}ZBum$k_&VI= z1}=3uq44%$XEab9SVv;7I_%|P_&c#%dvquS^SDjODP~Qm9P(n6M-4C=;Cf*y`o8B_ zUXNd_+tpJqFNY~+6Y!$KM1>J(O_*`3P(hbMc0&_4gak1$hM?vc88uwE7In?#_4C~A zkn1=aj1-|EcH{|@)4J!?U-#!_0S=1-N!LLG5jwz(A@eq9Q+qU*=$(T)BinPp>D^u9 z`n8=6OcLbZqcGstR&Bk$6gHb)T8;zMn_m>T>}mM4N0Ay<7t+Z-#YyOENy$wBu~)$% zwE7MW-!}H#-tNRap;v&AWVN`o+5d|JdMp9E5A+^N;iP9dmGXHzHZ61h;DU|w+he~V zLJEcIMkX*t z=?dgtZY1Q-wH6^lU)Q2NULBSgYP5c*5Pv_Yw|%&b1O)-&yb}Q>N5F=t=TcKQ+&xsk z&~QI@ilErz(Cjk;M&tzl3`+lm?Y)C`_WCKUl!i!Q$rcg7 z1Fp{LWdZ|UcHwz%oay3wIGEaZSu#Q)qe~E|>H9?rdJD`%xhlH3UFs9++))krnPcR> zORFO8(@nAY)dYC-fLhf&okS}IPWv*u}Wf0Q$13lzD-D|FatNQ@*@bA6!`;_Fx59-7vjUN8I zyefUz9mma*u!|N$wm{@X{q!YpC+b%e+vy5HTDs$k`i}&nG{E5qt-k%Z?5o|l%<7B* z9t~70kRrAdU!0@syDctc(4rs9DjNiPh*4lMPZ<4vp<7H;WF8vT82PKh!TBV;T-OX0 zTSQ0ByA39)iNHXn$!KrK`+s&L{=8V)#Kp+ybD?3n1?7NhUezn{exMskYIQk-RtSwi z8slLX{P4tJqMq>hlwSc11XY208RxSq$hd%8#3PM+MpX9t&6~=ADO{H1)YY4=1)Vj3 z_{AwLlP*q~p`+;Tcv(|aXfYa}-wC5jvs6_a2H0XA-e|HPzpJRew}Jr51R|op`usV8 zy@<5=Oz#M&lK;Z^;UB@EYaGP$C7)Ck@30@hKmg@W zMR8D4cm@stI6KqVY>JS25gx-3ou^_oB@gR6?VuOOOhA1?U*em;rBA z9l!|vBIbwz8oVS1KAS80qI={c1@Ndy(jky^zP8gJh1vLe&yIgD@F&Pa)(KobH`f=3 zYB;Q@+ej^Az4@Cf@gJfa$CAiFxq*IDN%#`>4f{KyXO1sUyWN0MycyYLEgjKC97K` zHAF7_*v#HaP!u5svd+Bv%L#{wMh2Nq z9R+n9ojkeH#i2adC=dpp-2C2ctp^;t8+T~_`~`$hRKvmVFaPT4PeWbE|4BX9H$DYr zVLFCt?e|ZjTh#LDEc!M?_CznSld58P%{a*a3?w88sCax&hz|e+ZZ(4M(^F%TK81$R zEv#UKfyxO#d`|pslT0bl?Y)QMzSD0uDc*5D`w}h*dj_&3g(IJVasCvPkmmGvtWF+} z_Z#SX(BWLsvNBhj95BwnzBaM@-&*&80_;OX3FT)Q)iTu7DP#3#bCK~f;eUm#>;zg{ z$GTaXaL+E&ZYyJTN6&pUGz9b-2zmn{!qjs_;qGKLCPRgTDsCvviDYBwMx5s10a-Xk zY&Zk(V0I>#Ar-ME#x(6o@;leu>88sQZhxtZgvQ5$)Sf{|Tq`0NDh8I8r{$=jUJ29= z1HICa9H-GUKkHCd_;CvAI2y~mdH;pT(F9u!p2j{!YU9cK$_myiM2(tV>l<_x;=+>k zP@$=!(Ovu1o&Q@$Kv&GelBT)K=1@a0_!OW-bL*XqImr~b6l1S$dg*V_gJ?vyOH0sO zSC3e+`#Tr|KOG@fuY&?-y}P^hGe|UdV)DT4L)Vxq=pzp>NL=q;Ky^f>904zXM#Gdo z10deMLdADI8Mhr7u$MX}43Y*Q!V&{-?c(X9iwUc9=N-CN0BRo6L%zI;WlM#xIeNAci!uW>{1;WfBoY zAlWMQ&;a_ILqWjWH~*$Z``qnvOfqb?jD#BOTu8#$*ce9C(Z&Xf!3k3bb;16pLpHeW z&H51peD%KV=Py5|XwnWFZQJ+>07%K_u%kbJHXjGG2NfF(GyaZfx7I9`^R_W0vE!|* zz3OC5rI?(Yw5sF$6;;66#SX$A8C2T7(|FOhD%{t9IqTvitRyI*@E`&tMPeZbJa3_O z&^6-k*aUv)K!!rk$;|}YO5`;;>b2D4Ynr+&^pj@{5%m6daxMW!J-D$RwT;9um66iLhPhrq*Z@=#GIPjZ@AJ1^*cbQ<&xv9FGn~|bf*4&tO(E@4 zSa=`SSRb6g-sD+6HMbD*@!MSQT+ek@$l!p2NofuQQsIc27er={ieqvn3;9olW%1YP zMk#fh{n^QqHOP3^dyhfXa{~Ae8Z^y9EsO|sH?D!6ouIYSX9CiMw{`8_e9xStUc?MQ zqKI-3=kx6(L|)1g9oK6as1G3De{#1Wy9)mBnhLGzU1H&yV%)&9h|}<=ou8cC?Q|}J zg?n0)+RtA>DzH#bCnx6#njBf~#(UAIAgB}Vbif0E2TtdhfElSC#i+=mrmI`CBj=YF zUocvG^&3|B>28SjcYqf1#UhRJ2dZt=T^~{j1F;zL1*~44I>gHVISnGp;A16W)?#{L z%FSbExB5#G&mROkSFXU#4|)?MJ;c4tlOL;rzc#RFxto~+BE@aa{MXP%Gh82I8Mt;F zQ!rd#S^al33U;-%KZ?Zo=|CyLpZ!$yxt&t5_~hQz4H^{yW+puth+KWQyScB>)Nc7U zUIFp0afuqF8Im94Hu>cm_vh-p3WOl1?VSJw9WL7Y2@vZ59}5`5wbPiG0g{{kX2ZIc z<$;?q4}z3o$3Fo%=&@72a~*(<5_fLGA^pZwA2iLW;!s8>23>yCQsBzv3G6}7q*4_v zl>nP(|KbDmSirp4h}0%wcOG-Kb3hmH-NK>tBbw2b4vlH?YL%c(W6G^@EzSGAsGw2u$5_)x0y{ zol8RR zzM(?S&>(*caj$||RYE1hlvZR60@)YV_&khJ=2&^wxD3Pux)Qq>B`hDzkF=Ukhie4S6j7W<|&ra``YvoBuStbwNrM%B&da2t>?`h-zby7vXUsea71sb6y zmScYff;ZsXr1b4xE$!Qk;#9%-b5GU{+t++i8~>#XwghH}{710O95k%0vDKU(qZw^) zbS){YO{QAC{FB}L^{YUDFIF5u6rlUIGBT2GbaYaZ@kn$N6;eS%poGWEUyfEb1ZG>& zQi&q*$GD+=7I_w=&kQZ-IF(b&i~kXr7!$IyL?z&whIJR$l0YWZK^ zvq|5fn-5muKl5PVh!D8{MZ_T^dsBhTUJ79&^8$#ISBJ)e|cnuDwq#Fg|`? zKlO$76T0I{lvju;l4Ilwa!KTyaQhd;UXq~C`^fh-9eLgs)t8T&R}m-bZl7@AZI#Km z2CsJ^&_+6q-nAlrW?JH%b%}q09d?el8~RP9Yx<_5_B{&i~E2%U>+&#HSmu+yoB$v`pL8b zc!~upXZB~F&oLm*HuwZ3h4p76n`3jRx4*Tn3;de(*V z)(K{>tkAr+u|q8qwVy}O_kGqWOC(5CHGvW{qe6)b^;Yhh-gD?Cq3c1MmXxf%jOlf4v#-=Uppl#f{@Y(x#J%H$g1oYxl^_=J%~RW!3X{E z))8XH{^fI@7h?URQ`2CP28D$9)z_b+Ge`K~3qG~qoll=X+#RtaSo0gb1n+-N02RQM ze{N;)8DoR5|ED^H`wxmhkB}=hYIwvsD=m)Y7!^snU>-A)K9Je}_{jx%j~kvEqU&K( zpY#DcNf>}s!Wce7NW=e~m3XuYzIgNmy5pVuOCz^8ki}=k$l5>TBxYCpH^84@i{Q+T9BS#AVu=orErUKb7$?vM=Zin4E zd#pf(8$X6@9Rxn}3oy^IAQcR#FDI-f;fD~ng=W4)*%JsUfYu6cg+DhxPFPdi+$>pT z=P6&bnF_tMz}P?($vBTmAdi`yDtp-N@)y0N&JPe-VgQR$2`xa$u|X^QTh01_~4aV@j^F+AvGD^loh(;O zy82{y^Q-@*rmQZyc6h)z>G&9$2l|R!U&6h;A&L(IWDXtmRG4JGlEYPlDn6KI{*u3Y;Xw)q8Q;=X+ec zFSVIGo*t|3-Pc>Ei-+O{-N0kl6w>8G32%#>FuO3)235FmQMB+ObpSnqB8oC8VaH#B z%u$;;cr>r7>_DPfDfsbp6BP8&#$WdTmr5I9Q+{3P%kQgEvzA~OPFfuqK|4D7enI!l z*@9JNfT#Ne!#vgR6E*Nr#@x{z^S40<5?nEQcnFlqpGR1Yj9Mw;{w%71Kx+5kKbRnEm{p zPyn#f+-pu<`d+kK=`DVhuYh->*8Y3o*wr>lp-NL zR>KUgVCbiH-Z^ity9hP}b-rGb`gNiRm!LafYOk9dmblNz2sI@@7G&^j}~Q zM~#Vz`CBst9Ak&?V^L9bKSIW&c$@+4{AHUj=x3&PXAK9DdrPqyjB$=`x9w2g z`K`|zc}1gsd8-W6467SlV`Gm+WZ!-h%7%DLyU?>JkB^DbF*sIF?gv6hbD+8pQj%q2 zv0i$wi{7>Eh^tvnOs%W`Zh<-MY{&TU>wa3(OaYg< z))WmZ>R>v#XbeeACP-b%GjRNS8ny2Qa`ZEV1E>OkAYp!ZR~Y3nhyw6SelJQA_`LLu7++4q z=GSe+DaSmuHoJYZ+G{%VwAPFdGmxw`#9n1!Q~Rci>w`g0+RlfrVZ&reWSJb0GfRKS zX_;5muoBy!nto9h$6{PsyPY97CC9$8Rcz*_GF0ZPZnsSVBOCG!~FJ&VyS4L&rnyl1a_~+P}aH&oS3Td(r zAXZv3*TNuK>9Jw|-te2BT@>ylEJFY8<;d8kLWo6aLsrMk1iA&b`}Sc8i+QZ#^*wy- zCddh`5r!I3YsS~oTQ@vDp?|*R^)gbAoL}K|-c(AB3$3bmMFXSDY2X~{_crV17RrW^ zDDL?O8xAjV>%Zdl@iS}_!3q#XCt8-x%3iTl>(nckQPR{DF*iDP3#>(UoIl2=E=Xs> zcAR7qYnq4VnUP)elFn-+_XY+EYTBn9rC+X+SlmpuoWK&n#g;AQJeG|;TZ_Zvy36Fa z&%^XKu#Jkm|K>NYU;AXT8u$$plTC|Y?W78B6yb34E);8HyLg~ugrfqFSLT61-Serf zGCLEwW2^c{MNkJs>^q(kE#+r9%u7|ObrV#gTs#9lc+#-95%#av-j08)hCiHqY^-() z_{_i7FlBvo@B@(^yS9ojLX$d^h8>qx0Sgiw=gVG`B9IYramhieor6f!|8I!^f~w^& zp`KKv0IodB(cDTa=v5`~mQ_A(vkSrXS*%`JIjTppid`&BZ6*uYT%DT?o&V#eX{zd2u!QI%srdevR?MzjkA!O&J5y*N#2f zzF~0qxkk@xbzyON>lp{k#2`O;+%vSaJhRQVwNKnL=C3)O@730PQRT6_^n$O|nCa;B z=YJ;MImp!26`EJnn~OQirN(NjC+E^ljUhtvgjF1BZc00~?`jY+!I-hP2hQFDd|%l6 zUJDR02rXHX3n-gjf^8WjQM*0hXVT2XV~zH~dwff*G@xf|=qRh~pO@pb!>B=AyE=cY zO^DF3U`29DwCL5i%V0kqPgh*Ff6j*@ql#iSTZ%f^o`>4UFGdH4jRq6UuTwxVQItiC zzF=%}`f#u~o0F64Uz-@&BCJD%HF$D6mVa78?O-@P^uR&t#h`OxSV2FRcA z%tG?_7X!Z)TSrAv1YFtsywSwoahfNXFk!w9m+(JmyrRj-T>TjK@_imIKD%8qs_5&u z{nOm>OFM9xHMp^gMwEtr)hUTS&jMwxCh#HbY%~TExt9@~V0WC*-63QPB|L6K41~XN z5x9OqVpFPp)pZ%tHi@0}*-Lc5=S6$IJ6nj_kZ9-M`tL<5#${#c^*V2jVGu%xSq?vu z!SbQR_(qwbFcu<3iTMq=>3%LeW-)I)8Q|~W{L9?xKsv{0yH#ynm>heL?M4sG9L`uVTZT1QNU$?fFt7J!RvNVm%)=gz4MhdlrX$Z zW?{O;4YmD#vdTCC9Rd{Piv<5n%C{{rJCjC>|C=1Z$ZYsBWzx*=ABn{e8lNXvmGni{ z6g2TM2~J8vh`<2t|E}T}SXmfv>(7Na&uWd9{Kx9GPt-{W91aT_%~oF;6^IwL6$SFa z|K~?xBzjJ7d2NGP>3nz@-P%mJU~3qEdE6K`6eVglSX)Mm#7!lVlIh%Jg$Q2j5v^GNp%Qx;~4O;0(=L4)oz!+*}(weajR-J#|*}yy;a1rAAIoTlcp|r z1}2hQMaqRZ5mV3p_iQ|p8v@AlblVyajjD!OQs@GJ;4wR&3LR@C=M<|-Q!kyG4#0Th zJ%+}xZvOnav0=~v3hY5QQNBJ#oi=B2 z`n!L+8_roaInr)1macrB5feEIYbdAYR`HJVOqR3*BG~;(BUDIc2bGHEy~t=2_VanY z)^;B(#U(6%Y=-CL7<+l;e4IbON6jcGDELtYv5ms>^RuJh-4m`AK*6Dj_}y30axrn4 zEX*=)rAY|daf?2S)^xJ7Dlx4omZ&ne>p3JU`;oZ)G6D~!c{`?p!Nm9^U2>L{tM%zD zj%1Es*hV$C++Rgli_;SVSk$>^OQy&sQ~WLQ{icCQ%PCH z%xtenxfqbTWT&U6Eth^V@bc=YB|Dr20O;@Bm&!52f4>*Q{*i5A!aDdX_F?8^Gk8tA z1>^e!<(ewW$@pPCKpCtyTi>L*Q{SGff;W>^{&Izb#NO$+P%0OlHGtiPjQ4gt5^Ll8 zE7X}1bww>L>V(1A*jOe;#-d^OzldwR`(v0TY2J`c0A4rb+Qy!s;eKmh+|%pW z)J#Ogakv5Ox5N1eP)3GFqC~@9@_OnOs`C8BtJ6jwGlv+_fQd(u@>sSuDxU-#nksil z^R>S4frYZP_)prguf~YtqA69qo=h|~O(aLQ++qyv>{@0l>y|IKQmk7}&z@wPKRove!C)|auXZ+P(_=y&r+-v zunHT_Z`*+Zu&}(etQ$U*)Tn23JM=TH;U*ZZucGPPjzEmGZhdeBD~4_9n)NmJJ@Bly z;abaq?OH(v)1g*V^{vb)uO8U(p2Eb0?NR-w>h6UJu9;a$!<^o6hw<@w?1ikxyT3W# z>rtcOX5s>jGFOkRZ+?v1oVz4+SKLtELf8I5%LQj?X`J>FHjWr>n-UH-yS;ZmeixA? z_MR|N>17*ozjl@5aavt(VA=Bi)`Yni#Y3;PJa#a)^Ml-uqQ6Xjp$0|3Tk@`z_ceyN zsv8$595l6+%dL;)tvpx0ZCP)%or%f(N4cL3l?+W!`&wt%rwq5pKR%Sx+~iv;f+Lc# ztpMk9lc~#hI_mXkhj5j;w)cTKH#fHgfB&Pv2ibJYmQ{z@iz5Tq_V}5jC`~O}wZnfHU zl2k`iU;hsnN}T56Ak%tsa$@aymICFh!Ad$Etu*WRqO5%z-R1=3Krk$v{1G*<9Gzgv z?Tsddc`rwdui_AYDA|>Txk;$YJk8~j)+N6!J+X}+8d@X9L-OmZ-r47zToeKyaqvx9 z>Sv_~MiuZj4^Uq>^H*^J%;GGT^$ks;8Ei5owR8>{0980oIx>wk(re!B?;qaodimFuv|h{{u$a%mkyS)^3aa+(_K+^uY*5{ts!j}EFg+9p z1_rKrJv{^;0?sEgS6}n(ZsU)-I;X{2OTfzcmfulfGZ;_Po}u$qc}hpGYJSCK8-I;o zS~^^5GRh;$ffUY|0*q8?^u&ty-KV6g-apbMB!%ma45fm|7h8vWzGVp=cBszP;VQS| z*Nb))7M`PW-wzr+%!9*7TV?vo?Z{j$tggkyN%1jZFuRtj>>O{I+uUY=)R<<(E9>sky${wDQdhOR`?B)rTdk z+lX8jbE0soJW1b^gn7vw(Q2!uc6Lgu&WdNtb&jrdwsDB{n4Np^o#x8Y%e0i0YrLKw zV`9)f?qCb>qh z{CGpWby8fGj5cz5&)gKnQhat_IW!??V>1cR4NYv$wuS>E2?$RMQPcmvX>lELY(NEH z!U;l;q~cDQbiDh0PH~h+ylCI5uH8#k+<^QjUp(UHU6O@S-Rc@OY?>ByYIQe%qkBYF zuX_>$i;y zOehNLW&GO$C(H5P)nH(bC#kN|-9&lV{#?1=*NHj*Hn)(fH;4T!jxxfm_x$>x-A-|k z9~dX+xSfeXL}q+)^QkZ`jUQNxi1CF=fYp8$-Pw+HRB!ilvu-RdxX*B}%F~9tn#_Dy z!$l@SOj}z}u=8w`m(ZCjz3B1u=`KHrkS*~~JihccpoVq~zfWP$d&oJ(}Pfi*)h=q_%(O4hqJ5yuD9lpg-o7zVZO3VDPIO-4RL1W zt8o$ehGT(e>yforHX(-mQ*n7fZZ}LWa7Nc%T~n-r|NG{n$-K*tueL4V!!M)LXqt~NAc$8XU%~$E9=O4+KsI1 z^5BUQ4VLRm@!3st4F9VmFUx*jkCZYgOwaPG({|WQnvm4ggJg#+*XZ)rM=%=KE#o2y zmazM_@)QOc|5cQ46}6k?@NuEy-^_O1!A-$Htkr5}cK`Pb8^6y(d9lkY{%Bo!={7z` zCr7#PPxebB7KCr|*X%ShXtBleye9pOR+SkLaI&^G7QZBGDIFhdzld>(*nmU?*B$4} znDjT@t;6>Clx#nV$)1G$;|Mg|)4k12*jF|*%%p*}Zdto>EeyMMNs|Gyi}j>kT=q1D zxS8a3>J45~O4ehLd$a#gucxG;k!o6ejvdry z*mAA(pA8(u+BXB;^S2$!(w_yf7S$%E>kWR@qP3+C-VJ$p7>_)+8~eoLY5HU?jCz#A zxbdUFHVU|`W*~UY^dO=)wD~IIYG|qg(>yFaZIHKPed#fUW${&u&Dz{lUe$I%2X$uC zJRnrz*w$MNFO0p695&){{r>nSC3-Uda{^sp?Z!$KnQ++;MiA!XlEmhgAUAp~U-t#w zyaTQo9E#spoxWvWwhc- z6$iE@)7f}9p`bi3ok;_{3sMmAz4U{WWp^5c*YvHOo+ln6RMWm#B!q8HGuL&*ZcyVQ zk%@Uty`+)wJyi-CflS8wW;A*Up#04Z{r9Kq*wx*QVj_8f=!P638D)ANQq zh71)>)r%wP$d>Zu1#&d%F+Yki61@bj_vq($w7l^!5$aV^>}CUw@tSlkt+K$tNrnxg zsxTN5HXKN1enU&`kU+f&`+GOSR6wF-^ylnuftl-Hrv@D;B8I?KxE2Df8*v z&a{;%?;%kZD0z7z8$X=v?SCJq*fX=UZ9_vhGzyPQBYokOE=OXRx^m6$LFPFvoAF2w z!e31-wG^c`HUBw@bd3z5SzpR}lT^^vI`hEAo&yXFf zF=a)P)_V=HwTTxVqJ6)!+W4XWD8IbFoqdQO1QJ4)c7`p-(<@G!B(HJ>;&)U9bB&Dl zSS<)Ix$=ignN#OkfWuO#*mm2#|J)=-BsU%P*1lFD(E&g#}D*&B*>a`y3bPz403zZP- ztR&Ab6etb;rJG2s&FiabEjHIJZt=b6Fb|xG)=~WOxEnq6^`YxM;2D4#njMjH=}6)7 zJJ;Km*0`KLL?g&8ADs|lsjoK@qX(i+2^<$y7)=@_!4;^N%uh;Il8yXN3|@)94F&hTQ&Lqbvaa{{`~YXn1WkpJOzYRSf=&@%>|Ug^R-+zR?%a&jrjRk|e6f{~So76s zx;~injQlX?yj#;+FkmGy+@}kh=%}4v^;AP3)8~-000{_c8Rk;!AAwmfc&`j! znuoi~0xY`to@Z3H^zt^y#6%)8byxGg+ddTUfbZq`>qyYfSzkbLV`IZVqsD79@?wSC z0>ac@eJ88k$X&fTFtxo_2YCioWkrB(y}xr3+W28g_@AEKYK9FLA->F_U2rSXlrT@O zsTHX)5H}e#xntjlGoE{yH!JpMRbh48e9!~EQzk+PT-nrnmT#a7 z(LJ?ziAke2s$@OUmAiI);Cc3MC7rPN#80|G7s00M64NH9Pis|~G&~7|;Df+g9Y<%_ zUQe8>zc{Nab?+jkhNKY6Yv#A0+S9`uG>@+PgNOwcE)uwUZ;;Zefr=Gh*Z}Y{^L7IJ z$XE14V3?^?=QT7fEoc8qTesSH{yMQ%pRTK9SRxucaZMBO3;{?$y?rxJRfB6zB?Ax{PZ?)Q=AR5vzD#NVTxt_j{vlJ=Vp7+H z!}~){gIzt0-p?zo85pA0V`@6(H*@1-SOB}c!s{+mwBLC5eJ%ITTLI%tkgel&`~5zD zaj*xR3rT{ilTMKc#)2)d?I8QXhRB|{@a|OJ@4VW7X~DlnAHTatmmYpK`>*djL96wU zncdC%g=y1%e+r85a3k@{A6~-#SH~%tG~rL9PieQu@5R4xck65{=CA%ad34d4*r{O> z@jIlr7-zh$PIkKCvUXp5oe|stu)I~U%)2pWv3Q9x_!65 zXo0Hu$L*T_CZqg>Ix+sZ+D2MJ{3N04pB4|>CSTi~pvZsJLmro-ivOS<9j zws*a`mSP@RDAjS>tZl+4PnkTVpc~skWQjTA*D>7m&wrX^Vze#ow-~u{sj|}Pyu1mX z{qBSf^P zsi_@wT<;dv0ZfhVVdm3T4qNP+U40l`>$~xfH#ar0Wm5c^5wSiUZW6V~&{Xz6Hzo?g z7*8`>*80BM(A|0Ndf=#V=;G$V!^^qb5+%io_-tkxJza;>WO=y0l017=ExPyrvGLHlLAtx8I|Pvu1f)X*q)QrUltw_hK|s12q`tY9_w(#M-f!=3 zy!+=j#{P4Ub-OOEHLp3(IF92y=QZ=;f=K^?E{~-43xrxeeW9)C8kw=-bI$1Rv=aI= zX?^|mXOc!V%|UBm3f4}!MlX3&z26EQo84Jsth#Rq9fp{f~>6y!p+*@)IROTQiMGVigED_9Q@K2lM&vS)w8` zb{TnfOZ9!fTVEI7)>`E-dUCObqU8ud+xTsX5%tx500n(p+l40!)7ANE)jJIC_b86l zUoR4uBstdu&t3ah;=MJIpWG9|!NaB{J|xRn-fRa>qIc`ORXebC=9RG#0fH(fGE}d&$?d4dWI%k*oLx|GO)zY9-Qc!(a_!gB zcE51>)7U!KMb+lcYCo6v@54R-<-873hb;nAC)1|yYcu}+tOxyZ8TvO}VQO3^^;s?+ zo<;$;*y(cZ?Iaca%o$h?aaNZ22Y%Fap>2o%af=bRH2X^Y+BbpvFO2S#m{jnEZ)7^Z zvVo$2pxbtZJ=0T)3>-O}m&{+AFGpCUe~3f=nhQ{?V<|H1tg%H=cs?ybWbT&B~Wax|8bMu zvWj`}$>I`Z!0uMz=BiDSri5qDPQFl<4?u(^3d7h+{DAtMS7s7wl$ zPfqf?V(2@$hWDu+tgV02&y*gG-{Y4N4x}I0T{9%09xEY@(hN`~o{c6>G{4=z`rK`D zjzqS?%bJro#849_lYxdsN!E^{p`+OEZgmDe=8u@t#xtcPW*aoC7(@u)j#!nX7;DlRNh@o zU|>Jbdct|5FImh!!AA-TVl)SZfdPiAel7LiE_KmL>OZi0LxXnN=IC(#+AuV8%3#Qa zmP%Fley&rvEG}XGIGjA9Os!so?|(~DL}Wscdg(9p-Bp+%N37Ux&-JTMz*VrXF=dVF z$5fr;iHZV7l`2hGsmldh{VM$RBZ!Q|acOCMMF7(?CZ?JZ_bZpF;lTAu-MsqNfcFL0 zT5W_o2U&-2e^rL_JUG$Gh@g!xCx7)x;;$ux#Sx(blv$qq)}<2>VHH1Wc|(|lf;eF` z?T>!>zL9{iCFk4QD65o6eQXvkkIFbfnkK$X#i%_uKOE@6&3t zycu-zTb;6;KYx+=b|cX6@)rTeDbMpwAHHa*Ri}Vwr83sJjDr3nQ*Ci|tnUNfOBxm8 zv=+kZpU{*_1WG7uFD7RLH{Fa5mDmAgGtfKjG$AeS0_kkE666|oPHw>Pj_TV+7X05k zj;+7Zd#YzAzqBuWC1~RLINq*St30{aa>X6QgI-YuEF~gDi4Bol=i#FLpVyH_V~V}az4LO^34rj3Dk`zdv-`D)MXdmexL_MZ#Hh9_VHr`_ z?N})vP?z-B3%fOf*cKb*t4vg=>}TWcowsyjSxj@x88Px+sPS?vtAY7>``X#6c!+`U z_12;9fmBVwQcaE9lyJWWy$=xtRA{lmbN1PCV{{pED)^Vne=K8KI2%L^jdNvqkA+Db zaIS7AU!7vqT(-B{l_jv#h|7l@)Rt$CW#gNb_{cyQy}C;7 z{zz|@fB&8JMfCfN+hx4fDDY||zOM5$!SfOMYoi_it7lmZ$8QREYq=zi{Af+(oMA;; zQ(e{~3`*vsij=A1G1?Jx>H%{=TJ%)(=i5Br#|CCcNeyT6->=?lUv4?1mS{!&o`~@~ z6umFGzFDp~S*@LZ`TW5XvOltCDSJJ_&Gt3Z6}wzSk!2-Oa&B7*&@k2UW}u_l!CmL~ zFAQk6hlqX>exX?=)6?DI7r}=germkTTU#SC@^SWi#agql^D5-~O_2>(PH zsbA9!l*~JhLwN8k+d0vA&6&5IqxkDgR}@P_+I99TR92oBT~>GRugad{d`KC@Tux4V z-}v6 zjlYYZVgeYYLeV>grxjCvyPH?{H&}CFWwHVHj4hN|!?W{lcRlxdC}PWq5{wubG`h_v zaS5D4h*^<^A08We!u$$X71MD+3W}Iq`e`X&00j2jQ-j=r4UxH&AjjEE@?)!txP{{z zVECW`LjQ%A2ugOir$tljLESNGMT#e->lc+oepgQV0-kfqP#H$bXe<1Ni7qQ|7i4&wmH~8%I-zi0KEo3 zg4gythPN2=uCxRp^4 zjm7OZIl5KmeXC2gq!slUydQs`NHU&H+pn8RhvxNvLgS&%{3!* z!#dOw^udCC&w#{@gy&hoF|s#t0)e%uqO|JgHIHrx>lUfLMp|VCX$AqG%mUmGewbu@ zVM|Z1czyov>|E&vu5Eau!AteB(Qort@QvSEjwE`d{F?(b1IL^D8DXJ)V!}f{(p<8= z^OzXkD}pbd3Tf}}$i7v4QqPy4SlQJU)vo1@`U7b96b7UCALRyyjc&>U ztBiPsy>1$A{j5qUNOlegTH_aemAx`D;&XZpQqqb5mbvO#XkBJV7D)*U(@$o(79?N3 zzWn)%I?%U!aKOdZE-^}OD||~ccZ$pNq2iBkRArH4!w@J00nAw><+LjO4NJiYuh&Wg zfGbCV(+4MCna|LTUKg~+m535LwC?hV=0a+W1lURI1ZB9GxqW#69 zD+F4WmLkFC=H`}bAa!tXfENCAkwQc-$*m|ziB2q-WwMd2`UVH$lM=2l3|dbz13u94 z@m)3Ef3vLikB9t_qhpXaZ0`J+Ix{tqNbNTg!a*ZUw^dSNk?cSY_Qu6C5iFK-a;H7N zOBt~yrJ%qPh_xk-4=H`hCxZn*q;VEZN>W@SZrMdl&7g(?AY zFA)pN46!)1axibC9`~W>i*?nq9@o)#S?Ktm=iSt+0(4v~X%IhJpih{SQihW1r={1K z6vcztVH4*|(KRq&y3&>TH#IWd^Z9WuOe(NJsD*fMkM{aXyN6o73mj`Ft(d zcoCDTVAf4;);!E158RZEcm{?uui8Zp2zkIx z;EUy=*r?S>oQjDTLhLIY}vD(|!VFGa3WY7oy|HLP#atPberMWdwaIaGS-31ttFGMBfl<{G_UxxoW}iVaaq6hnm^vFfg5 z7A^5_ewKhhT(H|YS5TfnM1p^CPx+Fq#|YU0sarLsN-9fU5ekPvq#b`F$UQWghiEJJ zK%u*G@=maz5#c?*f|jLZg;UFEwC})UPboC0@x3PM7lo!u^R<;-sxtcR98l^wuz1~P zy-kdkZyYvRv;gafM%^a7s_aF&7)2M z8diG$RoTk&v7XRvQ9@}Gc>ubJd|jm1I^7 zf(j8>5kuH$O0hO;StXyqz9j_uA>{MZJHh@Wd~+2lVB{dSKqwUf&}$ZXY-f`p34#0= zh7Ju9n*c3gRdCH}#}%+Z|A7+fS&+{qfTK;fti9f%4F-Kje#QoLU2p)E;()3=gp%uz z*q}OAne9O}=uRPZPdiMwLWP4(Atf89`@@O)bF7%g59J@X4Vp|%ZgxW8IwQr0a1f!> z@$Nm4VVPOT+NOUBVf)!uKI9~MTQ|j6JhDTJ3H=rt4?`lz?YYGAMX_;@qFt-cG&ZeSEHUhemL0es1Z-TU^4ag%Q z3QwyCCv2)PV;XCTA`_!(6*xgf3N|0uESWD9r&U3jYdlYqPYx{kV#inuGKp`9@&)%P zD;*%^@V|d`X8i^F{cGkZiJ1tmNi$%oeZ^H~UhyJ}|QRDUsRhg~n zb$6tIV*!$a+WQ&9B_F!&oMdJF&q4smz&gm{fVc@o^w_@HOmlYlf?vuLfJKbkhkFzL zTs}r&0}tT>nm|LK6JdalR{7iywW)-iNwYvHm!_R_o6Ic9miDi8U>CfDhfwD=i;(d@wP@}FCze9f79{?egh6Qp8elyuj&H#1K@qMiV@723`lU$(XW~TyAPjP_gQ`wHnM^uum@^B2Xnnpx@!^u`b<(0erMXo`jegwTAUf7V!}>K(pssU&7{L63dG zUuQmD0e{Zu!!*PzpXtc*3|@%Nqz9Gs7449!GqTvfJ&K8`cav4ejLD)(;@1bMUr}cp z=?}kmBq`!u%@u!T6NGuoWzd((O4VJgd)m???1UKKE`AB|3ULDJ5cTJSWNML> zp3o;`9sWt@czyEweU3@6uWuDKFu>~f?c~sK#SlgvVRSd>>1anN%71bV6~0D8O3C;L z8ITd6ix?Gee^vGjou-b#T()+Nej7o-P&}D~3K79ay4mV_VH}wf8P0{3wzjcR_ZTnk z{KaTU1jAvf_2w)p7RXjunfvH&i#Z>RIkSV67+Ncunt<6kKtiA3z zJ3Djvs_&(uum9s^|7>N6Uc@UGuXT|w1% z#wqvThIs@GlYziW9r>4(M~?R6N0tQ)g;=mD!k&W0gnZuT>-KNDUX)9~|6@_3wJrJ7 zw$K*F#>VhJe=P$7>7yUX19~@T{}jtr%9H{J`TjPB-GLf#Bt6|vP1BZC)QaQRZ$k9lW4bk!p0D>l8#! z%;e|OYPrJ;m5y=Pk+{eZFwPVYeQ}g^4W&f0}btkVr~LTN){7avjZ7Hz9{7ZQ|C`34I3JstcZwGQL8f{8=!F|65*d^qn4Lx5-+%> zsYCyI3D)}W8mFLwrwSLVHldxQ%I#Wq^ZlC0%}R88dkgLFBDbHbV-n09`vC4?ah{=FT!)EW>3UtgKALsKty=t{;ZFJ12gyLNXj9-jMwwi|it0nob* z>PiUj!LF{ZbwF-`%anjLNB}H3o~Mr#ns;#D2v*CKL^fLQY*TF`bZ)r4pzztu{+VUb?@VskRD52Jgeg zsA*m>iT?8eL{cGL5g=c|(eb%8dV;?MjUUsD z2Lv?wT~!_a%1bs>D-sf#`N1QURP>JTxk;sxL#WGbozJPEWjqMw6N83V%L7JtRfi&kXhNXp z2S@%u=OdAO_czdbsvi&XWHSghO6J{h@L>T!nj*Yb9d8`w>?%(&*z# z0dC50T3Q;p?`~zp9(XD9FX&6lDeex#4w_G54o|^p1v7&@OQdIkD)i={ybbH*dOzpw z7093o5SQ^Cwnq-04(765CzHJ5Q9;3uFaXU4baeivi!=6h?S)mKzF%z9E7S|R7*8odGh=rTr~xqo*?iKZ z3NcI9z8q|6*yNn?m}Ji8O$qz$;yvyWDrUk-9HQKIn#Uq}TN!ve6^PfGoS2A;AQp)V z!T^ZmIUY56!kma9#Iwls^3^Z9KR!o`Ek4_sy1pGzCiFcS0Z?B%YSDq` z@f(ps{)6V~q9TCD0`D&ZvF5`~hryWz$;_Jci3#X`<9_FmwR5NLIREA+Araa{IZaJX zz&8vH4S#h+;xU*iaw7m=gThck^xy0NT+RTJU>G%KO2WW0uEE^j_@V<8Vu9lW2yLon z_-Tt(CzqLivZxS?6;aUgdf+)T5*EK(iah|C^_m0@dIl2Cu*(tD3UMisz|JC5X5Bbx zfHBb)vkhrJgaRrN8w&PhpdkX^`mM;0%m-BQZ=kzJ41coTFw%O-usWP$KB(_{xFo)O zNZYywL+UmaAm)ewD-JMF?4=1(Hw7BlXpY(&M~~s7V?(8)1h=;PIDkAEAKX5U5z}bO zTC-k30aHDR`q2 z&@3yF|A7UMz}A<}w3=7Gil}E$)&K|cG9)%1_!d206^PHlOp>}2fD>haH=z8(H-Mn> zcXNUe?>6%&JrNqm4?$qXwgj8-mM<-yP;pcNu%pft@Z&#&;{35=IK1xOA;X#p-CGbj58qu4S_{ey&@ zL0jGmBh%3GEd#40i0S~exi$#EfF{6gIe)V&9LPgI1fjXKBr-AXM+%n0;7AgbWQwb^ zVn;VA6VYNq(H1n*O8|d}@F~g5thJaAMoobS&-N#^wJ>U1j|J$42`Es+2yJM=hbmrm zS{jL#$atz!g+@25l7Rd9cYMVs{D@Ff;2y9Tj zp8F~EbHoadJb}QLp1|U02(Q5zY>ffhA(fb1=vXjqDA`{=7&8{)QNGA z;?_Kr!iOy{9k8z-f}kZoEm+i7$(_gjp(+LVfxpXJF!WGCp(6;m#eYD)mj!+Jc5&FT zO7+Q);QpZ)o=gF1~eZoBtNFl zEitFYD`=!~g{_S~PwB`8-}Xj~C!ozd#wvT%ItCcW4lg3GqWCetRGYZHTv^%G?NQ>E za%la!?U=i!p&_L#0SvNF6pS_9iI32$AB19D!10zqGh+>)izl7uXsDklS+#UAzE|RN zam2w0(l5>V6msmSzZ62yvT1B@!jcw<)#DEua4Ib;3Ea--{sW@wC!nPQ&6O-D_2p+x zRUn%J*iH?k5{QhZx9E@hM8LGSp=b>%GEm$3D$0&~gZ^GZLU2AJL!j)NPI#m=W8X0voWByV!RHzWLPhNp>1G! zzWMwMkBnw+?0OEU62?NmjW4ZZNgsg3bJDl?cE4~BNa)!M&>_bUcZ82n@}YoRug772 zV4BQXFMk4iKp2ZCY8fWBDjM6%lW32A?C}f~QpjKd|0$>-u=bpWrt!+x+9CpzJ8W5B zeCr5Q46jD8^-9kjXG{YY*^mGtP4QhrWUKxnQ<4J=gv?XY{2 zd<2sIJI}UZIz~z-&`xAP+k~=UO>xVxZOt?S9pQZ%8f0q1hB&&q21da7P=0KXGLGbN zfLlrw#g^%3F!`yX88@C6dC8B-h(K2zs*gcrG*n~Qhtx7(M8n(+XgdxU<2MhAb>;d;y#&%7y;?<2JYMZb+`<6Lggf} zeh;3fv+z3x1f6zm=S>buF3PvYg?Q%Fn$C@ z1F0ME1iYikkcjbVK+Gji!!e%hBXN4n=4 zf<<9na*6fFNHLS-E9R9?^(1M)0bN>PXIRH7);EM@kd{s}8!Z|e4nzUFY!~Q*&gpu} z7apJtMl}|KUB42^N)bVHzLj@3oz)|Z+*9ab{Qr?daJP%2LVrYAGqU^?sH%Lo0#OID zDG$lpT;@lkl`X?^f5Sd#%}wzIOl~Ua7|>MA54BS(D``})Kj0!e{&c!Hz=`uikW)_x7mvO7wm{0jy^TSI_-9tYbYBZT%q(-}Bd5)jK@ z_sAr{^Nwg1j^?gzE*2&Z&`(aLwrD(Tl&qA{4*~)#Qa1K(7A`DO_9ku?5*B7o<`ygp z7LHbK)|6~)Y+OP@X#f1F*KC)Tfs-B&hW}E5yTCK%_xFp$@xL#AnTtSEIx33P^UF0yttqW^Q&TIN2OUke zhfbNEkxzWkY!>09OOOz_Enk+q^+X^Js48+VIU;@cJ1bgcfhW2V3&b)AOj8`DV7a|Y zZQ2>ke~f}Lq*+LR8$l|-Q_NOCVm-Q z;Kz|@R=g-g{PnXz=#=|QP^-hCl@$U~jn^_#&mB_4yy>gC?_QM0zc5fu_|6!n>0l)YyrmuyqR5IEZ(PQ~UJqDqa+KREojNH}pO< zB-C;A@|$utt(i~M>U#!puO6^0xiHY3e!(?!S}3br15WKpzcAL@HITpbaAl799q{8M z5(B`Mu|CzJ{7P7^(f!6rkvQ1KC}vV`13e( zQGNwSfo#$9iJJ^v^wAfk<7uzdEa}?B$rWnT!)cE8^b;h6SLmISf~4&`t}mLd2Y+3^ zuqAxw6oc7f8~3q$bB8__`LVOcCpBEp_Xv`5&(R>%&lze_ee)#qZwqhI6wHo7;3MOm z?rB%Gw`;?n6Bn6VPh`%2>m#xh4=gg8nEQ6~t;t#So!aW}B%kWS^AUtc>*JLpfe-tI z7X98A}9irINrkk*c-i5hJ7oQx^nbPr5~jr?>TD(Hj6BkevCMW82-hpoW_(r z!sd(Qg|$}o%Dh0f6!yhOERFRAw&xB#va#n?BkUi=SkMy4LT~EbM*?s1--=c>J#dwq zIyoIpXsHN>>hNIJJgmRk5nLRo-u}>pWkT0MevCAtl9(~lk>gz7%Epf5Oa}W3RiAVf@ z5uiB#BS2|*zp`M_RyMV@Fmq#3cQaR@9ELbEgJZ#J?q+LwBS;TDITvaSw#GM>oIXPN5x}oucZ=vB%#l*$I6$HZn z^8!lVzjtz_WP^TicW?xspg*PJVqtD$=H}!=$u1=H-^WihHa;Hi{~SN}#@QZ1AQ<1j z96eu%+f?s+8~ckO9&Le}mRu0l7hgeLiG>eFpz&ga7Zo{J*~NpS!eIP=nk5 zf8O%H{_=l5FjUyE!QK96zxUri>whyaIe6G_{Lg3Ne>$-E|6QWL_W8d{^uJ#8k2C(y z-TQyN=$|P6zh3nJ3oi4NyUY61o2#sZesUa`W>2XQ;Bf5U8T(8E_Ez0}BrR^|RlEaNNR^ zRNNiBuNSzcXKJG#A52qoEO9wnd92#|&UKD0Zds09o%>eXc;mZL5lBQ zpIz;LT#;s;toRRI`3ddpFSTV+8Ih5ZtqeCdHojRzD;aYg+kNHhKNDHAmuFi>udbw* zjN!|g2F^;35`Is{-%W15Gu_Q~#N*l-b?=Mmt76N%Kq@r1NZ_#7F`M%(p@|fk^Ui1j0ajFSn{1Q zqLmrlKnl@we$C#k+rs>w1|EVY##jA9kN`s*M=N5@lt~fP!`RB`tMfI;zP=o%Wr(6h zfeQ*&nM86Ze^!AA5kWGX*Lz~y78{zT-!&q*#)%2(MD$0=vuo!j@^yIP@Ia<7nm=X^ zzkrt;T|-CD?dw@0iS=XS)G9oi3LdSj1HuM}R92mCN#{ZqHLi)oaBu_gKB8cibvZN_ z(~8W>5t$&3jONifN7AD#kGp^jT>DO`r4v0z08bO@!BABM3hrNYvUHb|YzDz+A zZmnjNvB7Xum`jeg&_|06`9#^NX04fuY!^jU{zAV^XTW$qh_j)k)p}LfJxw}Ve3cVg z;eLSlBq^t;oVu9?SDv_jED$?3GQh5Mzm*1E6e>$RF*tpq5R~@HYVGY1KW4orjb5Cg zdj9$%B_-WCDoZp3Tp}tOo=8P6;)n_#uUXm`Q&}gHDESyFGpS(12MIWgu3Nj{;Z(f0 zWEid6)ZoPVLi(~`!#>^n=YAcZpigFTzCueyTGVIoPN9ZutS1o0sS!auoMehprgb7G zW4?FdtHJ>rACyiC3z5{g2c67qIi${~LpvN^_oKkcI8F zJ#{njX_GObX`K&rN=&MNSt4*J5Atc2sydFY|D+5uk9e98f*YPJ+QiU3JN_jQ27wQ*448VJD-V7BcgbrUpoXOW?ol#lI( z*KMbb$U(nUEa|s*qG7T8 zQ-v;cMm_($mmf-a$0i8~jV+zdy7L?3tvxY;r1pt2;r+Bt!QeonGznb12`RDgnP^4e z{w`k#6^hZcdIz>jJG&OxTv?+@AHotq?Z{<900zB4*#0v-)& z@YqpFWiq~3I{sdYUJU^pW)2APkIYaC=kTBJL51=sI^gMQ6lXK0((CK}xv65F)lbz+ zChMse8f!_Eqn~gz?l%Rb6~3v|~JS z&+M;rJLnbgt?Z^22wDwWa}^X@2!)6V=WbDI-RHX`3k^WAc#$1KL5B4I>^W-rvbZdk@HBd ze(MrBw3K)PU|efTxB&=p1uBab_gfQ zCIsto({dMabfW75uf{Rja(8#HTIzkU&~1}=_B-+8;Tp(L2c*T5#q5uLcH&L20-oG+ zsh)qrs2k$tTr|7n6c*<2+f$U@zxX)UO`ecHIXU_69mY}4=g$)7S!#7L4%Emq&`iZj zwT~^Q<)7za^_dPiokR{{f)YZv$;qEn#;%hA<~NA+jrq~6gK98l=h-HS!@3#3Azsh^nm6NY414Wm4jF`QtPqzjiO}wA9u_Pt zqd?g4oQpZz>?MhZy%3;g@0dpBSfSj!*y=6#z7J+da3Z?IxwtzDTfh!Fw`*HHm-J%k#yYXP3%;6g zkUa-ocd*VXEcd6@ptQf2o1)LEw|Qkg)sJmWhg`y-+vrw`=zM-O*iO&?nL)Tc}Cy; z(-!i%Z~HXEfx|OR`qoJvErG?aCF7c~-DO8at=?JRhz=KGOOB)vh7S0-4 z*#@DKafrrY$S$lTM0#>^=eYBcBNn{cV_#g_bk|6LkYYn(Y5ri#rM*n_-VGA6*srwr zQGvvFDf<5X<5GJInWvC=O&wgjjDmRh{cQyKjq^W9_T_MMzmvq?5`umlXplWMXBhQ( zX5wpT3;Vi{N}6@0MTE8#*=$vkavORORE-VqyAl6S!Ig+wHjE*9B zhR8Q3Kh?8ejSdMCz?e0SHgzhXd;rX22AIc305YIP2Fzr@;CtA1B-RA}80hcy2A;?^ z$=)ppwZ)9N9rSV}1l<=%M5U;Z93pb^JJ1l;6(t^qx%T^~^Rw4ogaw8gA*XWiL0%>* zL=pd>kz5Wzhy*7;|8?ep--hP~1_s7YO4PDewH=Bys(I0m32@LcG&wj+>8&0AXlM~i zLxG6h{C+O%eb91YjXcBaAwnS(dAqnB9X*F`LkbBeASX&JoPK81<{m#{0YPna?irco z60i32M#D-47zCI$Y!sU9ZO6GrFuU^c z@d-G%2vBau&il1f(WVsAs}^PQCC}{Vy>4o1z?V8}Bd+gwP(RScCKnFS?@qVkPVdSB z{K=kdj#iW+;4*txnN8LmV`$d(&vV=-fmZ6}7qd+iMrK&ueRU3V9tVq=X=yJwI8J~8 z^|T%C)h{V2-v{rcudc2N-(L-j5T^hrxs;XA-GQTKW zmFByV_W^Ea+nPr!2lsae6oEI+#L@vmBm-zgNVk7z*tsnk(5hQFL8CsE5aM#BS&w$`j|Ij7JzV~XLv}v-7<@D=$WerBnK`C_wpdnduUpVi$-lC6b$8Lma#vbdcu4R@ zrn$vF>V;B^e=wZo-{}0So2;h@%O?bBn+z8`1wtaJ86?O&DNz&?9)g%Xf2Q|5@cbj4 zd3N85z+L%~@32FzKZLrvAS>WccQgr(*6oDRZDJr*B!|_I{Y=#}e*W}zITarR!x|iP z`5FaYR0!@H7tigG#qa@1#c9WyNiAC&Du}Fnk;dfsxP*SK^Xm7G!7Q&8RHSrSYe4T5 zHgYjc?jMLxBZ$nivbErTZD}R+f1YE&23RULebh14kb#Grau*HL2YqnGt1y*FV3#0S zX1=R^C^NNIZZh_>VQz;(#lm0Hh%%rEFrqxZQ59YFVn=`ptKNZAPXQ;zoWxgs_%{c$ zoX6#=(pdw@SE@7|aiQ>f?%Ea0>;1TvBX46tMz>Cj#`PY?nT^dmeyR^5zw2dTjEbFp zk`{R{E{k|#CtOM-QpsQoHE>$bJo^PtE=ZQ=I%M|;q_a@g$cPQinX`Ggst?(7FepVq zb^_qLQxgz#7)Anw72o6o_eNrV*%Nil$%NwfWIxAvgC0DbHg&({!eqn8g#syDC{KZs zm!q=hT}P|J?Gjuv%041hyN}I6#`FW34J&Gj_KDNPBu{5=ct5^XDa4EG;=!3=l`e_0#?O9{9xO>-=OgfMfwLwaR7a{LS{Ey0y?{K+?d$7Sje*rd+JA_xUg-a0zk(4t~)a<~^|8hu>r zBqVxZWQ?lRY~|u@DTW`payXtyP7L-%;7CJ({Lv4wBMVYuPhbBueMB4-#=-d@+qmbe zTsj%Ild_o1u<2F%@MLs+7DVhv!qNFz`{1;Lh`BI#1{1;z^ z*Ibt$wtoT-2a#pIQB{Mq$B%@m3!vu34K-*H1_@X#~^c^%#U+PN8qj0{2UHo^f6~3U7Kyx zexI-o|aK+F$8Fo1H!z}y?d)~MGh})```6E~ zYnLj&UcY`>{stK9OALUFRAoh#-r2^sJ`Um}3hNHU=T5AH`DGly{yIdX(EbgyZ`5i= zMNE^lPs?o`Y4iLcHj&)xA9}xethL88l7HMrIiIHO|>!+-ugnp^- z>eNBeRpm>NPE>U@*LMad_M}R919p`T@C_Uli_*d*;rb#4r3-l@ffN4)SxSJb=>?03 zh5NTi<*NOJ^<3h;9!a6O$c?!^<<}#-bNF4L0q%6La7SiH^7WoskTM= z8hcqX58JHX>aHO^B#4dBjpWwXtebcJ=3FkOMmmk`kh$X$Paf z&9*KXsyjOxcn0+k)(8N*syW8CxZtQG?IqK~#i5j29>0u4ZC4W}{q%>;?bvM*HqUeI z2I_t47tq%Gu{s5UB(@nh2g&<)@FMz9gPZu3zR`#<@k#hz$#9Er!7?A<@G7lRRVlqL z?NF#S1#a*oA=%@=_$i6+C^(Bb`D3;RhRS zTiMBvd5YA-XoVm4y^1V4SwrLrrLSMV-rBMONs>Gwq6zsTVZM!>%YERuu;-V0dR1$c z36+;}9888JHOK1Cruq(Vb)1)WSxw}u!V7~v#io?H@7<3SnURg~igyawlG!}^6$bzff z26-PjBo1y>vU?Ll8uxf_$>ZxO0M{TQLfGX*m9|GVGFO# z!jVqn*=aZ~bn~kkU<^ONJ$Br^Y2@E{OXNo5B2uPtIQS^f@Z5nHmOlEM2 z3o{Rrj9_zV(Qd7FL0DD$haNX>Gt{1$aP&a5Kh5D=y{ir3CO`z+Oo38+2b^<;`(zJn z61K|!ETW^HpT7!H3(<6jI@=`XG!0QO2}~p5 z=nLQ%#q1y^O6pI{tMq^P8+LJ?JE5{-MvqB|h;7y@>1L7x0v!yrzVB!0A<5w{R5T(m z)Pd+1&JRsj8Hmb-Wj_=M+Pd~jEbpEfI|Ir+nNS4iIroOfYkIpVrLJGlwo$ZipH)g# zyS1BS<*j@~MgzR+?Aq7Sn%%uEC73a1=Ya$;#@n6~juuM=+Wsp?0oHc`asqZ)hy;jy zAmS!u9uT4^bp&~=_D1t#{>#veL=ya@FErk;uuRe#&FcZlLG7I61Ji7=ofHF1^#j?N zr7l;_55@vhHX@vn`2`e$M3;FxU0p9wSOtGNeu@GSV8d!iHQ&uR3 zh8Ivw23;4R8a~y218Da@8rRUunOdv$SRnhN7+L=(r@2Mh-W*947-ZeqR{@UY0Y&@` zFeOJjG>X7{KLJX)Rm|A`*r*2K3n$2+?=(R|fX)9akmS;wJNM2k7)C)30A+*}SI|}N z+ns$xXt$@t0?W(Co;L<&Kt(=$*$mvW_3+GPzYdyxJw}}!faV<|YC*l>*CX*= zHS-_6gGNpW=;pJtOfUW>cXrPXR$S+=Z5)DN5n}6eed(!~!3vR(FNpx*88JJfYoC9a z0&rLeQ3)6-mr3tfHY`+RNK3&{?r(~x$m~9L%SV0`G`GV)HfdG$ZZ6{^yk@>(^3?p7 zR3r1(p(PdLjw40oMAAqO`@26lRUdMLD6Ip_Q^y3?DmY<}6(7jxg9Yg9nxlfhb?QP- zcl|uJd+D^~7tH7VI`namyt)DE9u#%i2(Z&Lfy~xLY*C{dH*^|w3LXpnvvClR(N_c? z1K5?@e5geG&=}u?l0jB_*v2!zK(VYsmMIw$;{cd}2->&;z~{4Zh1lN{l;so0*x^ z(9j$S+(66ZWQK8KV#hL2t`T^OMvdRXd?41Z@~)P1g#P5k?*5|T@Zpzm!J~rVJxs%< z4))X98)W{x->&LQ!gudT6Vd{9evhA)e!M#Y3^lQ@BMfnQdV0DUab@rDReukKuwTi@ zXGdm(dYhBR;9v>+;Qf6^q61@ZAh+7*&e-DzdbqiLL0+qIC*pWKDQk4;;-Hi^X1e|5 z3$oUC|Mb0pz$N=EzAnf2M^p2T7q{0Jw=Cp&PxxrzrjYYzeHT8aUfm_m#wZN@DNLJX|~JyYr~uIlxh>LtZ$xbxNUL4}z11APAe^ZdeScs5u` zW4sJQJE<-1cIS0;7N%5=OCLz}-L)K>$}f~d$HNeE$D}{@qgSAU@TF~unZL2I!E$32hp_1u?mU{L3qOapJGh04!QX^|Eg6bW42%WHS z&GvczXN*BdUNtSbe>36=Qa^2M+Y7G7{nI~7mrdh6G(@N0p;IQ-w7<%+MJbdXI~jKGyfPoV|k7|rC%_E<1pc* zQ1|p<9*i9u@?Fjazq;pm(zSLP(lP1NnQZ07yB#<`H#g-g=GXM?`=DFHdw%CbKr)aV z9Gy|{2+R*?$6hhQMT9@~l=LP$U#_-lWrgQJM^9YCTVXJ}{ZpEg^Gow7#nR=gn-0QF zBY(fSgPY}n-=A=&GZzaT_ERfg2x8PDfefJqT{`i_s5a_W4NXltEabee93%b%GyV*^ zq~|w-MjKO;c)N4bq}>Bxj)0&RIgQQ;$_LlqrUp{|;2}4b1@n{g$-5K=(MO&dbH!By z{VpZN_$11|KP9Z0=Z~R4u$M^RxtrqMYx}KDO-4$P@(}JiPz)+5hThk*iHD&K1p7y) z88poZ4vafxVibY8U;d?l^U?VQmX>QGB1GbDhS?~R_f=hNT4J8fbfT6XN%HYKQhk2_ zFlYw6erpmx<3oWs4|gCM*gRfRYPu&n;<99YXK;Yh#zGhH$(LzElJxlZ4|W4qj8Kh` z0Pcc~QAKE2QG7sY6H#n`Xr$!L7}vu%%*Z&t>!XY7#BgNvA*968$$gnCcVaJ^)$%sG z(G;XIKEex9{rOyi6=7^6D$KHEW~KKrZ%gsuZ0@%1{dSGV(AJ#U8w7XXHTJWE3@4*Y z<+E?VOK}uz-Tmk6J(P^w;rz1?nJ{i5s@#Wlmvz;oEN8$YP@ zHEby3V>l<*m-~*C*pZQ!WsJbA!+EtM(Tnw(-YSZNeb)J(DXl<7us=sY7to5nj>O)M zJkKHg`%24;{kV%I&l-Q+D!H46touPDr#~!#gwCWSov~#yQI{F-C?Cb0!#xUa<2Vc& zTnn^w^?5Ov%aynDo~-b*Grpazwe?|OR+@)IN+jid(QLG$qMf!|TnNK-U9o~?3N)rF zVdgXMP*_5LaTCeZj@UY=*JH=ld202YBQ{i znCIi(j)sdD;@KrYwNMI?KeN%3hq%ysZ;n6ykjuG3=K~z)r()7-o{Qie4B&Jg9%S{^ z6N9QM$xz*!y<8CXm)-Z;i|VZk=6A<;+-JiY3_=+U5Xxl#yA}CH6 zIzCa~vyansw5C*kZ=WqJKSkv!qu^`!Tg(4Cc4M5@1FvbRSoBB5fUQjeP;b5lF*U8t zYg-Rtvc<%2S)uwAh?Hi!nwGAgmyf$Ds-ehHXyhFc#xfnP7&T6bsLLy8t^fXZgXd<# zxPRXI4B-1EfhjTvB^rRg_-IFhSuM&LBrj#=&7VMK0FY?CDHXbWD^)3V1?vC*4^v+i zR%O?94Jv|kx1^-BbfiiC8hba%IOw{&;IzcxPa^?x3Cpx3@@%{61p zG3H_jdrvOBvKV;!bU7i&<;+AUTvkB{TnCN!xuO(MEP`sHIN%KH{yJ~J+GnsB zD*j=zLTGqOiDprR+ONS1@7ZRC_=*k)1>%Hd^rm(B0Z0z7Oc~P?ek|o9$vS zf|NT9?nRUeSbq_}cSz9yhSuEB-=V$dFj{E~HfQ=1vuM+@;a;%*u3$`L4T=ON@6|f} zh3WYjKcI+E+6v+FAON%VqznMvH(BgYSN3tAHvB$DT|ko%tX9~#ZOWXe`2Ssg#>U%3 zI-6n4mSvvI4Th^wIt$^FBMd&e`q5!pi|4<*w;pP?f`fYX%WtLppsxx44J?jdhNqnk%s!9?%Ut;}eZUUgz~yv`M(N&P$%Xk?p*RI4p;>SDS4L~;*d>BKNQmg} z>o-5JqdFN0zk9JsATxA)WjP1?>G|bzw%Sn8xhdgqj+g_=N3d8?XA_T%_nNM^C6C>E zRw~6aJdLuxF|QOaemyLp_ZUEQpn|_#S9b-q{7qNchfiy5xa7UVs=-bw<>- zo!pW%eP5s_`JwnMTn+#tjv*nw{LT`}Vl(H+!s}!|NzT{ATyTPmi`85V=glPJF4ks9OnTblM-afb5zEVVG(kYCiqQBg@R9Cw0!?BS>NaIpWouE-1xx z1xF7r$!W^f4*t8L_^3d#XVFz)NkDq^H&xW0$;s;R_HK6eF2~$I?h1DKf_tym?Jl_O zaALC>Gs{z{N6lo?(H9U0Z>@{UX0#^wm!u5F6# z-49AG+;{*SF(Wp)72h`Bm#=^(E!an%ybxCv>m#&9?8^gkndLykAY|^z=Mtjl-)9q) zoH|q)_h{tvvr%*G#OK6M<*y`J*MSSt092zdpXx#DO%^++|J|4w(fP3ck0idYPmV9$ z?@vl#=Mq0Y3lzueUFbKtAU)hGTEuM-jVW;5Pm~AQc<&h8>I-Ww4{oE6z15MF6R}{g zw1wm!c6ekTeS0OQ>DpxID-Q>mCi?b`4!3}mn&L>8$S_QG!tj1ogG2Tiir(r67T=EO zA_<;Rg*xRD&}Fw8q5**FOr6Yt93L(oh0%&3EDFtA+ACKuUJBro8G}=!vrchx=l^zq zisU`(ihmKsCo1@uPMRiH;g=GQpy~ld%5j(_x^pTqw*$8kC!3x7)Sh>OJPa4^pfCMo zi@zi%9RMk!{R_x-%mw~*WoOg$M}4|dq&fllRav37QRbciNBT1W&dq~Xs)mws-9u-i z-f9B1Z-+ti&2GrS!7_!z>#fK?EMP`kOO8})9 zv}e=>o=DQzL)7OCgBo<-Brj)Czdmk}#{$#sc229bQb96PsCMk%O;3G&eRucSM`1s4gR=Ey z{{)3yuWAo6qcm!C7qz0W8h_50keWtI92vlSv3v4AZYD~GW(#SMyE87>@RX(40q>^o zWQ?7O`?b}?)wm_RZ-?VB*E>%3wfNd*QjUA+SwuIRJ+Cn1i>~fd?DfBy{MT=YpWEAh z&WFd!m-(Li>R0mZ14ZZcHf+BAX}QuhFC^U6D8YQx(fMWMQTKE?!XagR!4d|AYi)AIC_`;rX-{ccD>HYy5w+wa(I&n#wW^W;UZR^ zaGQ~@+&G3^{D+6FbKk<8yBW8Dfa}K@pZl1?bh2J+^?$Hoqq33`*`U0c()w~cF&oAD zqx(iH;<|U`Spxsgb)zj zMwzEK&Kf38;1>{r9G207N6uJ-$@40W7DEsUfL-izUzWCZ&EZ z7zxhO927R>h<-D}FT=^Ni1oD6CXblGC<2JvJTAbP1c9+Da=6m$J#TH`!zLG*p0q>SxE zmunEA#GbhAG;LKB=O1TOsK+Qb=g{0Gx^7vM3!C$mmm;6_E#6 z6Tdj7QGBRg_iJC>lEh018Ni|dKuDRJ-1{VN5u#{Cjy+If|K9Cw&Ek3}X7-d3R>V#| z#MPgA4zX1GQH%*OV^q~1L0O+QwsypepC=F9m>=ZuMsB>ak6i@tF! zN7_;aA}tP{b!0q6df>;AZZFH1z;&6CBg6^QbZbs}8@u+oH{JmLAXu0q=*Q>pK+IwJ z-SOBW(~H2^x3LWPjWNl1GlcYl(J{M%t>lNz#3xY$hF_A`W(m1!j3}kYNnv%8<3aE0 z9TOld0OPod3K#zX`Epi=IK5Q5IJqp4j?x6S0}(U{TX8ZGBw!2;gwshOGeml|^(TYL zcf}#&qIYS=T%)tSZyQ(p^^oA%b8@l_73fx?o|CY-FeatoywTJoKz^OB+0(lI=P#{6 z(Rv;putk`ayZ4byqY3vr6CDdkAZMJ7AYbY4gfx;ekbNCBmYTOpHT>dCFWFd-__%6h zK(W@5i?#h8%%IOCLB!%8O*lWHC}~elO?04lpKyurL-jQZ9xKdfq<57x`Iu&MIaYxP zewO}sPOFi5H9sz8qP!m1A7%iWC8s0x+2{E3Pw0+X)+js~MWG|ZM1tu63U*Eq&p=B5 zDM%())A2w7yS5655-T@u%@#a7 z+}|eAKxvwDd>F2}gsFoC-%sz#-OcZ79Ijnk7Vsb!EL^yZpw8%=0(fTPn6gr;k&z-~ zOr*Myx$xuJ?ENsXVB&_qAUhA4F5ows9MT7ArW}Q!U!9}F72wwi!ea#Bd%ssn1BD(nv3H9Bcu_=LL11k_~ft=l^PXLd?@r6#ZL-!n%PmsPDFG>E?dgExtxr7MKCkzsy+QxUx zlay-R?z`)kn-s7ZV3H|lpY@5=Ayx^cO@gKEOI5%B%EET}{PP<{rBs<%;`4|7Ia05! zc<^43?aqEnrb?8UHq*${pw1_b@5_eiAxbTqE>p38e#OuJf>D1JlrQT5*!h6yzgjTH zyK`|fUG$U=_&K^+zBgC90On3`7Z>xHVhs7q`F$A8ZtcoTeJjh+jV&iPv>fyWtwzN} z5+TmpUMd<444Uif&lChGeBDD}@jN23ZfPkl_;Z(=)?sV|b!RBTNKm+ap^ z2RKTb@8G#w|EGDX{}v2Q*nQ%5{$OTFdrjfRZ?%84cYvFN#t~qaiM{~k+XKiT4cvt9 z?y98Ylo}S7DZ(j4K!pa%eA0>3lqWj$fHfeE+1rX`0jJyMF|l;GTW?cp%lb@11mt}; zFOn1-0n)H{)1Zs76QuL+=W`>l1PxXzl3=dr8(11R9FcO5>S>3ujEv6|O$Ef+yj15@ zUJJTQ>%}WWJYS&`3k1LCfo>s(rCh896_gQ;kwi4Ch~?oD;~??Gx_!J%_OQU?ymfV4 zT$~L!EFBygxI0-SJ@h&*n2WlMaW+2~FsUJXH=MRX-K(#o<7aD>p4QuS^CQp=_{@p9 z^2y<=W5VktzB5ih&MthlS){chVi|@}IPNVM+3j$5b=-Uv)@;kYxgdTsJJobCmhw$G@tU6G@M9Duu*$nt$dlQwrO@fHn2Zv0@Jn8t;V-|%zq~1 z0Gkr3c`@sCda%h)=<F`cI&Tuu7XaHfCL6FZfKu7(^@VoWW&^x_0q5R}K#gOZN*t zcild`xjriS)l1$Uj*jD-r(QSPIZJmN9QQsefM)f3#Ri2 z3Nmg#g%7b;#=B_<};>3h5WC2{iQD)ac zBhb_$y2}Qk146xWN@Mkz1rQhx)xa`^nO;%c@~|0uBJ9hT9bunRyqu?sby^EVHLpJT zTzqN<31P?X?o-)n*|Gs(l#vL9~@z_uO7JyOSaED7V+l|@SGhcnPZF*~}D`7cO@|HTv zKtD1(Sm}3J8A~SqnO3uR<74MSy-UnRc^owtZeba9NnWw2=MzhZtHylPxWNi0B4VSU zS(k(FwT3~xqvRA_5tXml6)0{W5YkD(mNcN>L?cPlsWS`V%=8BQ_5`KM@vp}KIo`<9 zS5wAj#x<83)zB{Nte6QuPKifVto#MWeXY_DIA^KF;wN`$oU9(coWiwNif5C`X zZymMVIRaXaWEbCDv&`OlQTd8Ox=NL%%#s%4)avr`J*aaaz|e#a1Xwuaj9qsT*j(xP ztiRQh+=$dm|A$Crl4zF>daQ=r;^8sxc+)^ou{AAu!1Q^(o}wFf37UfX=)xo;nubGp ze7IgL2W)m6ZK!kg7{!BL{7ce|jgE(le8+Wma?w6;7-UcB*)qOV-1P+w%UH4}ZRgcY z#%Oc3y2_&x0gXhgUpMkrCjub&Mut2q`xX;VblMX42hVjt|44(bRk|W#_{}_G!{yvn$iu9%%9IUHDN-JlYtxqiGL(ESIKwwLoIL#1;v68rs@Od=xIDUWL$pw!0J zb~A=3^M_;lGHq95ag+SortikGS-;1{fpK_$^pL>NCV|Jh)6eEdIL%jq&G?vg_4VXx z{*q#=T&9G>59bSakME*SXH0)woeJEH-^au!@j>cp?bqAgUth-@Z#X$R1`F)&?6^N3 zP$jRdw4BiQ6*5vh1i@A@;9aDKS2Ig~Z8ch~t1dayemAtsky0dKVNG3BGA?B#!vC1~ z$o$%IUs+T4Aws~D>+{7j_>(5`g`0=x-p1#=K<_oDEy?eT5H7UGw6X05_w#&LMLj*n zDRRXdErn@AqHVWX}B>S z;zyfnwnD_`cf zc6D{32;4=PGp*SF*+>d4oixJxR08xUG;nK_1z?hW-t003=z`7Uu^kM6^Hv}J-sSw- z7=ca%#Ch!leD8wwa*(&KVYHZ!tAu!Jo((_V4c||sQX_x^9^&GvMO|E>?h2HWII~P z97jB(RB}xL8kG^$<1$)$IWsFK1Hskqzjgxouq@7vuJ&TJl5YIsf-y2U`6v}U9)O$u zD?*V-=&69QQ@Of@TTxrRWq)4BON9ND0!?I6uCPmQuI2)^os}wJS75-B5Zq7pLYCfn zEf_=%BE*y}h*F?%BDYN&Th?BwUh*f)l+F=I_kl2FRz+Qy4U*}B8l~?Os&0e zKb)WZlPn$#DGBkXx!Y%G5H&=NtH-$yE<>0wHy9!JltWDgi86d;x1ItG6f}g+o2^PR zfD;kob7&@^sm~-4l{$a-Az}z46N~16v}hrB*!kAeIbta`TQF<`sZ^Mv5?t+mS8aiW zFNp_g2KRR-KDqh#oW+eY>Nns2`Ora%!y^my_%KNoU%>e9jCs6G-(nd;laK)Zj2@)<{5QPlM&n|Gm(BTmAHq-pP>3#FO~xcv6kH~S zuVuK=`~)q{nZ`sNf3|^EAglX=B9g+w!Q04|EA`^Z3DENORxkP3v0i<~6Zc5GvbC** z5}YspBj7ilaCca)d~h6D0?W8kMm@<6ds`G!wWYemwk833n;w8n+S{rcC52JA(y0i9 zw$X4r*R$k;g4hJ{5ms^!W655x>8_;k+rRrj4{Mp2zUu2CdZa7O8MBW1_-SFX6< z8(g`n#(-^!3lZO{J0!h=RM(_L8tY*hQ{jpTZF7zVP^jIQthm{)zvAZb=*!wGZ~}<+ zon@bpB2v@M9lJ9uIKFWrbL@rpD4z9r7kP$nVI}TMpgMUV2c0!QhAXD))2e+Oa=*S` zuGYp5%(RCf+CV5MSKfYb2Gpvc^)(>%A4-xyV`_UcuQHzmA zV#@On8oq3ox)YC>bLvchdtSI-IDS%rNTLq$lWIelycdgvTtD`p09ELb|-=xw~C5C2!Q&GP-URq9$tEp?Z$fWXxOtYt*KjFxQzHb z?_X9H3wMJWq{Ojj@4N)x0Ai;$AK%;KZ8SDOe|N8*+7#er&6lAsKYMn9RWx@5k4DAt zgzEp>zL59M^5qFg6WyTc?>E%e3HH#`(2S*O%6$p#hVi8q;?u0`gpy$G5xMM)3-yK> z&!Rpc0}fkE=ZrOBDN6%8#QH71@C2ac5;()^DWaC-1O;tDz=^2=83%c;24zVI0p@aI7 z2NLI!Fs6x7pglhJdf(!_t#qViC){6Blyy(~ix4O}Ico4_;tAXz7=66`0oMJrqou@p zR0B$PfftY~htkLfeI-B+dsZz3)Gh!wh&-HbTQ$Ps{jLokCq`OI*Z>4K)`YM04o(KN znGi=$AlE2nA;OEGYp$Af-(Ef2GClhKQs)%y!^;-?U^vVCw`h8AFZBX|D*yN;2Q7uBB*Qg2oS;BuXFIJ#y5ZHUqeIRXOhv+=Uve+Nzf@xsCuNPf}m&c^V> z&DDBpom}m(MnbX!u(wB-p?)y_Wu=faSXFsnE~vzXo5;=>_5)TBxHzc{v$C?&lmr)_ znUO_yo^{=gYOIN6-$AUh-wT}fKogkwTm#w84?QQ(t@#hfUTD7q5;!X1r~m(2ZiuYl zcoA*mZJ=>sS!_5sI9R_sy{)YUC)|l2c6W6>+&^kn8}~;ye{43qi6H`-fJbkqLTaZs z@4OcBtpJr*CwPBWVjdoYD1E!G5+aupwH>7-H&QnQlr(A~lzgpv8As_V#>1QBzfiu*ME09`9N6}rqo&H@IIliFrn(Bb- zlc@vAOt|b|*Cv4*U-?3{A5P}?A6e8aW*;SJVFL%woFGi4W;9oQt%Dy(@Uw(ZZuf_- zx;oWug!T}-``bQ`hm8{dxUI<|trG>Y*X+toZ+EuLRaLd(nCigr1G{SoiXY>!`y@DM z0={UymeIR=a#!WcE(hZ$x(H_f*63fqqVKm_e}*1cYS zIpmj~SwmxP-FBcYkEt9X1tPC&Z+Vm*HpP<;6?E_3EU9`wm)*QJ58XZp&8OVZce zwI8_TVO??1R#u%vUIY)tEN3z!D2@Fw5O(- zG%i392EM|`xF8FFH52H*!N#F$f@Gh80&a7uRMDyc?2^oQ2p9*RAoDI~gO6ixXaAgg zPx@93G|UtMl0tl*IJJACYc|`*+aMT?ThWbQxwMh=VUNS{{46*|=?I-I=192hU*1DO z@rzPJ0d;cn1EWq7(QB`>kBy*&_B85cOS@u0j>s8UAjrggfx7&a6W2$^aB4H+=BK7c zZeeaJ1?l<|&c|INQll{2^+}lDt-pcu!#{ub*{EDBCloZr>T8-hRz)$<0}^!P$9kgd zkpcM0=z>&@`!epGJAetJ0IH;IbzNBrn&rSz5qpUOCv#>qkw5U%?*s&9psuIesgEGo z$V%murT5{7(hsx;B}pT|5yXKQAiJmpK-LYYHgUEbKzQ(!gCGswb${y?XyWHt&(?&Z zn+)@K3;O6sn4X}^?0n_8FcP911;FMmGx#Vu>lo(BE^vJ{!g>_DhVce#GraE8~U!BCL zyWf?gJ!?sKeSPs;(iNy8wl`8!BOerGWaAUmKtll-WH^AzK}bJ}j_Q?ft9+mT(x-lh zK^9)W)H03%rg>1KSyxq6tX!~+i<%G+^ z3t}G6zgVsq{ZH z_F|=-t!YKI`dK+W_I4zONDxR4D|fAzEmNoRkf&_EGM_p32tERn%g?uBC4ZCX551~< z-&LIqiC%7-t(>S@j`_gu{(J`1fSM{`;Nx^jOIiFzas&EgJ76@dZnt2Dpc2o5i8UC- z(!_35#<>Kb`7Vml(#Vo8Nnde|2>@XxN~W-691H}&(R-pNJvA^wXpJVNA8Y1D9!>z+ z8>mGEF9071jR!qUyFni}G|BI!NDuWKI8w<}Qi2y2TECQQ`leS00xHfT#eHu)va3#n z3@3PnIY9!H&Ao+SWJYP<&RGB>3fDw123m%t$PFkX!UkIb#~hNaI)&l8+)hK^gDSA4 zoEgk;=^x&SWQ`pS7i1x*s5LCC`~s84*&D1ZD}g#1E)o2+p%ZXbOt$aVtYPIpubSRU zXey!|GlnSvvA3uvU=IN~44xvAVBhNI8Zw@WY?5F4F9)c+b&{u4mnHU5MaLGEyWR#+ zGpDPI48woEAekAD&CB4UCud>#>qsicNGgQOawb4BNSL%s&bmkJprsdEU6N301TKIM z%(fq)ZFV;NeAhpYlm8~z1p2oiaB6_Sy_(-RK_KF7hRoF%923b2GZGZ#iVV0zx4@Wr z1~VS;x&Z&-@nn+&n`IdHpI?!QqDy*QKDp|i0^A^01Ya2UMmLYr_jqNtpR%gJFc{Ym z&eHHN5oNNwLaPus1+)#3uWuQK2SUQC4dq7>Ae&enDKeZP&g9bCV@|wWS^1%wzk1HC zAh90{3Y!{CVgaSnEI&alU|cjua6TNFihtp3e6g5qVjPHggCfBM%ZU4u`~f3zjGX@z zLdxTNGW0g-!GAs>bq1v6fqLn;XdeR?%(&iZQTH)53EJHuyR$Z~mT2Pu-F~41x-7OdAT@+T4`dRl`T9 z-bUc*R^_*9ivyXuaX9;jheaE1ivRsKKi{u=;oxLlevW)N&%nXGMiNech0rQ3!xG|# zQoutz?`Zy=!@C;m4+IP5hKm9qO4v^P`NCv9j#Pi3V|v`&#F5DMj=%Vi`Bat|oN(9d zOH_YOu_UwIT~;3LWV{F#*`9O_-OA5+$oBk5J@K`MD-D@rlbcnw9<_Erd1&By(Dm^L5{yaL@99l1( zy&sdYcGyrb31wt^8>VR$h068wWbT@(qO$TSL(sov3<^S_K!KFF z2AD9~jQHIXmSxPq1a)vxQ98J*eVLQv#h~7^WClchX;7k$YhTG-7pt~QOK;0jQkWj) zQ%ugh-xI}&eIwz*y^TVU@&4(QXCF2f-T?KJpBo&sD8|;Ob&hxJ z*mska#;_TdpZBsJ!anptK$=u71BJ271xOaTC;x`6T?o_5c z1Aags1%im&vKy6WF`4yAMW8m2Qux`OLFxMOt|rBT;ckb8*Nv#`Y|Z{C1%#eOy>RL* zF8(E)qolsx`-0wzf5|!Sx4EGjd18ed`Ed% zt3H+x-TY`iwf2`}4gji7e^XUPzSzRds+2URd^_H1oZ_)y0rgaqg2_!C-womM>cd|n zTX>V~t0u*g3@;KpAQt$<@BCGMu()3_JCpwo#*mg`zriLZrjpqi)MAl;!g2D|h zB>l}Ki7i^z#b{+2-(gtF@Uy*J+lAbA&r02YDZffJ%f$FrufCB#rqiv~qGpL(QbfoP z3-!S$ZrBw&fi6F1=c+K~M6nT?nA4H_?p>g5_FHVA#4d`=A zpWjS1U3aw3k{zGlle0Y?fB=ic$*!+7Z?=;q~9IwLtj~N|crUFt$D$&qmtv-%PF_d%mMU z9feIsG*wz~&I*7LE;XF+A^o(pPmL+e0G1q8 zCz}BchgL*zpGrT8XZUC6`h}7>WNEX)g^X7XfdW3lhHu8YVm3+n!TdMiH>~8;n$Io# zD4fZoc?325e#3-poI6yjfnx?ELl3)VSH^vNa3mE}LB;~-s9Sg1zyNB>=uIEe2tQDX zK7s3+`g0#61Du7$VO0`>W1f6` zJ$CxcJ!=vC8!mPE;fi*&2GK?f^^WG+CkT+a@cs+?=zc4sw%F5JhKRq%$zS5e(?)vf zm>@pvf=Kt5CqR22t`_?l30EL5XAT`BpyaS3WYWEl{1t`w^FKf12_Pgft#g7HE7B#> zzvkT)?Lu+xB)vfNA>zkWLvWuC^a>#XMp5d+Uze}1j=U!vPWlE;gtz$SgX&OY_lV1ckB%W_rkyx0aiK?EM_cCNl!J` zTuLK01Yy}{rj4_*T7%>4=^!e>>fN5!$CO4F=&+pzjK|s@CheC$KdM-VDv$~*kY}PX z6}@!0ers|YHp^~xHe;>jb#us0S-(xcf8gx1?L2p8=8~dawNPp1{b(iQV>KyVt|~Jo z%KS<=+W5#XRbLPjcO35}?$3`k4|-fCybc>=WO22g{3s~HT!-;LFAe24($ z%Jh5r)r!$E8V+fVnUw-rYh`tK)M`{#Vgn4ErZxV10X&2UBcH~3zmFI?GbudN)a>8d znJ|Jq3SXoAr8W`K{Fdi+veJ;a=)EEY)#9%L_Z-XS)HiT}&PezxrGNk}jb!rZC;fRV zUsU6hk7xXxDs$EstfyM_Gwi)bCcZSkC5SIOvW@He;;a~S=^h@AN51nA4}fEZd5K;? z@k#_TDS!tnEu}U*Ny#w1-r`dfUwjroIfnk;XR%UN zKrIW=20#z=QOqI*njLKK!ee9KhNr1VEzdH$PaBl7vqm*Sr3HE5HdYx8V)ExK?7eM> z_Y9&jB*y3auvB?Fn7xV29ttyd_FB#r73zott4%Pgf!eV9IoEcbh8Y_bn^2)OeQ!e+ zilUiQpIvo9L64TNLPmYxdPk&`)ac($`4xvG^*6p|f1}NoVViksOKw*4s*+7IRO#-{ zTH+HZ$0|HIA+NTj&eXS6#7vK20FTzEC2CnzB=W=BL>n5826N$WHtKuEZ)uU|>@QD3 zWlRnOX(nIl<#OiWO34-;a80I%sjp{K%s;3vL%#UKb9p$OTqZ|em*2;8&CGk=<=duS zQ-~3=n2EoN;PR>o1>`oK2Ov)dy%fXs5?;X+tEqf5HdmuY3Lcz1hiR zp;EV)$SD{`yT45^!FVFJ|Jn08ddUk1Y)UY#f6Ga9VVI9nH52kkA+l~`4^EO|V(Q51 zoa*BH7rOqWcKNd8P^f~4nsw_K4qs{q2b>GwR`?pTQnP!>RTIykN(8AE2 zg%--l8R|^T^Q9$dk)2t4zth&nyHR{X9X3lE9iWSHmcKISPAmxgwZed`2d>c{W0m~# z^Xqx@Um=XDXFp0StB{?Ym9U|Nh8+V(me5C;NOO#Ipe+)LLovUBV^p3IpB@x9eK-5@ zKa=x66coDs6YiL-n3E-zli8z8HxV%Y`~}w-?t35U8Wemy_K|l-S=B?z)TybKZu#9G z=fw=%6kq;l=WxdhuqGQpg%jTw-|FoP%yF`t=5Rv!{WL?&Na1CZrL=9|kK^N~l9}op z(q1x<^8AV)*`?UNri$_%jOIBj{aHXue=B^)YY^TCcayrRFE_4j!eMa zTwg25eB-CF(8TUxA(=fMFO?HAX_0;mHd$-xn>Wd*@F|iQi129aPVR6xm>Y9S(c8>k zbF+nb171$yl*1Ikla6Or4A@YueTac0&t;-TD)&!jm%CkrkypecOK{K!WTjDk-l-6D z_(Qp(0_#h%BP3tzPOus#;v|=4q87cnODnHmvb6WX)krE>Qf-nUVk_lVfBZEF^N#OK z!Co`o(+O;CA!NvbtFSjDx+90&`2 zL_(CL<=4<}Itb&TbE|KVERqt+ z6zXE|SyT#zbf_{=`Jjm&9 z*#(2|EyNE^b#9kYyj`My-U@bK2G1-^rg7a_0sn=v+RA053(l$keW2x3Flc_x9k{&v zJt(?RL*P2Eon7nd=(j`VMdcLP0bR{@Jw5?}|HCZW{O$DQq;pY?|0N;f4SLeuV#KAE zxO`Gn&Y5@t&!_4wVr}%vR3g4HuIUk;^vJNgj=S78F=nJ3d1_tfUY3T#j)=E8r?fXp zV%1s7<$@S0_foTSb6=>68x2TPhef-4uEev`np&AllYS9WFj8(R&iXjzR#z|0QHh$r zuB>$6!owlz@Q)<{e>td;BAPy)&x-qJsE|3>cjFIns(0fPP?8Hn!C`h0XuniN2n$1y zm;H60@+~DD-KRz7N;x9p*&_8<%Yj)1^da}n5^LrY3!(~WvI zCHc~ri5e0zGH14e^QASWZlNiABMQ!H{lh+#@{*Au@qd3yf7bA;mim2=F-|G zXkjN?J8QXjyK^s%MebLuk$ygjPir1Y;WBWU@=M9gDWSphx`WQk>1Edn3>@+XQ}}}# zo^80yiVkJL8j?s(4RT`9*YLm7PA~{z4x7pcBy=xgwu-RHiVe6GQw<%u1nG-)?U$82YqC+9`v+&^P*y|oj%j#%!vHoc*NeDdK#;Cu;|x ze+u@7}}yY;mKdh}U6ej*69_NH`^w1DipqAcIUU-a5A6u_B1}&)-dP3JRpl zGfw3jL@;gbwl)~*1?%cpHU8wLH^M#-tsr@DPb{+55emJ{(y|t!68-|bkrL}@>)$|X zdmA#kRc@}lgzia``oxhn)SZ*z1^3K)5K0lqW8_O7R&4YcJ&aZ*m<|wwtGDCWBeJlY*^ekLKk_tvT7>*G))4}1N{ut zA7t-*+?NNciEEWtIKO%D^V6cH{8<%(;thuN&ljdH)32B{@*!+4K!EqhpsEBg5nV%{uoE8T6g&x~N6U%X;^*ibIj@-{Re zqhlx@7$v8)GhR^mN%>;?q3_a5uJ4WZmNlo?6#g;3T`S|zuVyPNHB{nPz}7VG*PTx* zzwJh|?Nquj9Bp{7h>BS$2>;bE_KFh@YqQ|5V=sEEfoqHR&s`%%!+(^GG4mM|+w`Wi zNaw&|)U6fW9r<u*E0GVJ;RPl zql_Is>A5^A)G?TJq8ACg*bVdIvf0C^&=*<={=~J9y$E~ed+sF|I>~f#^LdsAMut6Uw%(-xfM8^5rmC4?mvDT(@AHi zmS@&_-F)M4`W4oGemCHdL+AXsF^53|Q{JTiM-KPfUHC~XIz&HcL`<@Z$|`gv6x13= zb@g6#Hn(eUg7=4LiW$H0Gdvsg&GI+KJ6foSKtk@+obR#w!2!e}yFi!b@V6h70u|&c z&x40&nhr4di?4;Pl++226Ot+dZsDz2dKE6C@`X){Pd~sg@^N)t?gkF&-8huraV1yJ zM85g#Uidpi^w>R8Hf!C=Rm5$Qpt9_dYLGr=S9-3HTKDIveC)w)Wd?Ojgn|7 zP?k5_V{c58$m3V=@Zq2&$^>dVXj*kZF=_}oC0P}X!;r()C>3@=5b6nTd|lZ|(+DrEPq%cFa#IYtBK}h;#0%#Oq6MADk$d3LO(LJH zwU*}6`ht<#CGp6@p#`P_O|p0NMq*UT=3;4^vz9bV%5=rvHa!d|#a?wVy&|SI*&(c) z^FVr8Oat|~6L^3}%ZxArsY9ebKAp_S+ir37zFk^_>uvgeK7QTP1xe9OwU}>p^{yH1 zvaYhfyiR8DF^BAJVhQmggLOS4aX!v~uX?W1dOBOPo3Y?>Vo7~Q_>C03GaHr53)mD0 z{N-yxA#V29Za4V#k;Hb3rm7X9H;a;&o1a(rAwGFev3zhWNjgpNe;I$GhDOhK7!qH& zd8Qj0lH!TEDHHi@AnRZD@G$rhld$YPc)8#<+BhC z4RW`IZidT`GT&YSv%KFK9z1!erqf{l<+7On--;(Cz?Q^)_3Sh(QPiuPcKuG)$>%s~ zT#&Q*8GI}(5kmxVcLHyEQH6min!s@fV`w;%XCSK%LM1xk#PO@y6WB1T+0V*5uHK2& zGO!&`5B#Ik-qc-&?Idt1N_@}TD2qVav>wkmPr+N0#w2?ea+9WkRGEhl@@&YrSO(vs zNp;gB0rs*x!GKEa*B`@9^}UAb$-xlrk9}?#6PB-KCUZqUHGwOK| zr&Tdwv2F3iuczQ8OdT+?g#0$nv~!7K%r`3Rki>QcCh~MIBy{F0ti!w>Bfl(8$qDWt z!{|cuTT*i)%N9bkxV_^!^-b45t5ubnApc)WX7G;Y7~J<{66bF%y`pFf`OHKA;wepI zC34I|b$>Tg$>>3{sqSN~HvY%p?`r+;gW|ujtTF8S%() zBxI=qB?&$d!XD(ez|&F2oC(_%^XuR^O#j*T?4dMQCV(H~t0I*`gFP6E9_8!Wn@L;@ z)p=;1ADhCWJG(*xPo@RrhTY&nomhskRR((ud9``3#1x1!U z8h3bC>yR8#&GRd+>v}sG zB~Bj{$sjvHAJvt~uZOQ$jFXYOb3I68gp>g44oOS8|97YH6{;1@$1{hnB6tQ4dT1&T z{#yLgHd^8A`%)AgYY(1ES}HB5JM8N*L?KXDNfnT50e}UH=tXlNe41WH?{Jtx!LNc0 z=laUDZ=({`M?vj z_`62IlMcXz1O|pixr^agLH*Q%`|rY_E)9rxOtYY}{P*vem)VMvlK))^P6h7ctb$`3 zQI&=zJ-rcvZ;Igmy&wr~5d-^M>Ev`*1{5fVz{)fswD&23<GS9MTQ_0TWql~^q_1qVdWGavb;Mt|^ zzGB~SzkzNc4E}TO%?bdwm=yUcfP#Tn2M>3nICMC(Bw)=N4ero0ExzeBUj)ie@Wzna zBV9(_*iC^BoymlsmDQ@ZO0w{Oj}QLW1l6h+KkoF%^K?4(mnHO10_{W5|GsvVcA7BU zyRiQOd^)OPRZs)`B0mmF!>mp)+qS^NfqT#fFs)H@f4WT0C6|XXN#XbJr=I)oyGc}m zho2D~;qriBa!dpGEtVNIuoFLGqp84JLZJw^pgokQ+|vcSlr%Q#+zt2iz?I#9I2*aX zA_`mZrZ*>}q|6qO^w`FbrfK!f$j*L$$H>62L5RqSE}LCZrMAgM{lKwMY0hd-M1iY8 zm?%hB_{-M;Kn#AaQRp51q)y0Svu0;!zdSxbLO}_81SObIm0m3~v({PN@$s>R7%maR z!(-d@1P_bUtC!g9iL!T*Kn4P?Po$NqNBDZ57gio+8rfNky4BZEUq98yz_a1%>Z+!O zQ|kZTMCy+*D~Vaz-0gdvifXc4#%w5WvDF5Nk3w#tsH8K`o)+;1nIj&O%7%+`N2Mp` z#j)WH>Gz$C^|v&wEq=u;(0y&vI8N#eVK8|G0}UM=r>(9Rfo)t8af-YWuU3V?&4Nz2 zsF@G*a+2X!7Yd4supYxgL;Y-~g6I~U9*-^!NST=xr8JvAiX0&wV0KVYPd9p0Uo|^y z$_=%)q+g2*5JoglHvX=zR=*o|J3~m(bYP^wO}zucg-8`rL^Xn^TReTVGbEk&&#}I% z;goVJCy%OsBGG~}NznEGIDWu_;H;z|{S4{})v(S*eaW=q#;~6{*%d@8%`x+gshq5^ zz^OKfVGuYyVCIn3eTF6c(+Mp*JE#^p>=T!F5-={Vj>c?&w5+otj($6Um=6TTMTJ|B z^U3k79Civ)fcmK$dzoNow<5&nfC7vQf)1nJ)!*6M{{=q7qvSIjyl=d)T}fUIMqsUh zkx^z<)x~A=W64K8ImD5(8ev6QCSX3ZONB71MD*H76 zNCQ3;f!}kj02RbyrG>hPi2pmWjFCHtj<34;-iiel@|FRKZ5VC7;=u|{<`z~InMC^U zMYr(Zm-P1IxTG8P&!0?c*(~@x-k;2-wwPCXfATv%wkv~!{P4xnQ2^6&$l%adDJlGe zZM$rZuf%#9O(99pKi|LP;lcWNHXA)Em+>trUIgfr*liZ+=zT8hm%LU(s8-k3mOM`f z>9wkYV^bc^athRn+|NeDd#NFCE2^ihmOR{`iG!@{U_nXKO(IYiULCKgm*`T6Y`(A) z?o)r22m8~RZi3$ZUos=y)pJ=3qlC8)Sev5L*vk~*Z&+DOuSyqOwp`}&&a@3za* z|6}SZ1F~wmEe49BbazOXbSa(EAkq!e(p^e7B1m^5-3`*+-JR0i+<8FX`~6j(bI!z$ zS!?Y*E@v9Is~WfKZnygK@;|?C{F2Yz zq{p0^#dRS!0nMws`{T1I%?SY~Q(N2e(DwEcvHPqrd1K`@RE0-bvJ4_vnto!HH8ic1 zj11DELhZ+`W3RDUL|{=-QCCp!Qws8tkr9~es_|#gkh)BK$BpD@3{fXaDVPS(rCp=S zQjmIOefi0P}scn&LxcNd9PmX;oK6(!z@kwj#KPfoQ8Ujp;#oM{xH`PQ0Z9~c&*zfT1$vQ2htFlDrQa3o5%vid8ow?qG}W40``}Gg zn9UdKbrTU23&tB?o$mO+;r>u3rt}=Xt*cNa%>7k8$G2a%=OUFe+Qs^U%5BG3BP>EH zkxL@EkHNoh=0+d8{n-wPW2Sr!)EzU(G6QYIAe*((|(Nax_Q(QAyCa7cC7@7}UCINNRnr zkaAu^29>RMz4R7228Tzq3R&&Xo~Mt>)XYu|h=|m2?>9cjzXr|ZM^WY!m6X`sZk-v- z;Rplg%rLLdl_R5~HtLy)i1-c|{;mf*hy{t@j)>{0sl&r}o(3G)JQAdGMn+qa^~WUZ zSyN%_0UFm!5HB;Ghu~`X*h~d%Wi>CNq}v6$Su75mu%2FesdGE7o$uXxUwmwn zA&HG>-R#R`cma}=-`}1L9d`YsYP}1>X65)(4B4USzndUiB<1ptGiXlo=cu2X4s9$~ zsl?{b*ju_AH%$g|zAaoKV#1T#-(Uf6Pc-i2m0kbjRivpeXj~3OrVY1r&R_S=``&^5 zVh@Uw)5BL*bS=%k$aoHt1oRbo{U{e-n8*<69LST_30twUs*c}85kUB@Ell&}t zQAVljo%vf+Ag!seYM1_3Ads6+d93cworvuzRie$(&8M2mEUiruB%eQrX z@)T(a<#Cg|JH7#ie z1~BkT_xs?xp^1qz*s1BO?f7oaJ5y!Dx2VI?gxgzNNM*bpi&KcHg9hqOJ7rl}Cs6|M$0sD9$V(BP2sgtg;}3V>H?vQF} zX$g4KU>tU!T+(C0ihnOc68C85Y{m-S!3&@z+xF7u9T(bOne{bQfJou3lm{lp{qC@X zc&Iq*^{0;?Va|Fx^oIEl&W@co{9w^($<;4F+4sxw4`q!rGczDcf@0*CW_>c&d$t%s zEE%5@e(Tz7=hUBj%*S816>!<_YU)S~%bOLTybM(t5UrUc9a&1oT!lbC$Mz{TZX&)C z2bWo%UbAy#?Hr?Pgrr-A$<50Fts%#iqTB8h!d1{D@ppikpJ-_`m!oDLJ(Ra_6HPeB zhD5Mv!U)*!3?*Itc}fY(d33+CP*yK{ z>u%}t;)~=8xWu8aERwEwSM%JL8>xL9e?Wlg6Ondx|Bw^V+f`gv&LQXc=T*_6}b9bGhtBXWj8tehI_K4uPp19+|FQtKtwMoP1ZT}2FI zOH=%jP>$15@|10e8KU-_%51qy-uf~xTTOAj*wDIvPudbEn(rNps%%dv`M#~W;Ld(26Jo0?Mm;1}XY4 zA}<*9h)5qxk-CrwNy5N9lISp*0OuU1ag=z;3d7+H(c6R~Ee&Lhzy6eS(m?v%%w;P( zGc7w1!qQD1EYN%di()S@(j@SDA2OD7c^T9=FJ3$1jQs?=Ifr&7?CUEWo^#5ORjIMVts3on!=7D_x1|4uiqjeX zOzjl0p^!-)^W!2t&iq+LY~8wdJ8rHaLnjTnSOX=C*T^P6h6_~D=iZp%OsN7D$bC(k zjqadj0{7K+$qGCGqX132)cAV|(qf{7r4kg}Pe!}1M&NV7y?)K^6L)b6lH{<&YtJ7? za_H6GBPvF}Y>amSdW(X-n|i`Z8v842r?P-RPpnh>OrhG2E7Yo!DG5ehBO!XkWc%p! z(mK8vTA=p58v690>Cy3$q9Av4p7H+1YsJZ$xbn zdggv4m)z_9iFc5TYiRBcLfqn<$4e&j5x9T{7;^R)558Sn>vy|7!qWg1>>)R;8rRUP z96knOVyi?r_ow|v6yBnB#T+N5+WjT_iAtw&^!Z9y9Y7aUUOJ(ON*cMh+jil?uf6+& zmI+but(1t#*<7r>h)*`Ut zjmm>7(%9V%UyHSj;1jakUR!FdZ@-0uLD4#{MoIy9Wll^eK0|@N55;(|3~YC%R#jc~ z9*59fWx8Ev#>K@|N;NcWQxxKW7;E3ns8RVx+SJKslD1x~mVrz{PCa~4$Hcfu zo^A7EtYEERrp%2S_x0X4F*3P2rY66B2OtHi8#T48GbI;C#$P%(0ic?cT4804s&laY zc;4spuQ~!n#2`3&@$0YRS^{2v9X=kF_IRQgn_Lka3ykdrQvd+5?nl-0HaC%-;~cE-BY?2-7{? zJZR0aIsxuUfp*Y!J(Lq3n8Xedhil0cEWmCNU7D2pnmFNM`PFUz=g=Sf4-hY z<=XEGs%V=tiO<(T;etVnvp6>ycLBNQgY9&p)!N;;C3At8Gkfu-o;lsM$REE=^o&1@ss@o9^b9i;I5M;O}%_ zhV2v8nJWw4CKrZqClZ)wi^x8LaLD(z@b>AMg*wJl=IS4^!-K?q^4##*=;(hGD7k<1 z6Xsy;xM@cFu#^J;n@a#A_0U`seSOR3;8(M^C@{2rnqyN{)bkVuV{Ny0A2<<_$ zd=_8mS}el;Xm@Mo!vC#xG&Hf;Zq%NI+!tj&1W(6)902SWbc}o&)3BYRGNJC;f1f|K zVkYoL{F9Gf3cqCV^!KG(o;^Q~3!^2<6jFdL-Wz%r0v|!@&=ycFjkP_~|DX}y$Sr6O zpxIfufEXR!Ye29_nRJDby`;;hQrw`&(H0Z^oWx|iJ6ET2Jzr&&d3T*A%909HP8S$` zDw#449~ZE_CD##PI%76odu_@UZujs)K(oKj5#fzHHH;&Ys*0T_iVyXy>p3U40gKZ# zP$^YwSXD&mQVP8oZq0%0DuwYeO+9Vja%;2L8DSKJ*0ZMMlEX&_J)hbWbZDG{%P#vR zm44-{>EZ%RY4dy5$4C#v_05i5jEil%T_Pi^iFV}{(ER}9 zc4zHd;7VmD(`KW!O!>R?)aeZ0G6b}la+c{jz003nXd$aqBldtY=04Uyvhz7ihH1VB z7C~mu3lsV>naNVJaA;zpW9~)Uk5U~|)4tKUirblp6}!H|v$N{6+Ct@mek9}S5nX0) zCnvKHiW9!Z?C8f0|BER zoZSkgW7tbVnq5e2YJyK~9YpHdzKA8Z zniy_v=j85f)pO;3YMOHQ+C{Eiqr<=PxpQiIFT{t6dD<&1HmiaE)U&CF#a;K0h**gN zdIk^z`M+E{ML)%Q)fN?17=>*mzwWwg6_!{XlVh+TtE5EHI~p4r`iQY|J9+k+TEfjlaS>H=Vo6;N=}2pK|Rm| zc2ccr??8Ls1>JU@)h1F{2u4%X$LLm@Z_7|a@S>vac_F@74)&H%dsVIfuv%m9%XwQei zM=oh5CUHXTya}OWtz&gsrZbjQT^wYDF2Xb1q3;AxRzaxRMVmR`32y(qCzkOo^+XNT z8}2~=kbQe@M<<($RwGDK6o}+xbRiz$F`g&FH!@E`0a=;BpUtR!;ILjdt|=1NNg)iB zC(f@@W)}@F)nGn#MP#m|8BzAD?v|^=CM(5YX_UVkT^{KKhSH^P1QLr0#qfHI&sfp` zWw_B-6M`T9IVYy|=>BL8$N@eCr2F&5go?g-#_`x_UlxpuPQoG@-99VY=5l#K@99kp zByz!WsAUC&B=|*G8uO=C5{JhV8%en0kwE{Qfn;N1B?MXWHH@;d@;(ERy2|~FiE8%? ztHz&Tpk0^Uc&t0@V@q6zb34OoY9tz?E33#t@DIOD;)CH8GqJV(DEs4GtL621kBeF$ zrDfUKSnephr_fi}%qeQFa^T#f=L$;7O4$O18~~B`Fhc-IM_3`3JgG;vVZ5|~P>#d~ zVkWfeaj_9R7Qa_Q+h$^gR%YAsXGuTnA^z|CB!B#AiIEk#xqsJTr_a&KPHMIND3BU} z>6AuGB2Y?A0C1(A$v{4W7D#*jp&%!n-yR4?Z?nWV${zKIi@4k;R1P>CN|okUQ`;aF zjud~wA;DDg$DK7I!ziQn+KVA}`Y;Z)jJ`en9)p^e-*`NJtJ-l&GF z->jI_kzY&MV%Ir@BhBp9xzNlTQCaP3?ARyJgy@4UB5#0>^4|CZ1C z!kLxFAET8;>N>Z;sVQ|BXpxBxq{I_+h{CjtP}aA+U{Q}40C%pc9!?)L49M=@OXVf$?*0hr)=F(r zqPRC^6BmB0$FvF~Zg^9dr0~r*gK5P*{5b+_a zZPp!*-j)REc$|vXvkIYB0lmX|NRR?*_vZ!ZC|b|0xibdaM02f^svOoEPpqi4 z?gT{Y-lf-6Z$)q|0+qt_*k^#qv}6%^JqGe1*Tcnk&!)WD7cuqDIRG2lC%AYP z$bhwFAogKZCs&m4WUI8a(+v>73BmMlInV3cm1D5>u6A7VwT}G{-uyEHcYxN9AohV% z?~lwGKpy`#St8aJF66MQ4><$g9mqfjlG0L$icvtKvA_%LJ6UpxGP0Z3EMDsns5eW* zf&9X$C0KKM%A}5TDiY?8ksAC}6O7HPix>CbXJCR1vhY$X}eWchx7XBFTX;L@2D!DbUK;#@qu)5R>4IEZ%a;Q z`hc$CPWm=xBRpIs#taLRKR$)9sDvNQ;j=X`-!J4{SP5o~omsO&m573a6ceL=+`-_W zZP-rUB6J@Lu!a@Xf5T{eLYXHS7D*?Cd0przCYn(L3sU&$ae8I?b3`D@o<;U?a%yiE z`XgMxx)1beeqQ1=Pw#gH6e{07pS!Ucrm+tH;zWRy$(21 z`vgz4U8Gu*2ph10RWs(_|E3mrr$_LQ$u*@h&3VHT@qdOh%?vM#Z!%(_pv{%Hi1F!sj?q2DLgDW27S_WMAuz6sHdUsKu?X(QqYHZ@Ik>UY%jG zomv4sfJ2yAb-yaDU6B9Gay{;L8 zx>!1cG!cm(hIK;2YOo3?eUu|IN9b6g=ITYZ&sQFttUim;{DAK=;BL*o^Ic!1i)Fwv z7d6E6j=@sB>7+cpvCwxo^+m)MrR9rj{MK*3I=l75O&^Q{h$kezt4I@l7@J(!QVazA zRmYHo&^K;kI2ntiF1b?Vc-@x89aqmM54-yn<&$y0pig+OLW_zPk5bx%^ItbcB5=LA zRe9huYachXI$oDeXl#Lqr`EwyVnOq$>Rtm zoG;yhrG8$J)baO9?Ly}9$e2I>NR=ZOLsi>SGO|F;q-|Dt{PusFw^CX?yogASO6o;O zU{6$Hp^Tn&hBdM*{H=d_hI0MXyE`}wC@1IDB1VM{+J`qb`4T>52Wfab{90VCCU9Z8 z_*keE-Hc)W%g5*%x4$p2dM*@@~T-ra=FWHEmx;49m@936gq)rR?!p9n8X$>cFO6fQY}*0IH9- zyDaCZc*2u?1MQAZb+qb&KtuA^UuszrQBwy3A}kZI$z&?O-N4H^SvWz##^=B;tL>Jy zlvfO|?;{ix5M&sl=Tn9kfD8y5yEKeu0lqS%IFGJ|+k^cN>w6Fz07e1!}2(|x11C3(fShs)S|2$AruRAJp+D-amY@wInL6W<}i z8iEA^rO@P9Le+&e;Xr0PI#CIFrQoZKWh6a>8JTsXn%4>`jtt2L?~TN^Y_tZ4Yg zJ*06`mUu{1{@+in1DIW>+I;a!LSc5ejD*%yvV825iWux9j8&_qe&!YV^#8=FwWwUU z5|yLOu%kBDvzCeNZJ_9M@UK03^_yBJ+ZOXw4NEWf|6}1y+?PGH<8Odl@`8zuLtpbO z;;mWY635cJ$~bdF^$rHII=?%RUh5J=;DoQw30t(JqX$S>X&NKzz_jJDgR&0J-cOZfXX|1^d!^F=ejNF%ZjS;yB%=r>Gf_|EBcCAe%{3+Hp}H0;t6t z3kB(V*~mvmcDf#}I15U_A&M2bd zHpX&83xcP1#=M0Xkb!Whf~~8(b1N&iVcQ~1gjFJY8Ut+2zj=oya;pE#fo5>6%f~cu zU~x8mEQkL*h(lASShQjk0^RqOrlx4%#Uc^j3@r%W z9DrsUnDcJ3rYLs}<&v!2&)Bm}j2oXCNb2k-JCn+TFG#Swnl|UD9 zsToXO=cu$d@Gy1CQLzyOx1>6ag?^n5Iwh)n-)TnWb%}f6{CP)78M|zSEO9QL{foR& zTy}F6>JVKA?)LT@70nFHVrwa_@SUGxrCeVQKdtwX={$H?N>8W?p1-F#L3&Qg-{P8F zmIC#Za7`ee>#Vf^5x@NyR3LJB2Sfd5`1&X`vf_QPjJ*&EZEm-;D{D}UxhyDcT4VXp z0-PDhzjUeZ?HZx@ZPqLC_v%gbxfY_I2DIwH8vAigO5ua% zieY9+*LRpPI<%r*RSLjUK>e}ECxnL0LfGI_y&6kvo`p)QX=JH*V0RQKS;Q9cY`DP|~!{_m;AabNx% z6qRL{?0w>vj*rNQii>QMiE>388|_kPB^3VW87tsDx_&by(J1K{o7&|2uL3pFI7JjK zkm(&hq3$u|+Mv)Z<_I3u_yWMxRaCLk)~dkLhkXE~X$S=G*)t|LsxIVIVJwG{GWMfm zuCKGw(iRi2P4m}?g=H&DNGi0HrAy1&KkK!A)}QZtKE@Qif+)}{^an7gz)dNpg%DT# zH6cQ1H6i|B8))@*EcN)D#KU$5Fb@bzJhDsyr1_N9@$l~)8ke{dJbUR6`C6+eUcJ4? zN&zzR^)sY+3t>-PM~B#Ho!8zl)r{qoN&*c%8VylK#W-fE0Mqi-w8>&~Gb=6Y)u~`E zW!h7hfiYWCHqJiY`M|ofT}89Kpp(kVZwCj3(;cOeIZl_)+GmDa?Y3`@o?lQ<2KNt4 zwx6D!F8bv}D8h^}BL1au3D%R$z$w??SI(tdEk6cJ@!U!6s`$+zr5rxeM0kWe-BewOhA z?iEjk$BQ7qOy?`_Lvo#k@Ys_i@@J=l4^4!+$2XI2D&AFR2 zHW^FuH5X6ICUrR7VsNYr-ZfUU0BAfC^P~SjCqi?JB96JY)?-X+sNF?_N1t?!#^5MA+okRN;&02RIjiDf)08C?Xi#B6IjcCH|xw=cs2CBr-YveKEE zlEUw^%s;=;WNPuNcS*;%q{wWlL1r*U&)78G0_95=s4>H{x7y*M{O=s9=?#uWQ54!G zC8=_x-o-V7~A}*WOUYv)tZQ~n4K0Nw*!_>{@|qutruQs zWhF(K3N`wR?}$5RgBX568I-yZtMmm8_0VZob2&jL4^+*@1dRc_vmc+Mrr?qY`u|s< zQ3y~N)wE;Fq@i5=9&luUz9k{)ltYPRhhi_8p{Ass_)<=Rqnor$DWF8721#6mc9C1ZDQN|Ws_S~#1@MiSfKQ= z%jb3d1{x%FZu(Z=N;&u|S%WE+8=&6dVKB~8Z|Ok2C>f>S3H$Nr;eCzVkZgmG%?yTrM0}r+W@i})HPA!qifD+v9{*=L!5-qcsaB?|TX~ECHt59sZf=H# z`aF=$>kpM1_}_*mcv zJgS{kh>YMDT6KZsf1&SD#vYrMF%HOZhS^?fS&dLr7P*+7dN(mS6kveL4#4ik2;K*B z&w+2edYTafc}l}-F3u+A(#p7H(=|E2j{oeD>GQ?08=~3Bs)qyql5e``P7Ry5cvTp#T`OK)z#)q5Q*&SK&P08pNS@l4RGzVcf4od(BqCW2z zW%u*ce=9`@0}RXkpJBZ<(RPgXp9%(L-F=5qO`Uprhw|AL;X^O<*2dA#19 zBbGZQFU9rJr-+!{LodB+bf6c3Uyf>qB8fXu_<_&8fj}@X5XT7Cfhwj3nqpi?Q-Ces z(}WA~ASvl#@z)w_B315ygg|}1m)!@;`F0{!Gt`d1^43Sn^kJGYFDpUqrK1Fs9tzKd zN%`8^S_s!=R!t2j6_xSkPdYY z4MP6UPr_PWFaTNvus3amu+=!V5k8g+fHZ3+*O;{RZdQ9+0|MSljKkh~H!lKV^BEB0 zx#WyeO5Fj~;0X|Pq$DMMrG5;_MB$qxXg}!k4#-)yJDW8d0Sd8i&3BqL-*H@M@>91Q z%IpSVmnGa;)<>dUa36G_+)6F9^G83yOQw+B!aF+1z&V`GTfTGJ`^=Cpt!r&cD8NuQ?ZPS-biVHmgOYaM8 zKr2h`z6{<3U{Kj@z`7Hi*~}zk1Pe5-X0U_{KECZy76Dmki(8CfKX%?6OIfUG$-7e^ z^nr+H)4f>d>~*HgP5u1*5D^jWW-Qw0>YN}_S7U{rR0`^DH#Q6}9|poj;QjU^@FCL| zn!)(Yf>}CfUuJZHCx{-JpLjUqW)!+(xM6?nJ&PNe{q$Vs#8pg1Ma9XfM$vxZ+w%`% zY6+#jMvJTs7rl@-Yggsx2iHEVgL^?Yq7syqpthFQJr4r<0~C`~9#pVLT4Vj(n-=!( zF{=W16J)&vyN1%p14$Iz8b+&8FRuPD2aV6)5qee$XxKK?T8xZMeONX?AbvSMzox1T z+K>QP(Lzqrs0rtk#3R=7Y}T&fVl8&Ay#DU?YN+X6QVanC4+zd7o+@&H4NI2%r2@*$ z3`@XE5Hj;mnR3ge7l4cKr{*bA&g*}76j*xQDdqa()ua0@1Vrom8pnEP-3sY#GQ}k4 z2(6Sa6=aUBrh#uMdn32Vr_~6->OjaS5Ij2nrriFe(GV zz4a zbkruR?QMm;BZIhnTS9ygNk_&S|1(pym#&b6?77Peu#an&?tsB$CviXD`ZH%x-&PG2!+CNO3@w0}^aeQ4uza ziLYPP*y68(f<3Fmt2m}n&xNva^)MsQ6}PPojbmZ){`mP@#mgMXXL)O#%F4=?+yFq= zu{%4rRi3urExNlqDB$*I@aJs_U3o-A0A0fysj9Qx8e~{lkD8|>?zcENoN@&(>+U{a-AL@Lv9D!-ON!ah(KHGPo$%zB=3m);Bh1ewKiM>wjVbCx?cY40xLmx?iBf09UP zMU@d~b(Qrhhs55ugA^;9kuUh17DP)4qbPb`EiVR=jeAoV ze%#o|R)Q!A5S&RI;vpkJQ(?(ppVvLA>ZORHRO-*__C(8gWoX{n?`w*`f|va-tmp!{ z>uMS)6ZX|R4okydZS$^$95gf*@>*u`jnNEa=A`eq6H{IZfJ&Lelvg!l*uQ$XV+FmS z6W^N)g-)21a)Ew2HL|@4b$37%a17$M;IAFDKc0*T8u^&T0vWAz%x$MIz6(=y zWN)l+4cXt%KDQ=OLO2H084$;U4oG#nSP1IJcl8UGCuaf18|G3WjIH*X^JEE^Xo8qL zz`%jJrJt7<)OG2gIMPX0JsE+;^tQXT=KLANDBgaXd^7kmmdY{_>S0*J;4E< z>qCO(Vw;33@RNP8{;&RH4}XV%{tHxV>&yyxxR3+dZ3uY=l@EN?8^bbybKPFYuDW!h zQ1^?ci2uvCph|kdPB{b$ft#&qvoIR)3sM=y!|)C#|C?)8Gjj2x^8p_80!ozxzGz6b z4J0H#`iyP3Vd~(Yet8ahTE!jc3q11EwybKQ?t3LAadMPcCxTyLYFggpwOKupSwWro z@G{Q@Z(hCMZeaE1KAot8E-8%Z#&`9t8k4+z=QJr_RjIQ+`OI5M@mwDQV5rK_F1}V1 zC@Ef_B!tEAh(q6>-aumW81HJp07!fdI~ITtXEj>%k+q|6mJZR;9uB8NQ?$0RX<1n* zptt3UU40>?f&2wj6lHD3k5|vyvxuUNUi<~_j6fAx6hQOOJ8v&R2aedFPX~4Y4!_{n zZ#5#oP0D%MytK4J(e~tuT#38oy*C#ih#PKQEuTShM$lOY6am74W=i!yr9QbOod$~w zau8IJ_AFy^7JjoUGLTQF7_3la$5z}Ury$XTur*fAov;zMCB4fTtXmvUHZgj8bT>@7 z^*e@4IUEHNQaZacg^|H9AvzO)62}b!`DS_N8V2}Em?Reqe8;Q9WPX&QyCmOa^q%=j zP|gYAzCk@RDEwlq&g17QpYjoUVxTeOGq;<^2na=TJvSZ{Pap>2r> zZoNWO|7mm_G4z-WM5Tfc2HC1b@X-}(N(yUdrY7F9ux*Ib<4r`KjL!p*Kzht7K-=CU zEA7o}4D+LEI*`7-gyvANl4Xt!Kz}~d`EUZk^XzO!Zc5Svc~m=T>rCn+^R!<&$7eq~ zzHTT8~dv{4p+}v00%vW;=ITV^`3Cie z+uh{*7AuDKdV+wYbQzn8Fi`{xz7co;;Y`rPs^_OL-0w80S}oD2A z)gZ$p1KOy5=f!;D%$h!I04Waw-D8f``tx0B&wEf~3BvSi0i_n$$3seWmVUHR)nAPd zk3d6?u{P}Yy40iX9!dS)+{;B_;$I~zS6&fX~=lHrTu#{!T zlaCA&fGPjZii-e-w~>ov?yzOiD=BUkAOGeeKFAp~@bEy0z7e9N9Q;!5Fuju3%480X zo#6jdJvGTN!$t>9N@f4bl{}MtWQ07z;zm3{#Z0@zE@RKrN5G}ufNUXj40O87sF)uD z4RAdcSvK<>>C!klN0_2Px3M@2VJe0&mPlQO4Hn3j1PLTxA<)V!=o%W;R!C5}TiXtf z(5Rru9mfRYVQz1)XjbA1JX2@iW?(>Il{q1DsL(LEkz$91dfAtX0kX(E&^o z=EK_P*cd4HWv(vY@a&s26mDyOc9k1!Ay`ey@s5TlrF;w}oP@2O+U;1%XO)6X!~V;h zhBK-7YG$u8Kwy^|?h-usgG29J-{&^W3wnCljmI0pbXo2D+pL`29qhkLu3+7soUcFI zKRlPNY4U91DzB)3hldw~Z8YM4Nc~zoR0Umt*I9T2nB;P&AIBE7!+RNIeNOgOLMAWA z>fod#f)pJh#bn*?CVcQM--!nep3TWCzrE}8?dj2+oevS`mz#hn1nxDok9z-uQ-$%J z6sj+$N^5~m!o}bX88aa(4dJ<1VOG{j>pHHQ8mnx+s$_`YL4W}z zYWjn=S@{ni#_q082)LflGbTug11ByY7PGwbYKao7^5dsZLV|*RUV(vu-e?~HHHyu_`e^3 zDE{~-p!p;c#O5&o&8jPu(P>eY!lxT4<_dU2@FPxj$idzNT>7Zk@$J#WBmpZ$cv~4# zKWm%?;V3ZYeW{T!Nu>NFML}4{dwGQiVWxP3og$+~t1dwb82tKSvjETZ^*4L*DE+3! z$I}zm-FahULqeDj|#{#O$X27~uL^>tKD->|4MOO3b za7gS#{3wr(laU$jXAa0Uz^gyvu+Nf|t|xr43f#{70^9hi)7~VOsIb1F=-@Ef1BVi+ z?dD3ryHXXM^s`FJ0mgs12H`%NS*hc+^;B6E)5qXLzu%4)7LjDizd}HikIGye5fGxe zJydu>_x}k2j5wmL18Qo+-c&_{i4-zx37tKrR392P}V~ z%gFM=6p@txn%DWJ9ALsg+r71rtJvtgV1U*oZWsLjb08_72hd&v^j~nvyGeTQaZzFI zI}Vc8SufBU;d^n?)xs2z(SXuM@AE~iVvf^sRck2#;_+D#y!^ZBEue!c;XXpsw0u3a z8hVZhP-}CJtZ5vYx8&$BG*mawdf_&>$Zrr@Q*Urp+P3LTv)Rp=Rd3PMZ+LuWym<0& zK%o00MjU9Sd0{@+35!PI%Lm%6jHzP9(2CF2o-B3K1-*vjK=#7$#B+B|Q4c}WH8&+& z54xFSdBF=>X_`~L`1c%>@u$TEiilHGV8%3JX>Nh0u`mh8MtN$9&P|>ks$!*y;0ylA zXWnPy&mIOK3=N2p-(HQ|eE9cI<$9I^6KlV~gLaQGLjuU-1wLwwxZJ+@y&cTQPh{=^ z-ur*|{0{5!`PCO{HizSw4G4<1$)5cJq&1!R|8JMl7Fy;#-EV9cQxorA!Ad49sovxt z>VevsA){(qTYjx6qe4khdqsj*aS{SyQJ3>Xj~Hksq!SbsF_NxE zjo+%WJB!fwBcat&fJA61#Q9&i0KVf}*WhJ7C~;U9X8=v!fb1isnWA!_(rs@eNll@e zbm27X%6{~xKfk}gePsg#hcRcT>u_IKmNvZto!<@}1Y?87@UM5%I=2X{zHBvtoK&!S zz|Z2Y{`VC6fkzR+L;eg&ikrSKgZhucM*a}D#Z~|)uk=f(MV$n-1F`~Tv(9@epy77( zd;0X9otDYK+@%?vFMh5FI%nB&?0l2^eNOTiJVSHsV{GeH2HxTNTBaul=}`_Rk^;pt z35d6*4d<-J{2ttQ_6J8Z{Oi!56=0E^_Bgo)7%tFC@W9b~HnutFG=$^<7(w8LRGSyr zqM*7Al;Iv815M3xh11f};ZVNm30*eu)tqNLJ7y-<^Jz2`YM^<6HuTrKhPtZ|!>jru zHpvSuZS2^IN@$%}4WC(?Z)uG&kJXrw%7s2m+{pZ>p`hBau4W!ev#}da>!y_F$ezNV z=H@K>V<@XKi*HQ4Q|g_QK^h%Ho4je0oI~JISg8FHBTxc47N4cO=-Ucc>-)$hd_q!* zdS`ns&w=rIsfd%S+qLe1iklnfddOWjaF3G+!!=GZkA&3dNu~%8@i=>a*5|X1?VxKh zo+i>o<8!BE=g4)q8R=S&oN;GHd>*c)__E7ZZKL2*<3oD0Xm{t>iwxuDI2xV>$E;*R zN~8A(T!Ho-+}^><50jq5`iEhbhB#jznb)3Ez!PO>hN9Tqa2M7N)2}1?yg(r+#CdjP z%+_q4sICa(B$1o@DDzCtCyFDnBtgqfp?|$w#{O~Wqcc@uD|r>M|xf1 zkj{;F2Kgd)BgZG_D7dJZ<+^al&25>y3>6}RlXyP$AvVr#hug5eVBBrddCE!W&~BTY z``YwNNTx(e{r-YE}<-ml)VDXX1_olg=iY#AH)wi@bA_iSycU6656+Ig*K#O%_ zo3){2U@8A1^7Kc+pK#yip*jf-TO5CwxT@pKk&|I0rm`|rT;Y$;h}Ws~v&m-{wtc0jkDdl5<`^4 z_!sK+ahq*XwWF*8U<830ZsEhFqQ;53bq9pt?uh%DNFsb%4vomd8Q&)*nV8Tp6Uh-% z=^*6%^WE|HjB-imd2u5DYZVME|G=OOHDS(dYcn|qCr(C^U6>lBL__wM0W$n9P>`Ek zz+N!1^Lx(pv#cz=&We;*Ao9H0cFnqIGB+;|IayIrxjMA053O!)_2NP>k(J4sd6WUZr-w$ ztUUUJE*cQ%QXZ!e(Ll!hSmJqocAP$sXzHXE7Dl2(FJFL6^Nv2a!s~|z7~Xy>&##=E zUpdGYY;IL_JH3qARZ%^)vS<3d_9}NF=}xg=#`ZPS>G}^mPKWCf%DQuR%*eT?WF_?O z2S%vHKQTQ`b+GtauWniOGBsACR;HRbkjLCAH=w)i60;Ih8*7Q9H^11(d+Ni))Zm9R>M_3cF-BF7fdvp zC7QLevRZO7Jp7o~HD9FTGnt#6O~ZgOTE=WC9zOqRoS?nZ%i7Kk9TnB@HE4CwAZz)Z zQ3THN8GH4PL*Vg^tY4dgx{Lms6AF6m{!TmLyVYrUnUor8H=pX#>};k2is*oVxs@5e z!EZOzqp-f22Kdk)emN7Uix-B zv~9%t>Gv*t|8!c#22$AOa2SH;k1P=wwBV9G1=ikADhuO&#p%&iEacLn{Eg%Vp7Y(~ z`^!Xx$G_K$xl?oJRQdd%fRO`p;*m6x|2CW3&lIBv1DOdXPpHCG8>Z=@KIW-;>D{b1 zFpvKJp*l<0>1O-3-zxbJIA(b~)9eg3$Pa#K$zVb$_RD0ufp2V{OCm#{7)A|<%$0%x z7vJ#m`{wbg*6Ckmd`4Sx$fUi$8&^EEHa&AHskJO<}!2k!vF7h&Lx z#~7X8Uoaq4b1fw77~~t-Mv=pTMScpE+ls@Nef;WbJVTT3P5I0y<6{5iM@%Si0|-r)GmP= zIm;4kA9YI*$*=d!LTHLl{w_**cN!HMx)D?T58II}IT<3&<-TKy_|5na_1jy~x-u^{ z#nzM3#U=c}$g?Z;K2lyWXry0ltN#8iRA{sz;JCLk(J;9)VJS;3I>@F6-aiK*sqE%AlrN5w$d4UCA7d>)d0 z4&DcuP`<&+Pv2DCVtYK;s`-vv>B7oC6x(Iy&=^4*B; zB8B+Be=A9)8O^2|v13vwWBw$K1Mc{PiGJ&Y05v9;^D-E}RO+(%$?jydS7mF~q?(SV z;Y-LLVDXteLVuQ-`FN1WU{F1~pkUx&g@k~WB`hKu>HY)2az!k{x2nHiKYU8$7fGuj z;>^8Wiu0xT;RR5NKJ1>dO0n*u`i_~7-Zv=Ef!RKWGJr`Z8KPx|My_@w&4Rz*5(5Yy zx{+b@LBUf5*^So!uCd%VgNQ)`XD_5j6=JGve(*TCdRPgyPyZQ|LS0qMD(q)0y-@N6 zTjKq)-H_)qR-NykV^P9!IuOu-*R2q&7{NF>IgxPHCMPHFSXqmeh#egzm%0tfD%+oQ zX|Q>GShlTcwae#)_NSS5Ubfu7Y(nRfvOl`HfPXH0o1ASOdwn$n*S>LJ9}y9Ogk7xe z_n+s^Z`_XJCx?$sHYhL^-g1@aRnJl5cljFh2QwsJtkE<3;%CmV#b4_;MB#{++=Q3i z)lqe_);_W>ST{*zt!mdE!7DA~jcYX=9ttaK$aKyM;a`RP5i`YCEpx*=o3^9;MFC*&iGDng7AwA?C-(7 zB)d7EuCx}3n6Ou6PFmcBMo=R9|J^fVz#YExu4`22s~XEl8enw30ZUEs;7?i3s$=TwQ;H;eW;P zj8pt5gfyAiJsvAYj`*GbHhw1-%e<5k$I6y1V<%wZXrf^SpGn{8}Ze-k?2E?{+;(WD8o$@XMC!6X?z28hU`tm685X zk)%eF#)t3GulBdjKmr8<3D<$Xq_2@C^tfm1ajEHtd`9uDu1_N?rdP;>Ana|&L3&Zp z{rTmu-ob8lJ#qd#eq?YhTslS!^^!@y^x$lW;86ojaSKVjTEJ`6Va@z}AW+%Q;6;uz zn&oCtjuLT?`+ID2zvs$p2KQEd5M2jiR=v)*dOqJ{bV^Y?3l>XPDc|yH2)gf5D1ja7 zv`uNB9iU)#WMsgpnH*$K4{FcX9Dx%nV3#;lHPuHDHlAZe>O_?MqwC*{I51t1!T>Tz z1|aogef;!k%xzUL*Jf``H!F$+`3KNJmn^+yQEAxl0}P3#Er~7-Rf9vL5?vQEyfmiQ zo#{~_kLf$pI$ARI8-C>|`B4I7+b&_D!|Ju|uz6$~T(vg~!BM6JOiFo#+V1PaC3fB3 zK>i|-eJHq4I*tZeO$W27I^zi*fJnTduzp+enH+Ck8r-R9e{WP3?vOZvdp54>KQC(q#eltiS#96vU618bClMsB-lryS+ z@i~;l6_quFniwY~^z=kdKov8qp1T6M>qnby&;e>Gsz360I`Mk$fuDYQP-49 zao_XkTb+OO+)RSZEH_^%hle82q|{NK3|;tSrg@wK((xj`lf+YVybT4QMo8#rt+x9Z z97b2>y1ii6CK&AuT#M43l&b3L>bizFt4cLZ&8)6@@B)hZCly*ru35gK$>OR5!^4b= zZ_k`#qtKMeTUH%7op?_seT)4xD&;m{=q|f#F3>TBy$_`#*nK#3G^a--8=^2WwST|>5J*)wy$v&(Q?1YV)jBZcN;_;dlu zKwe;+)6Ju@T=1@-`|2M(Mo^}>mb4oqh%UKW8)g{Ufj-@8@HZEk$$VE?*VY67r!#NC*i zsP#bmox1~&_9J_R`E9lntHeE7*DCbJWylq{gqa*K;hxNx!b~Ot`5%`rnLv6qZ{1&y zs`B?wQH?By^qh7!BD6D)D>sEs6$iEfwFIGwjs;UNs6F(|G9 z4E9b@uwpZ1hf&`{zEZ;H1v}_Y3k1s>(7?l7au@55Rw7TxDl{Q0>>haDNEHJ-!O44G z-##VAr`hrrlqmv_ z>j9QtrVfxV(xnrV*OvA4`$?!zUp$Rf3os%IYKXpzi+CpWcRKhDN@VZWmP!fV=k;YK zh-HQr)x|6MC;KXJKjkUUMERxA-ms{JfWEPP9ULvDO4@L);>LhoeOy=LFE-B z*1%{_kzc$KpINpW7G@P931Z1q_I1n;-W5M{1Czx&_8zybIYjf&b1%I;X!x9X{Rh{m5&t$4LU{sEM?*jgp$S@Zbs|D?+!YHj;`GfypsbWSs}|c(SgB z(1{Qvbe3*)Y#h4rXR2OH2xZ9q9KBdzH=1TxSRyI-U<4CsxYq-)JrN zClK0Uq1jz3Trtj8CL|oCJFaS5w#Ib5pO}`GR_FIcl@bvKiw6-+Ggbj0=0r5rD2XbpR*1yfezGxI273VX1o2Z2Y9zJZ={l2=V;ip!H9`3d=46o5HW#W_n}sPQzY}mN2))A*v<_Y{$V?$EwP-JAdu2N}$se#537- zLkdgO6$WFFO7dAOh18ufYB6p!OQeahj(gMrB6mAf1pjLn93|}9EaNLJ=d|+k(h%kQ#v(CR#E4lLrB?@${)_@E4 zfIiAO<1VxN1WDnS0u%&jtFijah2L~v-x>?QOE0e1k`r$Sru3-|>to>C4r~pEM^^;sTkSdchcc~-%a2D1B=s_n-9uDKgc@6?65T1k*ylyskft5}$ zrkLV?y4C*$=p|;W_Gt{Y7EZ_fldoOj^CA@hWWe-cQmimMc}Lqqzi4?S4mT*Le63e* zWAhpyDU{*-wgRvE$ZaRNGpK&@JF0_8Rs)LVcVR7ObN5R>e|&Wc;7W+%sssjHFDKDX z{tO?$ir|7R6y~z%IM{kXx7#OA3Vh0wwHI#8%b`+@2qrs2f1rtp(v^{c0US0OX;%JL zA~)^M5J%@0kXAzJf0OafI7;58L|KmN&q7n|bl<8YbhxwP}94%u;d0^a;sOOS7wP)aY+>ZPc;Hck!dCriR3=BC;yt+^D z%l0>UMCy0W$O>A1(i7|>Hdk$Qn5BW8y)8`F0{Y8J&lH`9o1B##`s4n676}t`dzdYY zgt@LgOdO_fWdLK5hFKcf8`xUBlrij?Pi#jfhy-1}Rxsp&bMOUcGp z3W_=1Oh?4ZgI^Okyd?KOITmV-=E~*%@lghe(6=JS+wVhaqvXbq3fqZWUK8OHNh9M8 z9>q?xAu0EiK1dW-Ifk?2bMvH1-F-KteeCM!ynnDi-eGl^q+=G8<=RZ~U7xE|r)S{f zb~Js)Puj8IF&f36Sfd_9k}%R^-Bm5V4Vr7a#fr+|ANt{8hITwMPo)fQ@3jaz$gWs= zCPWK9{FQRp=T$yuu6bW;d8JoTKjMdENRXj$^_tPFbJ&OZrI}h)Q;}B*%Ff8v?UBEn zxi6C!bNfUR^R1%b>nJT(=?bNe7^n|2-Tj{Agh}G@ixfV<{BHWirwOORvNBA?ygW== z?&>U~kK{H*dnI}X`aXF)i=sE zsCm+PP5oV-K{++UXwnPEZ;A4idOHt>&90ePMHZIh&D&FUuA_Dm8r{AowPN3*KI3US zl;>xUq^q=16P+Wl83cYsJF9(vfl?ERCik%wdaTSP{u#}{ZM64PvM*%2v%jyRBo+GA zu5nj3HM_GoJg>G2Y&CpxH*7jDThWK8B|BoDUSfV~!})~w{pZN3%{eh^*UNH5baA4E z>?$N>;_+jt?u*yL+NTerF}t&{l^8Ug76o8xri|?ZDC>#OJhEDdQJ;OGda7#~t@;}*b8pT`dznty~6g~BtEina^(bc|RQC0iJ?`*N$h?%-^q30yLX%u=T4mpT?M^ex zaw$^}ESpPMpb!y^QI%s?9j~1WQ(T;B6%b;|_j7s9fx(O8mx8 zldovGlt~=cWQ^o#Ph#38CY9Vwg`YL!AJqJAY`&Q^9_g=%(f0ASVcLtwf-iC+YreRa zzQnxD^?KFtmr4%4{VVye1M(HLxF(qn7>|h+nXcavBenDoepCcA)k&7K$BnNT@jvV^ z!+;5!zjf<0y`142ql}ht2d+Xwp52!1#?%~f4Yrc@aKNpAKB}1KZlwGbY!uSqI#uS0 z#}6nLm)pabeLtg5$LRRGU6mZVnayMpXj74{$xx~6J9wNXP0bBLZHZS!iQKUjPIQ*B87Qt8HAl=)1Dt^iO z1uBb=$8pAHvvGuHH7_5~PoUqF3xUboCvS|~c9_dn?p;F*QJ4K+(1GtSIw-kV!&sil z>Y2jy?O7BZ^z5PkKeEs@g0ZNY7yyu9V`pV$k%E~R8QYWdfp5@unZj-esC4O;u} zp7)=}`X4&>7zy!=|9&R^+m40*-x8hK=l?Cy|Lvml&G_GM@BiCH=P3VwyXgNHyXZyu zHS3hySpQR;@Us3DC;vlhC`gL3C_dG-Gb87LG>ihve{a??MmSCK5Di)Z z#W{wihWj`#zue_=U;SABX7VSzTprg} z3FYs_VbWc^u&ok5ycFc%8&OOBeGR<7q{(;6ErOe0pqSu*3ol`IlBe=eEPdt2F2oEj z`#j!cl380T_v=A>ZR1wc2k=aA0p?3^u|g6~u;3lMjIJ3ydL#0wNqtv?4#YR1C?YfD6!MP@g_5ebn0-0 z9(p$}Tm6J3@S2eP9X!Pkv}7GMV$&mhd@Cq zb@2XYOe9X!7bw+mRu1b??gxmeMVLhLOKADog+5+0#(6ISY=9O{MEQGMp$fVKS^`mN zj*@igC&ejgLn}L1(J>eB3+spXV1}YX+DdSZ0kjKanm%8BwE%1TA1hZhkRui;?0Guu{Fn?!H z>?9YD!;wiOO6ryssEN5Jknt@K@9zYQe#Wa2tu;`8WTD2K!qv02wOyXMj zFaNW_rExc`>Es|>fO-gwf(lt;I83(W7Yk$=Nbf~hDSqCp2HT|A8}$zk%tvw@TB!KX zIv0;DW5&F)=So9quqj2d3~ts@Ie#8#jaZzN7XI|<)2;)|J6?0glPhhdZMT)^d+%jy zr^e~aJzksU;^BE>H|)bS^Six$PSGu?&?wdl9;vNKTkd1i(c4RV^ccc0z1(MvLP;z~ zItw&li*I1%k%6|Q>AHkqTiE_fVaVtQepdv99Z+r9D-uz1ST=}M9g)CZ1|5OMM4gmZ zS?RfO>X9+yaAZ+G!e6N`_*5dCMJ?@sIK^TO@Mh9Y#*Lq+z0=Edq z^*?||bJ9oo`JudhOmm<0owTBR5csIvX9<8UO4rXVA&UFm{Hz_HCk3%S_9+sA)zh9r z{`+7l57D_D6x!$08+)yqjwtq@aV4||9))GWq%YV*cp{Ez&no~nQPb@273$V1!%h4b*kG;-J8nY?0`KDTBPu*ND9-U_VTeI12* z;i67N`>mNXjifL5%B(LZb;x3nb?F=a%PKuR#7e}M7)c>v@!YkRHL7Y^MpKF=Uiggu z1_e`$kIB0qb)S;Ouv4e1wyc0X30ScnSCc0Kmjd3z;rMBm6~J@ja^+ZWxhYB1devVT z-Va(MRPg}7K6mA4XM-;Ng%$GOGkG$9VC5y6t^~Sm=S3)bhZJ9c*^a>Dc5>m6FF$@D&3axfC!@KP@W76j;R=`wut6bol1e}ucawB=B%8B!IU4_T&-8U)PQ2tR z#hcb;A1J5FE&lFf@z2tz#jAon#w)KiDDM~c$B&hnu-%q<*pBA`qx&_4@^=XXbO*;M zIGqOc(XZ$CYglor-D=MW;IoRm$QJ?KF*w|$e1aXHYb|`P&ndkr$-~2icnI_fA}s~o zGc$nMIe)>z)_2uno3+5BxUeg^XyFkY#NSMp_v`Px?ZCPC6+SJzC+#3m1%ILE`dl~V z8-B;M?v0097ly(hjT+rYAZx$>ar@pqqV|lnvJv^!%Vb?X7doIPYRqZ8QdVhb?$4w3 zyy(m47nc*zE1O;qoYMp7iwVv;d&D6Qu)>qcQkpVs`yGLD!0=DiEHz=5k!9#a|7~Z( zjqz%}rH^PD<)F5vW>UW~m`USXC|fdMt$-gk&Bl4ifIA=fNWB4XULqVHActDe zdu4cnHeTK9J#vkoi934jThsdz!ym&rOm}r3w2|ooi{i6_XgR<~%pdFc_cdW?Jcq!( z!r3U?Q-0(fKIofMjH}JJ({_6j?a{LEyusdl(&l(%=<3yKZxSXOVnlZkiLyp6fB=!5mcx`D(I@@%xd(D6miQ{Ov+rmnq#Kk zK$Y8;BnHx-h$v<)pmog8GipnO-rQK@17>9nyZ|)qykj>6D3tqNkAe4YFOZi_+c`{`L($HiWUJb(HnUPA|e&c%}%Q^FQ~FpZ#3y_q}UY@N|j zt?}xefzR&5L!ifQ4#leA5g;cM^YcJJVg&N+M2IS z$k{U-Oul+X6kFi6i$C{v0bCl+2z+y1pSYJ(uD~39czhzT@{Ou|tz0}P~UexT5lv|)&R_b ziqPLN<8W(mj*ZFDMos=ckn({?_eGNWhDV7@ruX`f!I9#!H+rGTEgIpM9=j2bV2C?+vZx`Osft zXXM~e7?nBOf$$SV(H_pd5n_m_l_z?E!e+t8$LHYSFqs`I;AFX1{g6#IV+K zi$M3io3E%jA=aW;0sjCBlR@=8#k;kykhA_BUx^8tsp(+3yG<}BYpnHSxb|ub%Ud41( zj=V|q>)4VH(B@s2DLlOq?J6{4kzk|fx z;P}Sb11KGS7@bNQ_n@Q4E5N}uk)&@$;?G;+Y~pQ)G`ZfZBS4FGlY|%iQ>0%&U^|e$ z1y=mW8M&dmB~L_y3rOSKJAD(#I@2uUE{zRI1t2f<6n>qAusRJ0Tjqk}e4ZD6_{g|x z_T=%cUNp)#2;TnJx&8&WJ{(m94sFLLfY2nt@t)2jHz=e~c(_HGw_gLt7~vEm_>qG< zQ&D2fI8U75mZ6=q=ZPx^m4FO<`1;LtXuM}5?If>zhf`Vs_@%T#6P8w26T!w9g9)0GDybH; zAdO6h41+R@4jy6WcIEnt0j{kY9rdk0w)9?v+FJCPal3SpN{*p*3e{AqMIF(fFV74O zP(STm3l|GEACez!uml_{@bUS$AbFYmyK>R2p(1rPC_0LWPS7yIo0q{y{NlhrJVm|t zhCjJ>qsH#qEjTSt&hxKDqjgQefuWm4xLy}p)8jUD(?1x@83C?4X6~;!7l~VW;q^!Pz8X_SXp~0{?9D25%I$E4F^*YEXy(icOe+ z^#@MKPt=s0rPS{Ei$M(BBP_Qm#eZ>F@y6GzrxcYvh4hiABihCh!3{8w98!Uq*jbzgX)}kJf(np@SZ#;Ox@c+N!X}CTi*QzDk%>aAMM1??trqufMLJ*xawdHdLbo^Ne{$9X)8{OQ!)^{$8`6u##&#Xp-#T3>SzC zH@^Q_6OAh&*tfx?Rfl(BSpX?~1wILP)!4$?(N0fWoPc-YArU6=-SQ^2 z%7y{EJ67{eEhHYX99}2od&g2As!FAuui;UfffVp-#qCkLYcjUZqbU^^<&DKxfFKv3U4-%@_$=s z2jzXd90nctssPr5^fwIAsQ;q}g-@O|3bLjs-|Ov-yEVo_NgB-Wn~=gDKm|H*)))d7 zpzk4YPZ=he5NNT=`?ot$`D?-}w+lAyOItnQ9ZTUksS0}hB zuH)6DRM^zJzgB%4*BC>NYi#`r^Yi8g5#IS2_a<;Ii-oSCrc~8u{%&A7m$Sf!R-}A$ zLcqe~c>%ldlBsA#E9)`NkxCksgI&}&@t@e5=#5C5qx|8~@7290C%QQ*S2Mm~ z(iR~<(09cr>!Q*e$nO&q1YKn329z?s6~D5 z#+(t3k*M=m2c5&w2sVr{fzHVt6z-hZq;avI@*aj*z0s}MpHv^jrcEUE=*gIGf zlSiJJG5ld*?kGijVQIs@qa~|k#TZyPm`He8as3WBu)^W-6!~|+z?aZW))MR(jO~1L zGWvN;H{_L^EIdH?LPLN$<-UF#<&^g>gc04*?Jjn11I$1TIbmm02Q<3(-ms(I!z{MN zpT}B*V7BLKrVAS|@7?2YcfV2#LNJRZ>lioAy|**P0j$93nWkyK)yg8-4#7eX!iJc2 zBd1^Q$0Vk(OHEZma^h^v2!V3*7G`WAp1W33E;!j<*|XBhdhPWmzoj#bBkl`Ov!V_SXKdpu)##?KaE; zq1`BAxR}ilIf6@Q;g2RsZoP5;JjLPqpc_RQV#o(R4>)1Nr{cvt)?W*&y!zFFTu_Yd z*sa{c!V;H!_8rBa`XbOzNTWL4o*VAz-k;9@Md@QW^2(*DJVWQqIyqtOUQm31THT;kR#e5=o=u^(&1V?HZ{x#dSMhpum zgqj!|p6V^kElDBe>1i0SPHQPr;`nkAnzO}{^7($N8N3+S`B?3M(P%c*YiZ-5@_;0^ z7ejN4nWZIxnSoeBf_K1^WAO4~pLG(`4un(ksQrILugIC9=v61ACR3{;@!E!Dj+7IU z@3ZVQ_(dxjW}C0zadQd9z2%FxFXawQ<^!V{I>Ti*GiW4)E3@G1K4&FdJU zKT*Wa%#$-?3BTl{NWB#^)DS>!OfXeQu$cqHr|bl!1fC z`eiMf^+6)9ug5yvn_Wdu!T$$YK-89J- zW{xF0LmET0$tKvh|1kXD_|7uND^Gj~h27v86r)Xe5XSj$jZ8^DEWJ*o;&m2p2oL4M zJV2;H2&ck@DZXUJFRh8W$ji{aF=?Na$H%{GuYE))ncYEO@SK~A`WmJmiBi`;fF^YU z|5}rtdAIepQ_sfpl#cg5;B4Dl+peyzNWWNQ6lU{e{sn6h5D9a5>Z1FrAIVC)kX)>x z+o(`NNZF>7JN)&9eIzY^WF?)WeD980RceR1U^oBo9TX7nFKvGLrW7xoj$gE}qsh_F z;5_ewP{=?i)~a+9`+Bk4Nmq!YqFuz6SsEkM8#ub!_VD^QXn*6%Z%_|EP%$#-Nxzs{ zLCrch3XpZ6T*JonMe??r%4O)jcr{p=oBO-6YUbH%U1#WK;?=563Ag{de&%Q~@%L?z zPi*^UQ;^ZkvD)xf3piu5<^|si#RZ{KgjGQM_l!!K8ZOz;!iRQ9om`Ieqpil=I+rn1 z*I&5mF|$2}9dP!HM2%PShDZ|wd+(UvmKqwrj^c6UI1Gc+ZYD2`V*etkgP__; z{@8GW)RSUCP021ikIo`?9@URZ|I2lv6|N0tip0g2eZ~LwA0ey@VI|KC^*$7W{j?Rt zI+MDrSHv3dZ;W=6G3WLv#+PYdzI&!!J7rl~Bz^n7N`D(NM*}YEH(l6tKb9|2)#-M< z$^F<-AxikaT*8}k)w6YLM;T**0fRU=9!nTMRzpRZ^+)5b3HeR~I6@ee?Ju~$Fvb)0 zmP=RzRf(|n$#nsL$)x5fTL)bV^;>lheax?%8w)EMpBN5HV&!PlCx+w)e6<(U(hHUy z{wjBgKb{`YPhvk49_$lbOj8JDZzAr1Ohw^UUPi`UKCcK^JIj%2Q`9Vs&Wd1gcsRbG z>K-@%ijo9=eeC}vbi80 zot?u5seHW7_pvB0L9>1TDE+%OKZ3Cs3!oIVNX0y? z9SqTpRx5d*WZ{CqU4Q(zzlai&Gh*lAs5pjeMP+q*J{E}62VQ(gP3h;CfsfS{tscjTY}q?K6jH_~XznpBVv@Ry z2<1b@0D=O!MOc$D={>_uiCB@@SQ>ZdR_P#W%k$ z=wrOgM$DNZ;7E1*b_cG?S3wbkv_^D=d=SpMxRm?OEIJDHG_|q6L_ee%haxrjpCt>M zx?cTr&(H5@$4-?#>h8^fX<9#IoXl#*l6Y_pP(m@xG-9kAR2}{XoHR5w@u9kx>r7e8 z3L;TBqFSa+O-%S~Cd9qGPLK9CGcz-1TjS^=e%vC0ZUluI^eb}_Mfpz=&==l1xo$pE zy4@&zl3P0-pmEZZ&bl*~3ydi63`Dko_2%ka{7HTUHe$%Sm zBDY<~?+|(r2y$1|T=A)1>(>wQI9}8yyi-t60Dgi>l~Z}}`Kx=^$EP5I&BVX}sRCo1 z&|bLpY~{{w@YWll5#Uu6($Flbe*9UXcz_E`V$TPDP1UZzRtxDs9vZiMk0fgd#wzOP4mT0_u za(q~e&0I1C#YJDBct4^(#1nnp$_HGTK9*w&4BmuM?~`;?z-S8BFe#V$NQ0pxwU72T zT39}vO=vp^4W~ZYrm!oPOfY=UO*}m?VE#x7pEF>K0QKrh#qKDS!C5af0<;Tsk(9CM zw=bU`WU5FPIJ#KmZu$T0xwGx7Z&81rn<^EDSezKcS9I+3WLMjBe|oLUVyNiHwC#D% z=!-2!VyCLuc_T--Q*W1*i>`W1*UL^GIu#ZspnU|i8ti4*G26IRF`KQRqiEu1ar~j& zCD7SHA!0OV-3MC;XL>bFq^PaHB}gJ=o#kYL1^k>C-YAr`dUCkxwUF_tCev}LpUvy! zh=atPb#J9?HSxZS?UI$1xw(Cb#`v`#!z6%(H;578tjETpF-KLlx}#FT>{}U3bhhI! zHQFBTXGh**Pbg&B$e`={ZiAdkKrHTxGvlVJ>F`#?ZRT`g$?-6&c=Q0|%6wHTjy75r z`*N^_EiEnYIB}onW>Dkb;aCpjJ&dgCUszk>@yg|5$zkFq<_z3ZN2F>FoR7V;Bj^T) z)Y~wVw7hDuPgK6}u&m_ByksBef;_q3j1G>D*=qSS?a4q4)D&26FZ86CvGAJ>kIh;0 z3LVT*jaR?IzZb3zMGAAmj=?SOscGSQ$MvEPW{Xen@@W0SqoYikVf^;O2VF`YtfKYa z+W2C28M8b7J3hM^XcOEh?*WM#fcF3gXf--!Z%=DH0QEbfKL>ulRn?le=7l$cJWEd1 zi7PVCZylR&U1u^b&)^h0GlAyLNU)X!CrBv&w7G zr3j^{;@|wdu}MS#60xtyj^`xD2i~(XxgT%$)v88Agp3M!EHWmd$N>RC;+_5ddv$oS zaI$Mi-eoJLX2V{~6R%l3r@|y}0ptezehdD!W4L(C98*|J%S?l!NBt$p?RV~+W|`n* z%z$j%>v&T1hT}ePeuILZ=vk7S-5yGkgQ$9bz2izY3t%*{tSiOZcHSykq1{r*!1>vZAsx>VAhBE=LwvUR@4w*Bv6}{ z#vyT%oczAc$+Ag_;dZoxXz4$asmWksELU}Ixg&@W=*JY_sn(^ynsyfJCjN@N4(a3BpOsC?+KWXXQ-5GMhMU{d86py0vpi$~ zVcJzM+F~A^+>*Rs!`PgXnJNK$5pZ`Qqb-XEn1ot&5F!*)K_rHedK|qQ;Xj`iPjZ=XQ`+IC+PgTJLS@p9^CXoOkRL!)Jwx zCE~_;X+tM#r8Gc>rR2<~Y8UW6q18_jA^vB{n&@vFV2zVJjfz34W#m>(8HhbfqPvO8 z8*=-#hTgYOGk%JMM_;RT|A?4?>+f(phxOu&dseO_{5W;dpp&`kQE5k&)-lJNZunY+ zI6}uKIRFJzlAU+QyC4B)kTj9#%VSc>&5ou|2fnZKrZgh)=cOkw7fcBe9w;!4PDfGt zm51?qzM{cxA66cu&)#`2<#f>;6jhZ$aneRjJoPE-%FfP<7On%Ok8-yNnDp#KTqB%) z4tz0OLZDimcJk07yc!Y~rX*wKjhr0;Qb3^&h0RHMKc* zY7cW-SG-S^KW<0IXVY?}*1qwXc2{c)DCAr`NBv?v5``HbHDI%-L%ePDI1^uA{V z+ib&=7GK_oBYo$r-loOZ=-0&qev+r5RQz2FE{dQ0Zss#!3)dYJ`3dpiSo2FJna;K< z&e@yaYr^?wi0^#N`hs!M(QqZ0Sv3ma@_%FP^KC90@G(m=4~B>qJC@2A-OJ+UtRZJg z3;-#qSd#mVea=s%&ojC>7+(ZnGC-U5EQpG;wNKj7N7!06rQnB*_^_S4GhAUpI0@9U zmgF4E4ZUcYWMMas>Lc!xc7Gi+fQNp4|9JLei)o=}hhEVQ19oWBI$Z|y1!eaX6(bD1 zz6D<%Ta@$@JdxX*Z}(FRPL z1MBZrGM_x0KPDa;9E59w)Q*W9Bf;x>ryW|cnkyzzfWx3%wn=DTjB%$ROv!jPLH}0= zlH@k#HDdJ!;#Laj9B6GGrF_ZBiJp<|H7;uAq}yyL z!<~EN)_c3~$w$wK_Pdo5Lx*mM8=I0zpE1x0zf?Rruu3)<6VaM<@eK*=)KT(raY>O? zMn(p8kvVK(#Kgo(3~$%I8?ZlGgGdpP51Znm^|lwLFrP1y&D(J?(rcvslYFszhlz(8I+s_G0AzyQ0SE<%pZ9V( ziSNG;19!F3D`9aeu<6tA#@VVO+|`>wDp~#Irq%t}i@r2*Dy<=_V=!U&{;naC5^AR( z3fx!*ybz&5?kJupThCc>6jxeF$`i2sWFyY&-8u7|53d9rQYH~ImrErkv^HEuq;~+} zcg8_R(>}Co`JDRx+*kg|lMeTODb?t*EH2weKo^)3J=h>#`UsgF=u3cDB7?B;OZ1<_ zpfXBRBR>Cy+Y6*e=GNLuKCygu|Cr|w9P5&$Yr;Vq3eNR!%?TbTkleRt1%P6?f1q*G4JmsyFUr&F7L{el4O>=F_BTcmGUG)xpl{q2iQc?T7l$<@bxw5M6lS(}Z)^ zv3YLOO;&>7*38CUlGkbE5J^lgnZt}F-m*p56Lghq1D{LbeL6hQvO}QL<$&NL5SieA~hdbK6*CX2BW?U&A?yF0+yR z)UH-80;7jKD&AbuR)aC;_}<2?V=|9h)+G{23Q}_*BX^E-pz2Jg+OV#1yuw8WjNYtxp6xjAL_ul}_5&r_XhLnb+e4Q@ zR!C4DlelV!@H!)6aloVujt{y7#2idoL7g8l>#qWjN0{0`nZ10JA3$J4Dw|Tr|QKWyPs$ENh z9nhl_r6Ge5FhKjh2|-V>3@;?k5$GNyE=kp?f2=HzYjq!N8sB?42#SFAU4y?$Ryqj7 zduh@uIUH;@A)_b!a%Lj5M+)!z{h_Nh3?mY<4;ep_pS}u|R+qvc{)8NI*U0Vd`JIv82;oyJ zE3MJFE;*TCuj#>Tk({+}Aoum5h__YC>Y&2s-6nBuqqs@vazx+7TJ8BQ;`4flA-WtJ zV!RqoH$e}#(e<6}Afe^f&dMmaw>z~v9Z;$3h@0m2R51?nx%n8pEZ~RPr+#YeT?0?8 z4qf0{R>+}UxZ(=3NG+O4Wfhl4-Of=AXbI+*)rqQ(;>^bA1TGj2`*Nex>#N|`D{k0z z71b*VRcDxsNZ*Q_CJ7M-Rz|%kN#|Z%iWX}av?|&dy<%h4-Zk>{AF&)`KI-kcNVY4^ z+z}atVvFJI<2|*8xwTu*`Dc~E4tO=`F;Yq3w-wn*mcF#Z7Iaplc*uD>)Z=|X8A;NRox2UCG%Ze zTDbmcEBH;sIN7NA`IeVjYUEBys`WJf01Vc3Y&SgmqJAciPof#aj^PbIH>yrEW+iEtj(5Ax-LoAD zcu4o@Rxv9{`HK&X04y_y2p<)IlH%P`Q-!OB?K+N+{@g@4ojQ6q zg^J+G&-p>yppWidhVMk#vV>N9{ohT~*DtPbK8;xg0<0=j!;{_+A$pwECmb`JutTsMWQM1MVA4nKAya&R502Q&{baUC$db5{)YZ8hWBj&toXu%qfc*s;vAd1Aj~@mLQX~I9V0>b`r~2!H!ZEd(9p~es z>*Ph%ydJQZ|6E}03SA)2l@>8VVy~urSsevuM90079ZHm(ttzj@C#Tim7S(H#KxD~u zk8?elG3`MIEtOVl+Uz$&A&_$su+=|0CeXcgN*Qes{kBcht&8!rpDEL9fk8i{k}-$N z@|oHX!!r$LjPvfn0v$cJm*C(?zY;$kXb8$bjVLtrZHKDBfkZjRvT_MiG0rPu zjJ7}uFkO4L*^dGWfd0q{yjF```-&~SpEaFTT0E0ESiyy$cs{?t`v>vS@)La$r4EEO z0kQYeUY2MZ6H_hGgLZE7Av0t7219LUTDir8JmMqF^WIYiJ=y~A1?wAH|EYLcwOjDn z)@y>+B^efuUgH&kZhqh)F?VM!enwa6CfK~KZGf6A(qff}^(|f=lldQK8z9cwRi6YF z^WB~8hs-U^ckiCgG%&tnG!d?E)3ySMbU4`%>7DU)&wPijo=s4*5nJ4N*S{w4k7Kjot`Mg zJnhy~Ti-I_SR}0~pdY#UnA{J!(p50rL=dJ4dM$=)rRg%N%*V8=BbQBVXEJkv2j?L z$nzV-OJM8gVlI3(gLV+Y4etzBVrJmz92hv*I}K8cIek0rtE%zti0orIy-|2!Pns)u z5ZRwj1ze{NltmT%BEp+xr@9^PBZIwIrcZY#<&Gp~d=MIF>tlJ>E3OIoyy+pSqq=IMTuT6)>4 zOZ$9&iS%c*UuNhcbtVSz#A0>a60(oR}da2rq_wBzUhRTc5-H1Sr zstRJNGt*(is{v&(Q>R%JRV-i4R8_pX%~_vhDtp5Af3Hv49KDW>i^Dq*1>Pv#LAgim zqcCl$I8mQMGS@o(>A3qdB=*Sx@(rBT@2?PQI^bCeKy;euu)M?KxM6Mr?5S zGqle*_nEtp_MS){sB$loJ*!#~36w^CxF-OP4i#9f`-PI9kMC7N`@~A>t@q}hn1E0& z#(t2HpzgLBia+?7SthfJ(PagK>jz^l_wE_8&~rLZ#xh<(pbiu;LXq$7>!aIT1zD)5 z*(AH*Z}}S=5`@4RaM?W$GW->P^*AliIY?lq&;`FbfN*xW|?%R3bln)#1Ymj zN= zpRn+@&ZH-i3%HFIuRhW64m=nOfC{8mHulB@hg-u?q$1jN`kt_0#R-R)%0*~G5w)|a z4-4m~SaN~QT5p+rvn_NT9U1G5Ozq#cYt`I&)O%<3j$!RfPKT&N0=xsxD6xs2+Nvcs%ww@qeE{1z7S>0M>0c#l45eJoNWU6T7r@}EYZVX~1 znyfwg$JnUdM1j9Gm^3)EVjQBTwUZT8y08#==Ud_S$JkDr;MOnNY9^e<{a?v(wYmHM zCem|nI5($zIe(kXut*#ojhUty+cT@3!06Ihs&wl5;Do)q#G@{7sQJ85)OZ8LmjHKz zoF=?o=MY$~hd%MqVjKkO2q*{z)rMBqU&ZLH-wT^&NUJ!uWC6X~X}FiI`JD2o*6=FY z4PtYz4YaZEXXFIk2BsSnh!y`ojJ35jM?ku}ySqE)-4CGW{J!scuj@VkoO5wz=Go8QYp=N1z1HH%?lJW*A;}Pn zr9v79I#0xj5l({aR-Wa+$mj-yNuTNru9C;4NyM`B(po~HXA3i;@N zdGd$ObcdB}JA!v)qdU-9xBEnL`mt5bh)v?WRfJCS;<}MTV$C}XUpkI%HU;@mq_))) zWs*B}T@EFXib!Nm5y&63oKxla{stgS7q2vQy|w4|++_#*!9ru-P&g3Z#wW^5#%xr! z&T9?zmqoY$BJTSH(`)eN?lxGK)v_7`kh$_b?LoD3cp2Dzg6FR(-B$hl3Mie4%}UAf z9$OtYKG`#T)x>11g;{Vb&yuTFwa08auV>=z)U)B@p`oEdW4Pbv=XA33mTz3P_^lN= z&V}=gZ~CI!t=(?YwoYaUR1_PFzL8=8nV+7T8vLg@xZxIG^Xn+*?}jk;dEH%+r!&<<#1eY`5W{>bxnL{Df&S5jr!0Fqyhla*}x7m1q z2efO{?ds-!tW1LW_{=#S{kO81G2p4AU_WXCjkt~XE;C_wnAn>=zAxF=Zq$~)naA$C z%&fAl#7B9U1FC@osV9xg_mju&Cx1Iy>BbuG%}{}Uk0V_0I6C{ z0gPt{j|X(EEc=_b@Kz`}cmD4BSY8oWu;JBR%EAFmQg20*qV*~}L01DS5C1f&aZuh3 zG7TqL7W1a!m~rDqHt3)RA16W^^K4?Gz<>^w9+0c@qG(V zebVFvN`(QK+wsWVeur<=@%G-8n&kr+nlfsRu`gLB8{YeeY=chlTef97j!Dn~_zC{S zv_H& zP>&{kSMVqnF~Vi@TSZVfLF(Jcp?I~B=)Ly$_>?VeEAZvvzR^zOLJn>rn7FETW!RxP zZ(ZGU4}VshitTsxYyaJtmyuYzD|R5JQfn5pD=3(3<;us|y4Qjakg>CBo;e>>(skkr zn;*I^K0Bl)6`!6xy_brTB;8pZ{f=`(h)z~7KY{Ba8v?fb-C)8Yah25l_JgV|O>cWfSR5xts$-_7`NicF?Py!4c0Q)-|c=}tg1>u`_E5MBy3-Q`)eVO zdoOLM^LDO^VG6^DU9e!PHj(bE#u5kw2yDJ*4G(K)KAFO0d`dpQWmUdCxjt9-E=V_A z498{^O8L81*?6-Z;J4xkE_BK)3jqvh=!G09iO$quFXfZ*Lu`|G-TE$X*b?SU%Z? zuHUVyC>+ZvN3vTVCdmbxR;U(^Uxv}q0fYg_RqN?{i4ov{%6Ajs$BF6iS!Nm5t>t{I z41tM~;eKoVlK1a6SEasl6xiJ^~iRzk1k zkTKKQF@m21+Z7OVJ$7r_s}(Pb)Ip%*xQQoLFjOk)81rw`O>EsZMkEBa?fa zoMG=bOU$LAU+!$qU^!J zXFu$a(q&NnMzqQNoSGKl=o&_YJ?#%_qxdyTAD5w7Z4MbHo$8xz-YZ z$+|-j(f3Y{@E!eINpKf;5iylw>fH(+I!&y_SI_kV5!$ZdtZw?! zVQ9YZkrr~lQM)oN4VAw`YE|5|_GJ6Ou`2WN_s2czpHy_ad(|lWaD3^ma~eNGQ@eG* zqrVQ3y@{-({dN=Ls@7ekuDE_!PZf+s_Yf>SM8hmqIe+LhtQudZVa61b1IUsc+5qO} ztxgSlc3|r=TiQ;%E3xv|`RGfxwNulpr)Hjf;}udXevm0rJY(93)F&JDq8>w$FRr?c*XyTm|)+(d*wbRwL|LmVq1tKac z%1<|HGq~1yh}jWwJ>%v#3Q!Rl`zyN%u-l z!BJq`h6|>_hK4wWKbGEmaDFif2v3g{KxE+28g)d_GhP$?ZL~}x0ZeWS)7xL(exADP z+}pJOsm6KQY^Yb=f8-{vx{cF7`q(?bX2&Y5!~$xkAM+!uO9=qu3I%-Z)@*v%1jn1! z2vE>VXIh|HmH7_Plt4d`swB;CUz-o>czX9neHE!>9ygg3_n39uIkWv|Zsh~%kChqn z)`NT}(`9fbvSxG>(+>hK3_kFx_nE2_@b(hrsszNR7HwrLZ<>320;=i!TLPC&Z03C0 zN+qHIZYEI^X;a5i@5Uhh4NqUWWaVyp`jaN@PhV^KxQ92w6M05P7@K-(EZoXt9`i+$ z#R>f8;6$RvD-m`6qS56IyGSUrXE99I9EO837B$ zO7Joa`UV1kI-W!GmaoO1B|B{;qE~Ha^^xSee4jYB@IY`vCpp$+fPmF(0^;08tS1Sl z{kGn|{>y?{SNHrKA3Sxl%4clS=oV%Vl{q3_WBu^I8Z z!U&zMlxv!xID6JiG4Tif>G4(p%FYP*(;$;JH{yf|kd5cVD+9T6B}*BEk#IVudn9Se ztqqL^yfoN1fPV&6f3$1NW|4CCSFCtt=L*CMbP?M~bl;E0O7Pcya}70C7*w8(orfgC(=o_uAtvDQ|_y1%Xh#>64R(tKWowDVRZFwbbiQ$_Iv2>}9A-oOX$T zDv=2X;mD`&AJEfhrj>z;{4W7-A#HYbO1<_a9UcL#f?dr+&KDXzX1-pBg4xr~u*lUDby2iW?IX3!sS&qg0cp@W6 z8@@R(4!2~@2SVJb@c>W~dnU}#F-ZY#S0b!Z%e(ha;5-^qfc z%R!TRE$vv2b`$cr33<;~cvPste(gnDtJ6xnqyD_ zx1d=q5|w#fh2;vnJKaDT&CUGbM$L+a4>?Mbg^zDci^<7)vAd0c@3b*%>yGe^IYTo5 zngPNo1Jg2ErL)wHTco_ldoHLw({h|6yCav=ITzmjafCrWr;Z)J-g>d_NRZ!qg0d}> zmfd{pH-&QG6Xxg6FG4gJ8ZQ z;Ga0vV63_KF|0Eu1+Ah<4M^V8s;GJ+HpA)7XvZ1z^18dZ1>+wVqr?4e{68-b=KEw< z*%3NUM&c4^@d0D^y1l<&L0%r*ajN|ZOc&c~IQ!Mht|73Y=s`AXwh&c0UKAHf_i=7z zTBwttZ5z+t_U`TtOuDl5syb4aV;c1XZ!wCy&WCG`b6kM6Y4wz7>~yzq%ytU?mdrHe zhXQfbSrzjRphSYOhc`1C7g^o0u`Lrd+Qrzka})2olVQBdPtLVy(3U{S15}@y>F}Ox z%OGAC&wM=Ssi_5+UEdRnoSyC>@ks7r zcwhqA2aLAX*4ADn4=5F%&OsBHmfRmdI5s5ShFgHW6no}re(KJZ9s{VEF!Va&}@rXCK}$V zCAi-qLh4R>JTJocnCcVf#Hb$2s0-?3qRtbOR3|=|psiOTFqQRx$j4qOx4jE zlGJ%!616SKIHv>(2-M3r8=2*oR=_{2tGEP4ghMfcjJdExr^ckVxx3CWGKmtZ_6t8X z`(|D2=8h^VcqjTGiI7Jg_E@64Z_*Ww19I$@mfxyp>@_9Uz5AhebbX4q-0?p0nobLX zibe>h)gLHA&P@69RUECB>aN?cvap!Vs1f`wg6r5J^%%IxKI==-p(f4d>d{d?n2^L0 zh{5g4PXU?L)X-45%yy$c-`(AP0Wa&$t(lpbWjgsiN6r3$!l~~KDDNSY z(iKQy8&SI1M6z}aLZf_+V=^)%_TPjcTgQ(GmyvgWlyoyR406(Cv0d9mL|d;7-@XAO z$1|91O)okcYV^vyW>h$&yDLPY6eAE(DDZaGW)$Ga&~m<2KrL17rf=GE!{P8Mgy`m0 z52+Is_Piyhr>AGNVd)6DvSbv&?or#3yqo09$Q3uUJ1(bN(dte+J?m52O+nX@fc&Xr zNq4kA;y4j<#D|9geih+fX;~j_C{3F7 zCyG8)qa_@j10R#0L6W1r^Zh7XIpN27_ zC^=bJu$>tWg~wPsK8zXb>kkO(c0Tk zBg%W|mKFO|>)Ep*GsRX`KbK4csEdR-^rYNi?$;+0uOR3PY#cKUBgk9g6Mwty1^)v` zO;_OwNg&NlXj(MUn$qaAX`Y&r@_>)6O;t(0gzOf)_N`!lR~LCR43p^T7pq-0Yc!Lo zo3%z!H=lVHZ#}pkT35bz#K93!Y;#|0b(lVQtlVZ*oG-TlYmg`Kx8jgx+m~nPJxP6O z8Psyi0>>YQjGa#LTA35$XYtqzX-5u!5}6cSCuo*Jh?*47)S$NF$K8G2{60;N7xDKX z8MdABO*4%VC;*z!%fQgEbjcsJpXwu;`Iw4|n!5OKF;%7`hHcf_vM)n5dut7eIt40) z+hDdKkdobWlxPsIRIA}DP}dBOM0Y!P1}7>oxjY_Ft{J72S)@;{Voyg$EgluR_>?z% zJt%0I^(|C;`Sc&SnjNChWDsiaL&RyRXJ*E*&EcK3jy8x~cc;(dbcJ>05?|Fbdt1Iy zOUSiaJ|~%(LetcOBaEoR6;JI+h^u^hrD|hi!=Lw%%KEg#YAJ4(h}+g|sW<(W=QG>k z_V#tqim1D%CmSX@lIrQ8%oT@P80#91PVF*MQcZ}M8P6VSJ3X=(-I#ay5oB7LNHxkM zuS0r^A91sD+@@lS_$~iE`}M786n9zZaG|NX9)Ev-KV*cng#WDU(#bR>-vOyV-znZs zlh4lKPtjm7QA=*iQ|4Jyp)tMEP~Ha@`G`wzhAOiE%P0Zm=~WKsT^e_y6LYBt=| z{1FxYQ^Rn-Ck)d&1r@bQKZ!D<@rmXgR>v;W1?y!fsoJ6B#cAYgPRMgH&|)gx4c7g* zR`vAs<`)<3H)`<8)z;KcdelQ(X3HJ+P6wh-6zAEGPsUK?-dh9wh=svhmsyJLA3Gzn zgd7eM`JD1jQ@GQCb+w*p{2tp9`YJxTXzlcxDMRar^@MPf8!$uzs(*E))Mj-U-~Kp1 z(`jWuH=32eH?5MXooD{VrcqnWv+IOa3sI}N$bCD%eF{;7^3fbkUA2)nUZ>qgRhRV4 zE)mM6_5ep@7&I&;x>c7+_v!cqY>w@`obW&J1YIul_VMp`Pni$qfTu;eJbI#6ZSMQZ zY9+tVL-LpG()M>Qo7u#e$^#YI*}(&8Kyw50*&Js+1K$J*rp+ZPzMuKg{f%o) zS6gGTyTMhx;vVr!Y3Y{gvCj9xEP4zygkZ4q0qD0BDWNMOQa3+8pL6r+8$yfRy+RvYSL2%OQe8+jm_T4-Wcg#ArJ67 z)lWBr6%!xn+7&k>^%ZfSK5uK>&*zeG97IjtlxDV|dHjUSTJNTh0y{rqU|2&u+rVgMOV{vJTndAO(u**U4`qa8r zxhAkWRv73%>y4O<6qOI`mDQJJlzZjs_kS3_rFpvENgt2$QIyvmIDoV6f$D?{KC;-) zF0@^B)^^g0%<*5pKCB!1Yc7sSL~nRyzTTLR_t!D!pWiy*MICP`I;p3#bwsQ`l8L8? zpCy+O?Avmh3p}lNVjc=h)pm>=YnNl7I^7093I&dG<#RH0F^a(IiThXEHC_<{M#Bn- z18))%+0SVE?l<-)CMIZ#AYQ`6vq^)|Q4*@1U*2q1(7khTC|x&{k-3{`l3{eq205ai zFRA=$i$-*dDW8u5zNQhEuCeoMOm<=a-W^bs5kYvYjyJ7R^f38D{x^9Mgb~!=G52TX zVpxi)vrJ?VEZ@z$$ZgRrlQqAl!DUEsD6b>t`|89|gQf_Y`U#FQfPl|4ij_wC48HLK zFt-pSPxSVh{u(AvE3;lE#``i4N0tzytOg3tK_;-0h28c&OUNz^ zAM0JK-<}_(eM-LO(<2w>xf;tnT9`%~C2 zPI-ClZY~%(`wEn{pjxAdqUp^OQt~VfT6PNj{8;E4Mn^{@_*BZh&$e^HwA~=zzI?R( zO7R(Q*&2lN45eyQNh5o^LmbZ1h|0;Y$+b(JW8*cK$d2x1eb^pwT8bI}UF0%WDy=LK z%fCYG5)nVgEc)jau-W%lNBcWsOqzm-oNE2r3}@`szrEOW_FZtXD(o-y->K!}E3GKY zN?ur8cJw_>PG&}Jwv7%C6HP2(Vu%LIxh&oG?Fb3jlNjBj02o~JDNI>e`PtrLz5;F9 z&oWM+2mllivIqk%HR=%1X;M#nGsIZ$Rq3KL>Vk{VJeAyhqiDnlbsAx#Vp&_9U6P>F zM;`j*Plhq(3(V>6T}Jq7qb+o*x^HHWi3t}!GkQ+Dhr)5(75A^8oty$CiMh8fH7#~B zSrZhgEdd3_>oZ|lMkt};ZstHfki4o3wJeKnVl1WOk;z+{99Ml|< z{TAGFe^V-KcsRwAq!$-=gW@B=VIkIwjKO{jdxC^F0g#y>BZDt8!U0OU#t^kh#^tE~ zXiYrNg;s5*=R4*q%eU_vy->#P>}wc#BZJ{iI7XK%An}-{t!8W`Lk~?FoHpOZ5tA1gM?OE>@RMltGp3M}D^ z&+$0DH)m@p?D+EN?LTkrO-Mv={JluPH(_yUtX=2)+hK&wgz`^(2@?mjUet`u+i

zPV#+JGo5bsUfG+Llijrb_t0Z@@c1x45z->()SlT1?b6eki1~jjO8l8nQMUdfINial zGpSGE)mCA?Y+}+cjr$r-69-9{?ZDkMOMUcb5u60WCuQsjm4aR@;M|gP5(*UdUsbEK zY_6)w1I7}Org%#ySK%h0x1WnzSBFM)QKbPjYdv-R7q+?$&3I4eyBs2hOo}AKq183{ zkThZOdyCf^n|XdCm_{dKN^od@n=eVY6ULhVXseVz%fZ%mJYSxCPUZL?o?w|P5Iy1_ zYEv`4^&WLEf-*BQe0@lQ@XdPJPL_{&tUb9{iXBi3%JSchO_QU#*f%7^6rxdf?Q=d6 ziWSCOq%mk`zo4(bjwgUr?;hWEc=(>O`0H~4ai ztTScWdku|q^VDJWZAU9%SK}K;EzmL&T(=*om1NS0R5{U-v!~}aNWG4c++JP`6KX&e zrDmFLkGs}$Cum1h9EhOT`3wZ2VS{Lm%)yO39g?jau2=rI(6%0n&!Hm5O z3}(Fim&pBUQ+E!%9o96d&)Ro?z+g%0k{`7}MySzW5!4DEIg-42+k=E_q{20~z(n_; z^|+ELpNl1TnZ{-bRDB8j`I7D4$Y9(9j&d#V99+B75du0XtaW=t;9X{puwZW1DS=1^ zN>obf4Z^;xn6owUrx0S)vV_P}Rzq6J=eS^qgkyn(r13h;9gUe|@foj$pOWe>rA_X) z^N$k{MBtP78A<)@_~s(y0c~W#JV8hv*YL#4=<12+s9TZ}S1o_CkHyhYzr9#h9?Mgl z0gZ;kaP5Kn;9YLUpLW(+AzVKk4Vz8p1}eoL^eQX9g7hf*eR6nEW1fI9@bNy6^|iK2 zs71OJB~Wmm-n{MSk48Ui*08qa8TB}Y_GG&MeP}swMbswb38s5GG!np+(9AwU`}=)> zjSd^Ql@kO!nv}}1hKx!qU~+s^)V~AD+HpqpZ4Pzq`f_L1!m(>-cN<@iL8KRM5FQq$ zh3aiQVr^XLxlS*H%si@h9XqlLV1F(>Vs*5mUc91oP;L|J6vtAZ8eb`YkXPy)D*4=)93HRm&)g9*ch2zNd)*%HYy?Cmu zPvLOGyYnJCe0{TqNagSARUF#bie%#({dDc z`1!%svBX@z3$b^E%(1&wNnG6eG+G@R`OUKa^y-skhY?zyvs-EQ6Hao6wP?PUo+=UO zsCw=pG!*^#hKdsPj{Q~w-wnwUr^=J)D4!#=bZcGZVBc$C%fX&xBng;4M{sJN>Hpct zkb6ff0reb@mP~u6XWS{iO7Pa=a1PnTT$g zo2+p`78HMqm@tyl3JmeE>oR`tGDlw62TY&sHM$w|^BN=#5^m^oq1t?A_sxSpj~daH zogNk;WvJFmhvbA-!*9B|K8;)^6n!IjAmgsOXB^$UY+k`a zj?1eT0T!AcFxV8dTXj2tVye#+u*!HZ-34zvK0D_tmr2?bh9>GcYFeI1gDRRciGAT7 z)5m46(5>-O)aO;A%xtFy*z=J6A0un#?v(Dw-lj@z7Xqx$Fnao4WA-(|K${)B>;f*v z)#al-kygdLf|r^Rs3$5aBrba~2(GO&V)+L}R$KmVjes1&X=b+<>>_pVqct}>^Ip9% z-)h-9l4J8caz6nyG!KfUCUH!Yq^V~f=bA_n5f}&a`95+VTxFBplk|YVgzu@AHIKIT zd4bc+x4)A(ars)6=3768Xm^Y=3A@8m#Frvao5=w@#>Ztkx$-|U|=dvFi6 zA79^4Rm&>B54SN%yKCHnwae7h~(i9qW2c&aL5kZpRrgp-1TWx;z|wq)A1?tVDZrGqR9P z(TzTc;arZi1cx=~;KJkIq<^R|V1czv)pPim6a`!;)y|$6J${Af(7s4?sU{w`iWVA3 z>*u>0W@u)g8*@w6c_^l;4@nw{OE8o-_$>TCN)@%e-JKj5V1YYg_Ke_EEx4|&>dZ?7 zPAmfl-D5;Ifhp?g*^S11(x@yKT!L(!HCsE;ib*$o$TBdTW$Pfy+NXTwBHD;D%_<6k zEN}Vk)7=--(+B%cpIF>zw8+{56a`2 zm6kf6C`ohx=q`xf<>z>q;p=Sz&%tz|D_5?&+>;TK*&ShK$&>sBv$J9ep-xXv=ZsuE z{+g|zAPW9a4}l3%`fxQO%G{}csF`}~1oPG^wZhb0FL=%1^50<|c+YLl)WiNy{@Y(heK6iEZI!RtLVs>??fPx?K;VYro&V;~A$lPbI(-FnvsZRIh8N9JSH6SYk zLAyEII>n!5>#uJ<75wDRZj~cr`FT`}N$yRq!nxaZNZ5^y-3~4F%{FT!L0{H+BL#k8 z0@_y_J3{zammgg6*DVos{Cqn2o%Xz77?8>`gQ2wsPDW75$W;H)pIBB-9b0ogof@xI zWMMan-*#K|befANJ}iMzxC|K=a_PJhF9zn`m(|DiqK5#0J#NagpY4?7uc^>G>RrhU zs(qH;OQBAxb@p}7{7cb@jaA88;68?#@|?Xe8eHaE`W=uKv;O|AQJmC)LtHgaSFZs@* z2zU)syjDM&D7c%#ubqPfcI>vN&fAd5TVNTndX-1kJj{5gsayM%+u?_y8~e?R`1}PF zJDXkGwG<(VmnX!q%Wq=ZsV?H?{TnXdhm=am1MIQQN5DB|+OGzYZ6LQ{w*|+aSQh%k z@2b!{r15RaqhBgXb;OO|1NrF41sheSeu2ygoPi7zks<5-MgbN#bhh~-XMnB^uLM* zG(uw~I5SV)oWjxSfH?a^>q1pxu-NvPpZ%|})dgIk5b-)FD24R!$4g|dYxsC(NQk~k zxv_bM+rTf*cs#z6raD_zB{^9pPIG&(O0eASJ??1)NaI)g#gePC9l4{6ihCHh^f=a& zuuvgj0AmM8xo)%*8z*Op(Ll~jQ?R_ee5&l@UNAytNPw!+(h?zbCIP-#%9fui#up89 zw&olwc5*e#rzT#K)kK%~m6!iK?0utM1{&3QvCUhTM%&GXB9BUu7Eg%+woHp>f*|^b zTD}2JD&P>W-2c`$-ox^gGJ?sQ<}QYWm6cFyeXHiSX(7~#%3;NfRJZj5?9reG!@aV- zQ3oiqn$!_94yaA3@|n)4lRZTNegHF*p*CDg! z*x7ajG7|3)d%$T5(}Z75x<;Myi6aa|iClA}+};N{8e$qSAq&9vXOPw#6{jX3`qB7FSY9v?wAUOK+=i;xelI|&9RX6{#z6uu?c3g7J<|33LR zK7?QNSA7DrWndD(yGP-&})gH8K8wmNrp*O)9F{?jmZKa zgFYQ7=|KWGF}`V(=ebV;v5(|#A$*BX1vSOR*-&|0?A<-Vc&qw_eiC+WFDEvF@^Or= z2_TpZ+t>D7mXyahZB~zKhS^kq*`FN_&`1EUxh@}Vn<*x49EAGS0{9%ZM>_uyd=o)b zYOI4!ZVofwLUD0wxzM=S)`me$s_#E>C)QC?a9GPd#>Dg3e9Zh#0$z($iH;D|XJ z8yHOXJShrrS{qEH8xhVeD%M^IUY#V4KsyWSRi>tPS;M#UJ%WGr!js!9&PVr$AFK zliD_zP?u0HTweP+jPkf~=mtS^3e2=*A)$V2WActL0`wrWdD^;0W@2RIxRhR)l9HkT zdKMU=#k#>%rQyA2mb>Hgju8VEy5ypdXkLP#{>)yLYnNOpGfSv$yNO}OY?UEkBC+b_ z4phZgiifkE9QGmUXs0h9LUJPY3c(=_e`RpDos|K~+66(Ec57mB$tU7lFCG3{8VHSy zFj2SlTesai-Rg_bPzLHn3gH4W?}P;K8`V{Sr9oq91qQeb-1-R1MONyLtu;ge=inW0 zoWx*|oSXDDkMhyp!i0hl3oy*(t6o-m`id^!k>Y&z*qRGyGB|l!0NR(WdQnDcxL-O; zJwi5`R?jU_Qk11C!}VopH8D!4*vV7U7v$J$k8VP_muR5S>MLXKubL7P5^D0JpXFhH zR6guZlMJERE1vjp)M=l_b`L`|=+%rTW^^jCd|M1+508b)3&wY}oI7yLmL7Bx_2;6L zq-%YzQYp4~AgA04dJ@=Kh(g65x) zMoJ8=jE&G>;7+EYlU~^V>l&_xfcB=gHAP7nv)HlRl7p)RAN`Acj4xZRI~RNIgzi& zXf!Q~KoBFV<@#||pbm3vak?BDTmap#$FX2(A?X_T8JHh>Gh~(scV^BXM?scUWH`-&yye69`gN_JH~gUS zD=`B1QwcB*LH5V@%pqWAZYSlS-qG9!0sBi}9?jP;KK22oJqCognX@V>u;7t1Vf(ba z8Hfu0Jo6uTW5wC>LL@ijUY+2u_F_}o8`#-hT6_BMYl2NNYS~sMr_?r!9D8C&GpW`o zA5yGu#qsAuIi5a{?~N$4cKEeao;Nx@yNLVb>!D8y(;Q#P&SKIn_lEw^i>go8X105u z^`taeI>!YkYPUnaCk=fdc!FzJMi*O6Nm{hJo*Zy0o!GQun)bxRgkj72;%&nTo72#mZ?yQ)54Oa`4-yjT(pfkoGxEOu2Zx+)V`jR;k<7gH-r@{}<42hP64GV} zM{g67AZYfPIeax#A}pN9U4`iB@d2r=vYkJ&YzKif!E?B4-#h3PA0Yc|x10NKqDcTG zyL~!p_p~-l$REsVD23)ELBIU%J+$5?A5JlPWI2uoDx)Z*B+xn*j-Rq*krr1u)I9oqe_h& z>!VZ>;lrUgI?~=Epwzh>tz37P=V;Iqi9A`9jr=t-G(-dDQi42jvn)a`wP$I^gQPzH zIapc&G~0PhIk|?)#H-xac`WUJo>h86}1GOM<-n(cX>*4Du=segX55#e?s77C|hmC8M*%J zUtAfG7&-|sCeX>~$PaTQa*nVw2eguC8$`E_ob1S!{`;=L-EaC-krqglx#gfMqdj~e z7|{YBKEMXcIy(%hf-|l2pqoBuB9gza8+WZ=O1IlE?uO%XhM~eGD3U)r1hBUN4}9(V zp^jpdCO1zkh(52llJ<)Kvq5>%9)`5 zgmSA)_uT|*RC>J(CC}g=;7efwh(&9-x_S~FCtH3t&G^uEtZ4n$>##9}+)q9K{C(97 z@YUynfFJOo?k?m_9!}n|Luv)rp{ffx0WNGSk=(GJJ``lJ@Mm^py%~Z44o|oYaA>l^ z%O+O{9;NWRj!c|xM9Bd4k%kHFAkau(8elkPLZP3bg}fMCQJ18Wp)QWof|Pi^dUB|!mdmu`D} zb=Y)W8Z0rAJK9dF?ov=L13BN2hQoh=44h#CR85dlS=Kuox;-u(9P&R??^3et+tZ$Gxlga*q&kT}du%GzymtH2BVH>A(N4p2S2kCiL$ zQN4Wz-+qA2c=$Blzt!fZ7yOwG$)DauZA=DuRq?vQB8l7p2HKgS=mov3F4{{TKv{wJ zW}UmMCy79hoig;O8!&P2*JuyBUuOxagcY*NXC}`$lAV9S%=LXE)h7l!*SP`WRp3W) z7>4VN`~%lXsRS@@0`#6>hd}7pNwz2vGbrTqZELU;MsY46f}Uvr13eQZph6)GcT#H8 zSKV*N?~#3@fz2S1i5$q)UMy<>lCt-} z*U~8g3;|?pk~hEnr$^6~zp^R;U8lUHCQj=0T6*C4h&$PBKS6^+DielW`+o&KSpd)k z^j15h-9_}e4NoUUDF-+X{k zoQ3J3dgcS2nSOHt?(A4_DZb9Q!Hdgt6PyYe$A5@jq z>7w7(v{zzL)OZ(gVdTC&I#bT-Kg!gnJ|at^_C|MbaNH>~OAd5K;)Kc&$ykGw=LX7N_teA%i%K{r5=OKm=YqR|WS*wh18 zf$WY|qTocf@{iZ4tOqyB^R~kVCjn)kND>e+-v0R|S6TLuX9#`hF41j> zd-K&OD5M=Lx&W9|-z&h%kg>fOLWr zFkEdh)iWFNK?Hq0;l+f12d~FOK-#VzJ%0ByF14d8@P5Tpo80IjXzAh#DzX7jyy!Pq zgReRS#6q!yEEcr>Ly4Fhyrvi33C}bV?&{Tx?s#YVh_z}Sb2CT&B2^1%s7HdWLlQ|2 z?PQMGM1Q4Wru)7;e$AuN?CkoNs<$1q%>jMmJaZ}-Xa`%VeIvT2qTKNH;&fcyXJRYG zAhm#Zpqim^A1g{Wxo1&@9AZ>Sq>kW6O<5l8=I!}&a&xiKYDWI~)-@vr%D74*0x@~W z1p9!II%;{Jv^Og^D(f#-gCs3b*tDb<@BBgTruIra-^MhyNEx(|{*|JkD){V%DXA7GQ&TrL-L0EnSWnhiJ0fI_aGvM3y+ zhJlVe6UT4%;5Wd7Ut3116Zak9;QfUHq%_;wy9?J;q(L6`KYLOrAc0?FH+-GN3)n6% zT88H#TL6flCHgD#FWHlfp^Vbx667_vcW>9zUI;Y7tcA$Ku4G*eNN^Qp0C)!SMH92}_9;)9E5(;U3xtG_Cu1@=}L&5=3 z;6Cw+WwvOZIX%!oUm=hY@2}oo{xdWcD1jSZX7=9bkZ@hd+oMgdwxM3L5R!lWqUX(a zLw~=Mgs!5E9Z|@mOlplm%*EWxGhffF7aWXZWSGntjzN1?_765FMqq)h{)5!UM*-9} z%Wbt@=A#nep?CuN5${CydcL8>N!Z{!+*^My>vKYIHGXaZUK9?v7y3nQMtNH{mrtI# z2B4qS39o+gJ7|7jYGb$eUkCpVxJ+l@s~@nljNUE((XEFPb&6lNbJj&htB++H&4|8l*?mYLCU^^ z^0IXCpvJFHQQXFc85vBuzyH3+Pv|{<`f!>mi@I$9!%??dq66|a>qM~)s^LrQ>2#VC z|DJXsaEmf6FVXFAE!{dxR)<$dnzmDL1pey_z6MqPD!#D=-*rM^8e%S0vPD}M`xE`E4V^>(9e2qD1kSBpO?jPt z4h{kMJnmDy|r5(E_XDL?qzfbi;MRffJC z0?<3(bx@PBVmf9s=JelhEI){tEn68-QZsqA-OZVi0V8NuL6G?Cjy3V&kg%|@aGz{< z(Ng{U1S28!#b6q)M+N#;ihydd3{fh95rf`SjMaA2#`DMpRk5zIw>n}MVR&BRa>fPc zxz*Ly(CTXi=<^2cnWOVO9*So?(r&YX(zI+t829!?24~Kj zu!|uv-QeB$eHU^Y z&bFjgmw&&Rxvkzdc?Z-YBLVEPwfHW%Y;^JF*u;bU!(T`g+L{I@F}JPMF3P;)KD_mf zlhX+p;}Pa)(Jv(p>POf{_k7zU=AvEHQp=l9TR=V`Sk0c=KnG0j+N!#?>V{@MLU0D^ zPZNK8g%J4e4PyrRn#P|SUUX7RT?+~nAOiCT1#PQ?`83w2ptJ@sKm1)#M`L^-DZp?5 zDmX1`ym4sh+V9`rft}dX$%n^YnjrV*elQh`N6^B~%DS=muDEq~#}C7k5q%eOSX$awUAv`7^^#C%Ed&y2myV>BT z`~ziNGd{W0KJsqY&YCcd;VhpQoP{yp1h;Aw))p-RrarwZ1lyakxCY%jEaQh(`Oh?jDVeS zP%`N42|p51wXPEb03hif2pPm}CXm&9oWgJ2(ERc{hx-0Ij(;ssIdJ;k7`QRVff1R1 zC$Zo7{Xr`BnC^e$me=yJhR7W81cE+eXK>ZQHhObZm8!j&0jcckC~D z5AJ)%J>wha-yS0)&wln=RjcNlRjZ2nUjvl$1itoAz8t|}FZBtr&-0%td5&Vz{y<%= zLFbl#c1HV5rZ3@_Mo}WCK4-U>-aCt+lGk#rPjzoOF0xL1hLV5bLzT~;myEdst?H5y z+f1wZkVoXwJ$K=GlnD4Y+VE9JS0?ZCyG!@ezN9t+6T@>j7rFk9ExsOuLW$q~5V^`9 z)WCRp{mEV}^%6wB?wkCBTjYQ34~yXM&j9oJUD=3Ik^AE7#d%8S5`*FRqoLC zFjh66N;Y0qPaONV9j^X*0;}MR`mVBp7PGQlv`TXj?0g3Xjv{FPA{b{}I(-ZZ-CcJ)GK{)$AhA)2A za-qXhD*wD7{cEhs=FBe7ts7|3|>82IVkT4uAc0HO6{X6C0N+ zJ{)zu$>0s9uL4Wj*xca%0cH81O`ly47n^5)-rA(|{G<%717?MW0u}{*R*n*;`0FaKt`HKAt;gm;xpADhR1TGc z42j2*vc|TIJnNtZ@&c*&v(w>coc`bBjZw=dF6cpJt$P`P-fPO92>Xa}WB4fbzzOu;(*T{Iaj|FK?{k}#|0^YZy87`#A( z9RKI-Ocb=giY-51`_o4hznq^8y-QVeh%r6%Go#ev934cKZL{?$xwM0k;fhF(oxTLnFCM#BQM|(;nD`luY(Eote_JQX z!1Xj8eT4QljAKC;H#w>3Yh%aO8<-2#rU`V z5M#Z5Z28q!K^of_IXXEQ>sx<)vNf=PWM{yq$N&1k%}pn2Zsla`KqqRY?_?}&Y-np_ zOebw@W9npv&(6Tk%M1C>|8!fOQ0=urVu0_uLE$Y4b>=bj927N&1*hz-jzbC(%4`mc zXcnvn&Yg0*km)Q>Wd4~iS?Ijjz;v_8J!Q2Z2QoSghFtiH(bW0f_VDzPxuT4Sp!}(c za9UcxImqG8!sp4@0y+n4uNOUH@aHVLt9evc99_xXcpvk{ME4|LnX6+{Okx&8+2l71 z%g-sgm_QuoFsDscFmlcZb*B{e6#36@_)8&Mdk-x|o12wPPq%phl*-_FKylpq*`i?} zsU#zKOsI&`f0XDaenHOt$QwBDt8kS}mIE&fG}=;632quWGIIZLOTuO6b#5x3o8ge) zO{a!7s4L&7GYK+qn7xvkgf0_rpz6kJevGl7bJYd4HoQJf%{#(vG_q)PR@tCztn#<_ zJ_~(jrWYgHC8o;^+bauijs0`|_9Hngx!4ynfhsdk2%f*!M3@Z*SKL(M9Ae)EtYW1| z6uH5mUFa~Jf|O{+30@nnTnN4xb%NSG#rjN%h|@^3UiRpKG8fHNVN!~hOm5DuOdDHO zJAuB*w6F`DP1DN?KYBGi|J5}B)ZSr(5T`!FZb722l0Ex4|xyo#==t$6Em`SP~I# zd=c?z@n3yO1AE#w?Ls#)FsUJpVhqK)p*!-@Op~+mSe)0P%>^)cO{A7IztyDJ#ZO9h zgkx0vcoZQ+CCra!tKAQc5W*mNfGuORF^s~um;us^0D!q@&NIimT^(9-A=7M0Z+u+l zNic9oq1(<1lFdch^0jHu5>X2aJT*{?M@rc>Qzzv6B{X27K5UW}EF&tL-IK7kBq|*k zF}>7=7-4i-p1xJ^q-GW3oH#*a&PvnH*(c&{j!sb$v7uH+f)%DpEr0tNK)UAw2%hJS zen3a$Ar&0oD1KO+lJ=0)I-t<(yUQvYQX>Y?o;;wn? zWz9n=L0lA@U5(jxAPh?YpS>QpmP$ZCk+ zzeFSsK<2~SRNP#|oWgvmX$HADUppgq=V8K&DdW-*EIS$R_}ggB#U-B;-@41zTT;7G zg4osuuM4j9b=?`y=$vy4T+gOj^%?>~QjaNPD<$-xM%=@&` zugrQuF(J!XWuvzg3eb(;3)+xPeOao~#5di{GG zzdG83a9iqCeNt7VK*02+1_JaWgnf6uO&2^aA&U0P8dyLWVGhpGZxI_{7~!JtF+@GC zJx(=HVNDb5^vm;iBUtxIu|IobCY!vP)Wc6*`M7}1d5ygPT+iQ(g-Gz* zj2EtA0g;S7iSLY|gr}2gLe?S6gefO!xxy^|MiO;sY$=4&kZXh9?JhobOy8gZ1bAEr zfsVH(?i@-seog=}*@7(<1_CE50C!>epa6H|y#64EZpO5%Jd4BNx%6+?*2i&GqTljN zM$yq)F({4SP^*Sk{WZi-l4BztPg+#80@~T=xM{1_7ulw39f>29q?UyVLRn~`gXZzg zBQ7xX3WC#q7cgBHNU>Wm5xb|I50G_33+;-~gbySP&tw}jbA&p(6`B%Zvry?k z=tnPNufbth) zGGn>QPmxBfxuW3p7V#LP`MLoxi?OeewWWo|%v5F{%n9LZr%!aUAc`|^Hm6}72(@;& zWO!717Cfl$Y_kFn)M8G@!K*8$fgiza7O<2=(L%;~xe!{(+8`qE&eHJ6Y_hh5oc-+= zPSN_4y*FsFPw*^R*-(R0MNACEk`4B5or`8MGiJfHu6)Ifyo2;KHodrHhu(w;sgBJa zCJ$EWIE$%HMnoYAG6XS29?t$O^Ng2SH8T$_i78=!T%abJ|NedPUQ}cj7JRB+T~6^Z zm|=e%-Hnf=r1;qF&3HJ(d}!-@Ueu84n~66FS@U40a3|i*bj}On0x1NcoJL z#-Pn(%|^cWY{)9M`y0WS9E&L_q0Zrw5qP9Iij2S(9gcwGI*Pt<09N}-oJ=x2 z40Gl$VkE-fbc5_A6)jVf(80z`brnD8^kbSOX#$t38-*LI$H!bRgYO%jwUA9?%U1ES z^3hB3X)dOu5|t4UrWSlWoA0OkLK{5783E6OrkIb$x_@#(53VtTa|@lIl<|XUdVmg1 za>OJ|W;&=3j@93H;$+RDr?u>{%3i!Tf%c$vkMzw|5D5vPIZ7KLQ=HvOXTRwI*%<{N}_8OEIqZ9+T*6eD6^sxTUg zv5R|I7OihaFNk?THtj1_5iKw+Y5a=h>wkH|x79!p`tXLO)N|e(;gWb1u2<6mvbW!L z>{juz?av1{S%*3ugTdj2YTavi#}J(^!4BHyUm{E|zi`nRWMw{w?s&WBh)x=8saWD4 z=v+Q`2!6Ido%=li%DS|oNgi-)H638*QC@AKc#*XaiJS`h0>R4F%smF;$fKdnuKQjG z^T*y-SFcOhNj5yGCrv-eZd9LOh19enf2|U`xIb^RrsoMP?I~gTKLi4{|0)o$u`>KU z5L{?T#bUF-ci&KrTdS5uYaftNJMt68!=vfhO2Be4K}QS+6yPJg^BkzQZ0w!noL>fk z=NmB=+PL!cJXf5?i3cCry_q&LwlWP=yf=`3xH6xza1DXKHhVm zX@T0I&&sI@_~D>^>PbBmDDl=jY)hHR_Rl1nQ^5BAL8M=A&wEAGZ@ zha4%&Gb_hZakWAhq}$K~eBwRjFcq9sxRakYpA&IXdjfugU7e|JD5nO5W67hs_of3w zUJpWHi~7d>+d>5_CZ0B3RbTSMwdI_K$ctm*-JlF;K8!w#$UWinLS2kh=w340x#_(j zVFoG9s=dc}B9jK&k8vQWI{Nkeis>J1fD3NZO%oRNxE5+WLCSa=V=kgZWGId9*i9HM z$CIvff97K_1Y^rO$TA>tqcHUXr9s37812l4#gdFJ{Z1@JEKhsE=P znn{K%3!+SZ&i6v=Z_3Ka0jAyO;VdE3+II85Zv zj}EBIi%(}m1e}1)WzjJ+oHzXY?Q0BFRU?7GSnlxQf(}-n*zLvpK&4Y6=RM+dp3_KF+M4rjKDs?IW(fO%KQXk2k6w~gUoffSj(6G!+= z??OX4FGGi+i(jWU#y7aKv=TuCbV(GUUy9+kT_dj(w@a%sI$wTHXUGms@9Rh3-eIwB zqa*|^4BN|BGrTcz$m|ZByc8#P&ImqDKb|;y*=1AKVif=J%^UGgnJ&wMqEbwOgM*_- z)qyJMhLR_l*qNnaS&9`Li#R2?EDk03_3GZ>Itok6bW=KJO%9YJT!*)!59V5dIJ1&B$ z!7@`=4y4Ewy=z3QlhjXtL~>zyWS(&Nt^s|3hhw{=c*A7ws{@y}BT4udy0iGLmID$_ z09$o<5bJ9F)K;U|St;Df_3lEyHA_gPQI=eKz}5?rPRpjF*Hkj#?Zqpb{78%SzgIwS zbsYuRSdS+@@J{s-g$CA8emWJF0^x$cIDwW9X&09GDT$C#tVC|{gEuvg!xo?YJ4x~n zn|OIs)TFrS2I8er9I$eTcfl1WAyJVAJ~Hj%Hf#fXnJ5Ji?_9QVV%3f$T}-{=g@)H0 zGm7BY=Di}{arpzqS}x2J#ppFF80?7r@--B;!BT&Po5DgxUwu6J|1#(s4Bt9;GS~04D1rwF$hHk#g?*wC(gY zSu(&h2zpkvK-PQ5q2nIRzg|sl^HNZVHKztBwk(%RAL{z@9c)v?5A1_xyB7%n4tU7EK=4EO=bRiQ z_gFLxA-ptDu}T$#OHQdM?I64weVLP-9MHm|_uMey)5n=%x(^G?!LCR1g7Q^XkAQyei%`sfhOsy_fIxNCl97!sAR zVKJteXTQ<$s&{{PdNShZaLEoHs)9^;F66iQDV~??wW3dH8A3!Lbr5fl%9r%*&_{i+ z?Am0wjrkCGjaGt4ef<3K5HK|u{(zJ<=Azv`pEq@s8f#Z&w`tbmxyZ9Mt0mFn)463= zOQePR;j(d>FSC4p-Mt`5Z8OeXRdc1c3yU_aCIYep5}#e&EPgyXcsexo4!B|Y?(%=b zBnRVv6DAqyng5qgF`)h#CR-4?k5n6NJK!@&)xG*EIe^39Lf{bVTgbsKV$fLiFlr5n z?gx4{@V1QLI!yP)zM0cESn*aweAo5<-sRO37QC0MR`tubo7-3I{k_%enS(} z1zzmf0~FEK?Vl|Xw_fDKUT)OcwS#`b;32x1kZ$ewwoVy+md_f?Loc-o=((^S9mEcz z5w7)7;pOYdKS@Q@eX0udnM5d|x~ck5g_@#@`zs1fs_t`})3t`nIccfC+fARPqNSK{ zCB=vRR;G0|O|q?pvful?Tbhc}=ehs~nYKA~(s~D1cb@m>2fMUa6^${lnQ;k9SW$I! zSKa8vYRke7fx4{ke1A;fKi45)2 z!Dp@69PFi85N`-52vm*r<{1QfUpjNG1NZrMmFip|xZg7aSeLX5;Nuc|XQmavc;hKR zGYiwF(Yo?Ur4r0*wqu(O=jL|Pn69rCo^L?B$~zwG&x<=mQ7Iw2JW+oyB0J=!SSw3G5cbSyb{M~kMoxNpLYQ_&AkoNzc)s5`r5hyqPfb`l?#%S7jU zI49fZKz)Q4Qi_@QFw!rK@6BSUl&Hx-(@EyZTH;#lSa~8Xyj+nlD#1G9dXt5J67uyK zoBsSLE)I`04Q7JSp6_!UcpDKo+NrTEd=(9a{63tQI(E$x_IeFwf#DG3iPJ7>TFw}9 zimuW}6G_eLu1r2&EnG!P_gY(K zJmYCC``tIS)sThbFjU5=)RI-8##;p7bw5q1rtTvw^oR*p{StUI%4=3(k}ZgKnz!GE z1y%|%7xX_QQ}B5_>1g|}H|DZ~%3S~4Z{JHDynwaZHULp@lE>H>z=7Ny0*R4tuO&2HH`(24G_qi^zmL zSV!#cAh|$V8IL663U&I$uX#j_s>|o70qz-Q$_=672m9vp@dWb-bLp~}0ra#?nQwFQ zs3Jk)Ahy*$AsMtOd=U`&A;(w=?2;zu^Q3RIHg)BR1_LpD+MYd2Ie}o2{Oj`Xj;jJf zJVlh0&MG45?;PI*M_@*wi;?z*K?s>a%tgfqCqn}I06kDXZ??^cewzfzOwG^c)zXB7 z8HsE&%s^;Ojz{Ziq8Z}<*|8YIF;&Exb_JG?0|s)l6iiFSl|Ci0xPUk}DXa^1(sqRC zAxol&`S$zG)zR3R5P^hbPrmMqn4-Nfu?&!il}Afyj2m6B;TXYCop8%9#J3Ti zP@h1Q>wWt^Ow8=T^Eoafo%(!`Ff3`d2g`P)2*?`1gJaQ6F+H?X^pJ@XgqtOS89d9C zs=mD+$#7k8DV=WwB#(eAj(6@v^>DUAoJKX(Ij}2O&h9yNE(1l-eSicFLMdy>V*76v zWFU&13zV1P{qXlig&yeVLeL~X7mitYeqD*yybH}h#jFy&=+1y+Z*5_xYUs*MwV=ta zG??|bW_Bj8aP9iepRE&%#1TNn&IMHkggw{Fldm_~2zfpY5H|0Pu@9u<&!wNl`JPN) zH$ES38f_U`olA4G<%H-O6df3!2t+D4f0KTeT*~xJBnQhjOR^}vGkU9j%Xw&fxMc>i z^UHb*!@Zx*>pB1#6y^ZSg8x|Rel5{;+GJ(XgmF>=EAQ4xU);2_-F>%shN5E{Z@OI~ z)$X|~H!flrI+^15WntEZPO4@8dX|?-OER<8^9HJAWPkJ@Pz1|=ha#B%x9a*uw*NvA zPBt3o{k6E%3D*{IfC+)NqW7pTc?%lxfKp*_XUiYFcrOeSm-=#3ZmRXrW6Kz@c;5$V zx;>m+`CRASU&XYIUT-$m;5N3dI(pueI0;jQwlCkcP4^3mFZH5&@;iKAAF3Z-10VV} zGaqz*vpsVeM$KtP9qgq|U$Dns!6Kq;ebXmSu?5^JF!;Q=Kh$w`)zdq(YMdHfoh4lm zV|WaEP9Q@m*5lEMaj4Eh$1Vxzk+jw0>Fn4Z--=ucVe5lK2Jd?4kTj1Mj0AlX$H_i}omDZ1AYOO->PQgKWuwcC6zm z#bH`$q1kF6rM{i_;c&!>o^hI;UmPqyJ4&}#f_;AqNP<$~?}w#oAV3}4LUE8vIH1$p zx^26kro9yOLnkheld=3o$iO!pNJgP{5$8U|*Nu{3QMr(ri471Q-R3yE`{EFI0Pt<2 zoINbnd)_+grdXIl{Sm{c=qIb)pd2> zaGBurF(x$Psg#fuqP!fWR7bquSX)X< zJ480XJmiZjs3C#@QIBNoAUcT`$-r&kkFs?;i?m{2#<*|r;!Z&==QSA9nm{?sow{6- z#IHF5));MhOEU-SYqVV38?|UKIG|maHEXw751nS;7;OBR|E#xMu`my!qNeGn)u^^k zuBq-UPqQK&jE+Y9BREf=AloKnHzq%9mk}Gd6(lVc9Fi}CnY%QJsV%(Mt`4pqCRA~? zmnyOMn7H~vpm|sSV?0GU$D1fw?Ti`lDW4$m9{!KBcbD)=-h5W^%}Ubv4}JcQAi#@a zjM^5q78sk!IVg0kA1rQNy#k3)Ir%)`DrkCI3Ix*1s}S|3gYL6Z83luN?aJlvorcH-D%(Q~C=O{k-13SW$1xPUn^jJs#+f|TBiqH4Ga|_@+xXNIB!BnV zxh&<8%~ku2^}ZBpXgc4*SrE})n8Z&lJBa`OsM*h-6IzwZ_S2%)?`9-paPBj}A2o{znBGlp#5v~bddPlvn$pK!eApYHWy|l?B zXBGLZR|c*sc=WfT!j0o>nHcqT8N91sTQLo|pi9QRH9mjz`D8Bc_MX=4Bbm*L;S8ym zwwkgAxoErW*5ir^RJX!3$anOT2rNdP%20F|E#9UPK}-GYj)0H7nXux`BB{$aWGj>s zR3HMPqJr8DRLHhZXWhbo#N9L3A875q9J|CR?*24Hwy>gCKyVc8e%zk3f^FOodgmMlTzs34~es3 z!E$X#+-M9D)%6L9FVL1X-E^alqN^?0X231fBhj%~} z?FQ!nC}lpQ?sVQWp;?-o_N0=W)w8awg;x5$D~aix)vgP-^5!0_y65sXu>eC|i#oq{ zqU>_-kf>vL02B~t$qOW{X$!N4`}7pZ2f3_V?H8luiX<}$s$zv)v{_2Z+JfVp#-ZY- zMmfzUIgLf$d1(-e!E6m0dEeBg&Out@mDCp9jLbzIe*MxnA%mnVOj@rcQ#SZ+bDbQ1 zxs8*2tqms4yPHzl1II10)67#4=-QkTgR4Ig3V5L<`PE{&CA3EJCiJlu*U}_(2X9%G zR8P@sbyDHGa~m@3OI(DYSc=y2u;+-y+JTH>^zzH}W*2r^6_%T>t(>5~R_BTEz_-j% zYl96BbVK_vu4Om9N1YmmM_VjV=59@(#d-zh^z|+MmAb`oV&FVs!^;vgzk}&HVq|5) z6`WYgSLp{dWNfk7pt~Ma$7e+8D}*HrfQxvM&EUE~?r2U3EQc-#WaGct zC-~|r5>1FVWNfV9+r$Gm8%q-6l@G;ET-(zJ9`c#sZ-4ge^2GM(#_@SwNF%5??uBcC z3uKG%LKlU5U4UtMsL{2E&TE2ty~EeFeQ$k>ZdtKN4Tp43MSZHQSxWS)0S=huJly(l z;`uhSkXd;)DWIaytbQ$pY8R*)Pao!|#JdWZ%*H#yf5ceh^;2IfNas2lK=pFM`A8T^ znLeL0p zkBA2GNPUv_WKd|(6M7>dThw6LafB_kjOSxFY*tag0Q6C*6&j0)h|=qQ$lZA>vG;=( z?uozztiJ;h)-g5~1XSzDGB8ioHYNYd>y(NfSMCmj{0Xl|Y1Bhh)o!*#!wW=-u1#nx z(2#*$|B*kQ&}~X_6=N@KED#0?z+v!1|5bnGYuf1^59LItSoQKxr^i%S_K;jm@Bmcp zH~zc_-mH2C=1p`0N>eKwR86_*ak^T^`a`8xN@Wec#KC>jCEi3(c>qz+L`G0j-7Vh@ z(Rni!s&>fP`ucG5l@aCq-g#cG02Y41g{87t4&{gC%SaIkK5WwCd{TMC>iTZG;C>43 z?46%1f*5d}_;N3C55M31gOGXBMFy0Ui&{|;$8`Qn-0K`x(Jck zF?=KAaR4)xCoRhV2#-A(S57CikbPTcgbIfPTAlkX77ZtkLAFMo`{q=|$1fj`BwEcU ziZYzF;JeZ;M82E9;IV7H%dw`uPc&- zc1u=(*|;j4ksUDGA2MhI|0jBvLD(o$^cs=%v6c19Il?a^B10Ri)(AM%>{% z$m^>O>|6FE`Xy&hWY=i}>Lyx2?F&rxoG#xh7D}ayHGbUxDD_&7*1HdDfO6(>o?^^T zg326ieH+bcK2*YEn{6H)CG*n^>ISnLvK^+vahabvQ|#;#vWWVCoG#_fL!AFW%DX^X zOxb}~-2QA!Y+)0o*gI%k?$H+=FwAX4JQtjX7`pzuy^x4+vu%4h!jAJO?oIT4Mjzoa zvXx$=VR+6#UGbmG*bdM3AT_BOmCWHOpZOixG zOdHaiOv21Y9u~*24RgsrGTvP$AYrz)vjwh8cml)QM<(~f<6){Jhc)XlVm#lJqZFYc z{Yj{$nlYghHNRnEAysE?EVvz+fMUr}E@wlE^r4&Awc$RbpL0oeR&beH)vsgUkT$+b z;-DxZ>?sZrs@!5u(NY4&mD3`^D1q=vqJrH~b z!k}LjCylYL?R~$0$qBL~0SbUIW1MnMG$*TLI*if$C_TO<*9rO=kfLvj58<#H_-v@v zflytow29;fw>CExE2e3Zkk*97v5%tJpB$$E6FiMh{B6vZW+ohbp&~{t!DE6-7^De> zvdqJ$Z#2WSEi3&6S)tIWGa>^NsF8#PW`dv*j7mw(qjEg8!>RevRnjJ^+V;*?&Fm}a zbbi%fA^oH1NjFT9QgPpvT^b+X>*?zV<`(qN~+4wiV6)@Q%V zPr4!Tg`*Rjj_t+GApJqgS8{VCV09P(wbRe(nQzkSNilzF=yi&?!S)pQq|7oM4TUEu z^kHgQk+E5$?(w=C=`$=1FsU*-47yAk$npXlWBT*b=@DNtf9s1Z?TzvfUgDS;M3Pk_ znd<0a5-l5℞2uW}++L6K`zY**>36ouci^B+!1=xY@BGkcxl1Z0Vx3A4Ng)qjTmE zF?bWMK@HC;Zc3#a;@l-nZ;w%EIU>4m$#sKzs%gdp*lr*Ap-XX0maLJj36IaC$Rw?H z>vF-^EYDG$DJC&?&&Vm`HR;!;O%e1}WkWMAQx$THX$Wrz?F((W&kgBmT9XelFYZ*G zO44Z8X@p{?4xwl;{M-jY*kXztCNajg%p^~Z&m$U#2*1|<4Y~~U|E1{9!1nj3+odjH zi`$0Kb)CC*J&NgQYDJjSIEp*bpFqw_p+AWP09aBvN(EZ#l!ur?8ATn(ZXNw#Bj=mP# zTX(+%BDri*_uI{m;}I_7s2SUZ`>Et!8mhf0V%yX04WEZq;)Dm51jksk6U`n1ceSSn zCN@bK`YSzV?6Ev&#hF|y8{Ofi?)IiC^T(|XUfW;**F!FNpknrT#7zPO1GS* zrUSO=YnLxm<;@tten9jGG^wx`i##z`aUnDxjBr)J@3Yy`otl2Q0brPB77CM0J)>kI zO2UV4^kd#CmL%u2P4EwJf%ai6pYBWezY+ZF~fsQ zbex(MQX?voN_A3734_objcUZGj9TniBM|x<%dvDfBxsji^Xzf%X>BofS^th|in_xd z9O$CycLK(CjQbwJ+!y%6EN9r9Sc0Ek@Vw85PWw)dSjKI(0&9ZN@GPIOzSC6t>QM*ZDo)rDAbUVu| z1oG<+5}|l*WxH70Nk4K-5bs|2FAlS>n=#_s5ZJ|SZvh7B)m3i?BLk*LO&cF zC~P|M2MH>#Cze8EablzaesNK^4MvseP^EOUQRbd3;+~)a(2qW^U_DjQ%bowR(Z7t# zRd9$o`*GE6aU1oB(VMEOGk!OA`Gdh_sSBE{k*~u___<}3t%?R~O;TY`9wcx|d$ZBu z2Wa1J=xlrA9*a%drU)f1#J%u$ESKh)Nsz>1LnO(MIwf$W@*k6#Ir1z#ayY(qs7Phrd2s~X4=tw%>y3Iq3?%ST780~>OpN0VZT@XmNB;4-5H+`Fked+Y+9<_S zG z)kImDOM>I{-4y-gk^mI3)V(lkkACy5#6bxK@l(VVajdy0$+1?B!9nHXA4*G=Me|@; z@{(c0B)U!P!Hk|k6Ad2`n7Iy5b}o03--;eYIDeice6K9g7dm|&L2PX@&V}tRR!E`5 zgb9Bl_kf|!5XFOGV*Pkl=b8=j*C>}t-^&Cp5m{Xr+~TvA+XUZ7!E$Y*t$ z1Y~#vVmP(rG^A479If~rH#PhYaK{Ot-NEA?(7Lcns`O+f-xrxJc!bV2ZprpN`eS0E zMJE!lnyz6~cd2=2yt%gwo@7lWjcuc7#V%X)v}R`*S&nDr5Op_$j7t!?fLqhCY)BD= zo9@DW#Y0)qZyedDV-D=tPGLg1yp0RkiTq_2x&u>kLJFmD!@bzB$SLP2`MpjW`$Q;R z#zVCvesev>U0h-=Z6lbu>el?=Hwn?C1^U+bu-AyDIr@~(7UNGzdiwg$?k(xwFIfyn z$=ac#LXpIDeMJk!FBwmK1V}CveA(QI> zL2o$81u(_s+k>1!65k%B8snUhSBRK-y&gI9zI9vk9QdZw3VXl<11gFH4dW48Kvq(O zsX$u8ca_d%moplTODk+-0b+wL_I8Yjrqq*(4fDRI<&k+Hk6S@nd}m>k3KldZn6`gK zvHe349c!j;whezU<5qMHt;nC|;M5AiNZ^7rC-Pu#a6|gSe1hf$vCU&$5(Q1E%C0== z-u!sid@1>6@Rkycq|8i^^xOHLb_el7Y!qyEH%ciWJY*|9bq%pi)Pvuxc*ZC{(Wx)i zyZON{`=X;I*1~6)u;@%JiTLiK$HS67I^rR`6K7~Tf=Jr+j0m&GUKWSDu3Kz~8*kf2 zCEJ!VoKNDwO^NMc)5UPHyZC)*4=HfhGqazegOE!F-9gqz7?lWb2oBk56GqrWoXzQM z=)@3OB=ATutekGoQP@M%YD0}Tv~M|vf}Mz;xSbvJ{SPh;$n9F*$4*Z2AUw!`)Tf+%n``=4;ae^o=r$jJ7; z*!hIUhy(T~PI#djWn)B!A!4dqMTU#H#`eO>B%=e1=iz4Oj+psuBj-xm{Hzt!@_mpxY(ETIdjrE)>A<9S2ouv~GG?|Ujn6jz+ywBCDze>f9bApYVtDMmJ5$6{lD%@~qeVf6q{Z-?pe*)_WeH)^5xQqm$X)^9Fixcc8u)eaL0=v~Lg?B+=J=&H+@yN63Zb zsGbwJ=mYsvNRkeUE9kD|h8p9cQ%wY#DGNZ=^`|}tL^(p}1`UY)C6dCXgB;{)CD5HE zAiPx(_3~onX_AZqN1aF$t_{JJ^|9F)Jop{(K&t&MZg8G7Wa?yHVg&=uhqk<XY+<(C}K^>-3}Nlptadt6E;-<`h)RJ-(GYOw~$6k?S@ouBoE<7``=^8?VV z-j{sq9Oo-Jx}oon8CT}J&n@3Z#HKP&rKaRc8No2(ply>1WiJlYPHq@NUpcW{HI204 zO1`CBCfM{IFJW#X*gjt1xHAv}o8(M#&LVXHMRbJy)x%pSD;+gJttNzoDvyEH&5^|` zvlBGwY)5z{jNC{9nUv%btn}xq%^H0!&UuC-U+u-1uBTZyv?1J@2|_k{Y1*#!hfoU5WSoyXpBIs#Eks{q<&&| zJx`m9n;!B!dy#giaSUXjT>ngyTI<5T>V32gc|hCV)`JG$jP8Z$bkv$}g}c&oK=2jw?Zs%?gx=D;0A4{(W?aY=Th6_^rC=F~+?G;uP=*)#aK&$Paz7y}GB^WA#`i#dCiC~JJSDsNq zSC&Z-OO9?hktY@0jYp-^(!Ni)ph6ua&bgFS?)h4b(BC74(EA6oc9z2cx=IRH}-g-mGf21LYT&xWxYI*P;P)TY}Z>aMw}^zKZ1`ptViGIv(&nE>JY8QxOfm12;lc$SI#LtAfnseL*I{{byA z(Em>^Ll&Ru|8wh;iGk^V-8!gFbyZUuLH&7@qKv44k4%xzrr?o`C>V*4|GgF=fnPA3 zfgo%-*%(EuBg_v*8%4p%8N`SttbI|Wt|KM1zO1S$5(JCVR#8v;p^I>V0}X=xZiux}gs|~@a~x1mLK%INua!nK zHKT$d9aS9MQX~yZc$+=u4_agrG0WHUgB#^1EFl{N$z_UupP)Yyb^T4?K|2Vit94X@ z5)majRZ<%0DPnDyzM4f zMBA5rvO7>;bE@wTkq0FjHb0+rXFSo$b9)*cx+5^ncN@)Que2TE*(+|v4Lo=sq7g&t zXna@oA%7wcqdVR{7_%!XKp~nWAF;PY)Rf)SCDuuPbUTKjc$C4ySd$f>Q?uvTon{W$ zIpk#>PBQ?jZ(5hQ?0!zZ2(7jZQ3dk<*n7*cIJT^9m_Pyv5C{-lgF^z1y9IZ5cc*c; z1W0g)V8J0c1Z`YGaEIXTH0~~6k#lC|%=6A%^Stl%{ha;*U0qeXwyeF@z3#R4u7&_Y zrQ>eeYnkeh&)F1($36Z&KOcg+#(pXf=FF9}l}zqs*O$qw7tawtG5hRPBmI?(*0_9m z5M*pmam$#kK?L5vhoOED`!)OP?YHfRCkDEgQjn+nN$kx2&v0C9det7VFKz;r+lLR&l;fMq`$KS&4i-;X> zU+X&t?02vx8L-8$JMUSiU~By6^@%y2C$}lsq2D6Y`@LO)uSHUmLv@3{Zo_8?B6kv=D+`CY)S8oRvj`U&MVX;=AE0HYf`da#;PDyTrFQDx$|Lyvm{XSz~Y+43@?!F z)3=P0jJ>Stk^N!a5vY@=2Q{z1uDIU&vb^*x{*0C}Q}f7?4NIgdZ1YKTb_>06pHiWb z@-c%Q=`os-f?u3Djv9G#30YQUeIx78!O4;l-YickSAodP%~I?#wG4>1ZRCP`Q{FYX zx98n+?~gtO_bzuz*Yn6>2JK4>mthoPgkj8KL~vOj{hv&dOlJJhPk$fyz9q9cGr^$H zpxhvQnX#Rova`y}A?d0=zTdw;r5{yvL)4lqbA%~dG`mRDHe3uh5DzK5FZ=?3k>Otd z2U9RZ53`2NsI|l5Yj$V0RCBIAr%EX9ShE6rHmul@SbQWG$F>^tum0(GBi0eqE|pTI za2r?~3LA^?5EuC=n`U!o8%pq`TnWlsiN{0W9LL2k#GZ0tT&ZANb*P;7(vK zp7IfHGRSg(yK47Ic1U!GYcfjpRqadhIQ;}WScn(5bUbUZdP znv*%@u^Te=iQr^T8S zE7R8gGv*r;#)?!2VLp`wMROSbDG&_-<{~u_)-&w!*G(z$Ts!jRy5%{Sqt=_#eWv_0 z!SAkoQ1}A*^Sn#P=R_Qd2aSei*@%G?K~7CH36 zZ^L(dE-joY{1RS+uV!1l1(vLoKp-ME zR)v*iMRT%qx>a{a5x)q{S}tyyee$4#A*tyu5-!ervUA?`3y@}?$mz8Bm*)OinXU(M zO={<#4y-JkZ02gx>snS|I5Id6Z%~u?=Xh`&zu!eIW_A+q`4sc^b7(IFund5=ZLwHg zt8*YuM7X{=O|0L~4&{t|W}JU*n-4Iy8@-KGicBCP=2CDl%#fLxaAn#wcD*@0Z^)xe zt@rU*fkrShnho9&T%8nD?p9I_K1=2H;9I(lM)JW<23>1g*ROd)4?znp1p9|j^ZH%S zy7iEU_=!RL)ULA6+Pv;`w=+YNb(5flpoS55=Jky|EhVt?Jl33#2i3!1s9vZKVPnG~ z(X#H9_xw#fYCqAhyFRGiO@mi`1TV6$8&qL5yJ7xz->jv__hw4zI`O{tICwqwI*&*$ z@?7*Bxa;_UcPM8F{-*bS_$K?jZuNxt0r~Dk@ge6v4Z8wc2$aym<-&|V$J>pGV}}fCG)|Q#SCVeTw}?-RgBNpb%rl+`1CO7a`m(i8 z2WEKeiN5xe4_q4FgGw*5_)-d=-?FQwKT}zO6Ci7(;h*HRfgvzgBCf1j(zz-~BS4gw z8;bsh=3bK*ID`E%&F%TY=g+!HZ~~UkmSU~V&F#j9hw}&-rnzCN29(o5@qz(n{w2DS z^}X+OFV8p+7O}N`L;sZ*@|W1Ivb&uLNL|j*(!|IKq~vVq^mr^`V_;?iQnN4ywx3~S zU}gb{n^>5cJCSfQvVeqat!*8Y>9_&Xp{my!P4c6`j705194c6>Z;Ty8dYHo)a1ZZ_6nM=m#BQUhRbKNBwC`{U0b zQj*`7I9c(Ms>{fe2-!NAkg(FT&@+(oA(D`g@HiNoaw!Un{&_oa#7k=K zLtAGjUQ*J>2mSr?M?Fp4EdKE%up|BNO4A$J+JGL#HnU(Wn_ClBbc1%GMLAKmr)SD?T6 z5P3jJFo+2!pYn3aT)@p02dMUaw=fuj|0^azC&L4O-?;D<+9Pz3!aSd92T zVe!AfxBpuJ%=|Y1{70ex0KkmEQpkUgfFCQ*!TL{oF6_=Dc*RaO@%vb5_9cHY)>`mf zZtL9r?ka9BE=c(TA~9xq#+F?NVQ=xZeXz0h1zvfQQo}wVn;bxHZN$+2VY(9zS=S9! zqQ=DP;EKBfJ%OpI?R@jjAqZ_WTTJYlD0PT=Q0VB&>pg(8fzSK*$}EqN8wQ4i==VRE zmH+p{)}V~V`}9p^*=asXP|Nb>1EeedD9SjB(X>c?4#7)j*Jx5YdjFQOBi!ZmQ+dzKxnHLvk;G6J* zw|FIeJK-3|LW$B<@U8jV)zcsg55hg=hKxrj0|Qw(x#A&;oLqgG z^>oC-iIy@SUZCzt#tO_URDFkIkER)-y=f&gOWGn0>+`velToIzDQmV*es9;FWX!?H z+rtDQF!WThR5v~hdM20dXOM(w7R*x2+Yh2vj66N0s{_R=} z9MfYz-(f3fmj*IEMqLtgT~AL(A&hWIomyjqT2g|Nrym^P1UjCO5Vii?Jh{T#!GFo+ z?WO2sZs9yV<`6)tkda+n?<6vw*`Jn77ZY?h zpEWc&H%yKc8~T&frmSW|QpQF_Mo7n>RMP%I2tV5}3s!2O+FMOX=k8ht9}tu8Wmqul z@C*^O5w{qW7DJm+R zKO3jdlsEr{4;Q(;2VFm`?VEf@<(i?Ge{AP&q$4yo-WiHbE1oV@uRt5WedH#N>bWZ) ztxozP^f{7s3?OTnb1@-`VZN!r@7lcjsy_}h4@#afsNuNQqAzDXHX&cuwxcAy_+U?qM@ zBBG6-n4Gw9vTD?Q_<}PELa4lj-E;$_3799Vr7QB_4{k8A9R;gYeS`6xR1`UK5}S6- zsa*qLNKw3HWEXyVVk`D@_-cUy?ZP0%D7_iYnSM&tH|)k7x9w$zuw!vmXMSILP#Y8C8GW#P&-=gIMQH_ z0AfFQggE@(m-@G=1idc-MYCd+Uvi-6I%;0^GcM=8PZXGl%v6KPYZb6F{+iZK)+~C|TZ*pHrF9LJQlu|mzG&;j{6lVBI{@hcbPpe7 z)|W=SY;x1S;chbE)NR{pCuJwanhigpD_$%hTCW$_l8%MfU$a<%`gy!WxaiojU;9x{ z@SR%Jp8{wL6r?};<$%AY=s90+ktCO;&^wY_d@Fp+J zLF+!^&cQ>BMK}TnutEaX%B3k!_FI(oy0m%$tKAhO@Ced2r~L?{7K2Zy+tVoqcRY;iujN^sdiCDR>3*B%2)O3x9=G zHB8Ax%k~=95cGn0>`$Mjv;&4jTGVbKtIly_2rVQ4rwo`imVK5F zcpqHce^S=S;JU2MbkN_77KH>n61(Nch6gwfGbWr>d+#Q7Hr6uT&Yz7X-VvW=7q!hZe?6T4U9 z0x#v2RQAZ>d0P%0Qc}yqKui@zopSVkPf7E@p0KWvmbgDy2=`JUxzE zBR!-jv$R>?wQV}qETLHYxQPyRo{|VaCF^XapEbZAr^@!mU0hu_Q)LUJMfZC)zQeU& z-xmaS6L#x~7@~cWe4+h97MR&;0hQ{-JI!%DusX8Xb^I^r8ei$E3v)mP4wv8aeCUaA z!m8XHz>OBkHTl+byis)3aO`TcSZBMrK=Jm=JFQAm9@4NuePl2Hr_e%=dQWTBw+Ves z`-ffnsti|eLPyWeXRJAJ@F<<@=3nFDM4<^eo2c9m-i9EpXEH&Jw1~B;yvi>djBw-u zF~Lv%NX#pBW;>dB23I?YV|S~8#I zG&GX$VdKO$?fPCxfpLTglJc%jYTkkc$Ex%f^=$l@sf<>Q=~aOdRU|QIv(-(+udukr zXO1_ntY10pH)1dN(puc^0dx^S`ljxv`(t|oNY{l^$E^zu6-HEDILC13WXO8T=^@%* z3}v5&n#;-hym8u!y);}-l4O2yZ^(Un{PgLDjefZwl>IcV?cHeZC^DCSdqf*zE2Ilu zoo*tAc~gSH+|pc9M$Y?gZ_?3B8h>fzbw0<3kMcAsv;5P#YC4`>o~6EaP0I8Q7Cbnn zb*$s;7WJ&sl(B94Pb1JIr6pcV3ab_ERPl15qY9dgx-&t8v#GjyB@Vuu?0l)}cXAj? ztW7+hIIlR#r3~oB3XN*&Xc7eQ|%f&JNU72V&tZ>46y7UU%lM7S~#o zwXnNpiZ|fv5I?l}^2gVHhR<{KkglBeJ!>;yYV_kB4i}7XK^6Sz= zcMm=%C#N*H{*A*lv?%*@AG0^TjV`0f^lV&tl;~+Fpo_j&l^?BDH;-%IylEVvhUEOp zaSz?FcW><8$`=q)xE_?LQ7@*S`^+OPu{5)-Fh19oQBGzz=*`*n z+~8qOL_YVa+*G`xxOhq2JyPj#R|u`lL$F-_R*bc?>?g$CJT)>_(xb(2(J`q(5 z3-#!pa25;l(|K4Wpu>x=Y_Gw z+|Rv&oCIuq@C>G5q8K!g@-PIpqP=r1xjnXq3L%qfb#bT2;7GLRm(6_ssc(@n5ianK z3&zeZyN;1$X%ix3oKaimx-Sae+j97B&&5lr#VE#_4W*CCtCgu1BFyJOUs7fVzY8yx zTNjF zyDtNap7o_#$?f|jzLF-2YzVVV2D?0GcX{1Iyw#HE1#6$w^wcj}>;2|$E)IIBeCc(4 z76H3SN=k;~pY*%3$w}_aJwr`3s=8$fUa2pQC5gFG7kt63-Ct5BSLt|Nmn$#$Wu#?i zD$W=ccdJ#Z5S5oofMt491 z{V5#{>u5<289@zHKGBUQNwl;Nrd{#FQP}Z@r zHi&tuTI}|-+^zQY@CmUA2?%&vqdtVd)n*s5s`20U-JCg}xi)V0Iv4FPHXf;pk-p5E zqgT;Iwa;)fC8PQl-E4zj{kCFvzrodjogIez=fJfp-<{e%m=6U`rDY@4YD}~qfsIjV_ zg)N1*HI`5-S##lPFFm=GZBQfXA~wD0OH>?36-Ju4S=CWyxMlA3QZron5hDOpd&1+_ z<8#eG#_Og7T0D9ruU7{ABy_=$A3NNK`bQx*gQ+}_%^jT4wk%w<_l6CyWk0{}2m{`^D^5aq>%J45FYmS{Y zov>62FB@;Hz}ELC2MYzY@}+y@I~224qC?i^63?mJ@7jU$yEHHr1n zWoyKBq-UIC4&3qEE7?@alFnCG6>y%2OpZ*zMZx)r)QEg-c2>M>T^6~tTC~9pW6%5# zz#T6u=k~vs1j$Cq1nE>bSSVVe}O>BDM{peuDcptmXbk5ke3Sl8&bH7?}3TEm*4Bn2ON`TP4z4aVIb5Z_DI7bGlt zu`+X?fLT)&Y^^OUDT%E`lyk&Mf9T5AW^0xlO;Y5_xoVi7{!Q4Nu&jynuGTrP(9Zwm?u-hSAzF(nGLM?8Y@OO)Q&zL{i5>`w!~1O-r` zzd)!xU?pYpb9yxi_FQtPQy7U}ldGa_?SAAB9$6-~d~?|6e<$e}mIh!ZbtHTCTp*C@ zzV`M2?@C;l*5`j-3|KXzuFVtH33fcE>&u*gHwP5fVDqdiGd6Xc(&u8auwj;uGyuSu z0ERlGp1T1q4_Bm9*xp@e+T9W|9ZA5!WVP^>rcQ%{9Zg^PEx^tI3?L3K$A$j!G2l9b zy2Y*=u4g=&RI$_JNYEd~zF?+L`YPa%1|3JHmgtsE?i~*qikc0>L87={6Y}8U62^0r zVPk6|;AsB+v39PPUVKFznyQML3W|WU&RoHSzg@arRlf_!aP-zpLqS~cam;bWi3y;& zPcTsPOmm)H`E6Tn11Mc8Q=ZM{N>^Ku04n#k@2v&$^(mAyb97h$RSN3=4IW4TFHebD zkSS62y_`hFak~CShuT5;lW0myUP04<1rI|BU1ajBs|llqQ`7bLAiIC$caz1i}zYX?mKw&5~e(J!jb(2zo*Bwki6aJra~S1wT0jKgFtO zCwUv6*vn~bhsHKaL?J(}etSkoZx0>ulV}s;Vg5pzE=pvB*MNgl1`J#o2SEBgl8rF? ze*eV6k+n1k6xXO(L8cW)l{zw4Qut^AGM5^?iVd=VZ#lWqMJy{Wd6=Fif~5F%Jl*^7 zA|!^XtZUZSj5hxISWYkcQ_t`Wj1a(A{8@ZwP#<)r+S^P>r=1yO9V!)a(4sSz3n=Cu zXpdpf!0LM^?JxoA{5nNu-=o{90Cld_*+`jM(p&77n`d}f`cMCqn%V}2awxe20BS27 zbB`omK$S*0zuKDVe}7aDGpk3PRFsF${8IR$PSYwFG#K8hV^Maol06Zv2I#j(G8u3X zkaB=UdhaZ4ZHAK49QT?>j$_U<>C06M8=#=3w{%|5p zwz56&)HwWBoj^xa%1~M7ybeRmkWU2kR19X!P~886aLZIIcwot{1m)+J*EJM*cFe@* z>{#1aGHxM%1SiZOyhLI!{IfoDaPly*pJw-tuCI8&>{rB4>Yabdx!p&MuR3$3(kJxk zGkoQ<=Q8sc>~BnBstY^K^lti|d$|=nv7uVQ!t$<_;ctDMr+?69oEfD2{3)!7R##7! zVY5KS9<-!h8xtSxbmKwYyYIrGsQJ_A{?8^ob%VEQe}qa(}K~%zTt@nPfI~$ zUxIr0mwEkOWUE@;I!iz?pgo~2Qr$)XTgIMf{SPZ5oeeZlbbMJ=<-O8uq}e)MPz3H} zww>L`8fm;#&rmf)SeO>vh#xPhB0O*W)v0Lb+mqI)zjyx966x>AlmO2k@w}gK|F?%9 zmQOsIfQSx}He-eAz4OU+r|Dgbcl`m@`i?)lAycbL>|<=N*#t5>t2Glqn#rLom_4$e zs=wq=-*4(Drp2Am729J%K)?B|h@EtY*o_N_QM#Hzu(_MBc8dV(u&L|L2l%~2J@CdEjVFDCx@B_HnZ>2WG2%jc9(U^n%y|nO zV50l$*t{L{gQ@!-7kGa#qZYtuDi*M0if5=6wm{Z1U!u-~j1j3e@fqF!=#LKv@Ljs7 zsqgdT{XToC_XQCLWN*tioy_t_i+?}6GP}Qfc+gnzt7}TuRq+fQTgC}LqeAlCd}tQR z8zb`YI@z&pDZg)fXh}! zbVu3<`bm0>PBdR{av$@o<)*_H6t6>&%hqBM`tsq^AA#9cyK?nnz-4*EKL>{R9*tld zzi`AJ%qv3Kd>fxo-K2??B2w|BPJ}igCS5_(w`|h0pjdEhd;t3pKsr5i$nd|z zYDejpRWYJAhKjcm0nQ&9t7Lx zlLru^emmIQJ$FCm z9)M#XN&Lf@$@UB#tW8nj#g$5=PLbDcQLg^0S2krp_TG{S$CHJ34I3q)-L$gcSBmvA z;ox;_=V_Tl%BW?zB8_rv+iSOaml5tF3xWzXR{BKi_{IOz5R2eEW`;)6u8>VqZ>N zb`D}>JD&SCq8Y;_p+xt7Yl4okobh9TfTFO8`}!crbr@Q;Rg0t2a12l_$9-S&AjYP0 z2Jp;q*;5fU5wTqW!Aa!IMNoEs+EvH=ZQJ=8uz6i5#0~12<)*7MxQ?bkjE%>4qjB0i zi+L+0-OYGa2%kdng}d8c{LC1YtObC~51ut#0IsqsI<3zsvm%Jdj=k z&v(hQYPE~Kxk=^4sf8KY&yBPEcNGi|`tq+#)@LwJ65chs{G8)QBp$p@k=bbRJ=749 zaQD>W#?|pXgC+p%=$4+FqtIA5=p)M+bT#k7t0{Et$#K-TYf6p8Tj*vQDRdI#8XO#<7Rp#^R+H#cUG`) zJF9__-T+8j@Y&^AaR=?aunq5I(?b&-fS$2B}BHo=XhX6>R@tHdi z@%r-Zi@zso_u43+s?ThlsNVbWxJ;g>8aLwLmWZdvprI9z@V`c^ZYY|)m^U~Dn0ub2 z)1M<4GG{XH`4+#FXaS+@9vogu`fp9uO}kzeQbtm$U^d?HzBRTZsTWCZGhY8@m`6IXY)*I zOd6BXAhPTtkCb8^3o}(^U1ovQya{7UlHn1IUbhY2Uj2prsqXRG$F-+Gt5?xO2Mif- zjn@(qW5{E?xQC4yaDa$hXhdkaX34l(p|j>Z5QZEGr+d*8EO^APGh`*Y(9a;^2Jo0~ zvCGu^zqE$)5GC}~-WRr7v!%%9by0K%Q>?T`={%CN*JTvNleh#fUHX%^szp@>W1sQW zEaU-88%%}}vE}Sx(onG`-BYKu**!EqQ$$Yw6agVtp>{-{wWL=Av|W#z!hB{$;=moV z^SP9)4A#XbM5a#G6zRrS3$5vXVH^@1nIjfNk+VA|D3)j4IM=F0ELQuw{x>KnHu3N# z96Q9n*yk->)ga@BHehQeoYOlm^ZFzq^R`c&D25%Xfz z*~F4G*`lU#+UV$09gW;JAZRJRj~@I9pLoWts0brJ-tvKKmT zFka%C#U5n|(=LAskT1A*XM4%j)DCXh2lMbn_82?3ugP^Lmf(krwoIy8d>7wG>{r1{ zbUNeuh=dX~(%1+6b#C618tB{h@x`z?5X%8RuHilAq^oKgiSM-0=wH9sLiSKIOXx6c z+6TL&%DMZ7EFoU5y=X24VWa(L-Eu+0Lk8+N-c zo>oesb++t3_@5ycjqf?2e(#_Z&3^Mc>nbeMsz#2RAc9Cnjv+KYF{T^)a1~?qlc0gK z2`28KuBVA!Uc13B{G|S++Ml(r-giG2{&0Yj^#*QnR$DMpFmui_9$?m;i`J0vs*&zc zjM_+pgN9HuN6Z5+h{5?*TfQ&&(ubfFhhR|GG*|49E!J(!+xc@q>$N%mN;R^z4b+;d>LhpiJus7SS<_u}yldMrkP@-{#r1IB>P zR0=RpAKyaZ_f<6%Bou#Ej7yC%jc%RV4t0|E9i8jAOzxcNVDNV9!3OrK!7^+f>!cv_fGY+b!y=t>cjDqz;=N4pa0eY_IjKu2=_6|q8zNaKyy1GfYr;( z$&*fDO~vj1P$lD5lzdqySXD3kD+=j&XlYGD|#)S-I`@{P4Bj*+{~twAb%{iu%rYco9A4`vHVo?Wj}* zS@gM4eb_jPJFi-$A+xf3uDU$>s5RgX4=eV}C4EShyX|s6guNV2lD6@M2 zT9Gm~37G<ZyIUh%d429v zZs_CRSjd>nl6Ts&oejh-H;fu6?s2kt2Yb-);83(+k+m{yB1lPYbxB>xw?axr3XAhw zPGDYtv+@~J(QL9G0E`TddakU>X1S0E5JN1nR2#841(?p#QhKH=z%QR1*u`b&Kijn9 z$cs#$IT;7%#_$l9049blsYk!5rtmy8ve~@2h|0*7$rzH@59n)PvH^%_;+-}Ipkm02D|qf)EyuLretK!wDC32Xc<)AW(^{G)Z+7Sx^I(E zTdz0A44ieF0t;Oc6X&VvzRZUZYeOrh#BJx#jotY;AMKVRv*t`MLfTi|%{M3e3`tcx zMHJ9bJO9d(;sA-0g_hNwdI@oS(P@nwT(8-O5~8yYUdkxO68n+oc=SOg%NPVs!kST6w;z;f|DL1bUeVS@*?_bhmHcC{lxRgcAZ5}?$>0`~!{fl^@q zz}4g%d#fi`*QRIhd0>9K#2b=C)Ln+$=t$t%O=%LmpVoRia-1-Y0=H0uMcbU zk#k_z>$ou4`0GBoW*{0Re=+ZL3BzFgr=~~;pw1e?9t^|EAKo7fK({^G3mAY2`~CUz zaLHxg%d(<8NQZ_n|Sjjfi~&w)WT z3b0}H$KxCLx0rATuTTTtO%V6eH!0}`J27;A<$G|}<*U~g$<5e%B8pAJ2ARAmI>Gi; za(MArh_>#KhRP=QdII&O9~_PeQ964vC_@PWy8|dEhhXsSSl%FV0&_vorO~#4W6G%Y zz?Z;J6`YT`uHzQvuOSd=q)_o!A&+^pd-9GLDes4(KYe0IdOYu}GCONH%xvM${dyhc zC_}d>{AF;IV$Y};5mHcEl>|$J(k#-n7L^6cFm>k zMZ-Lx6LTF3)JeZ7mWTePL-db3;PS@YbC&E3d<=A)ONKUYrpp!vwW0#qUp(Hd&(sM= z8C!RK&x%Z0nWxo`v>Yrfi1^9x&$HHZphj+o-2YAb2ZaT%9M`%9E~QC*CyE@}5#ffJ%f{S3F__^_Uk!#osqLzGFP1Q2UH*1$K*73I}*N3N|*~-HhGsFpR{NZU@(D2pS6nlkUU27lGUL%@xeoZn6`Ciytn6{tR`q$*v_J-$1LRvZ|szu(qku2N^ zWU-m=VfLe~GbXlt$J1YKNV{K^$4f980R3=rlu;1;6OIWH{bvUg8mj(}F1UoTYO9;U z&-I@%cT_tlIxZGVp`%m9HEXBF<-%TjcR-Vca!0RcuG7Hb5Zh5;b3&s2<96pU{r*l8 z9qhNo^Eyr_VlmM@=u*SvFc-pXTO$wGciv({diHg^Ql@6jLDn!BpPI|tGRMl-9U^#; zH!0eGMj`+q*LU1%clH23~JXOo>1mQz8(&vnfv}6@moJ^Ekeb6waDd`g&}^2QV@QBuN%-{n(}3H+(Z~) z;4|wwESQ4P(ba2_UrS%Q2^b0hSOiEI96Tk^nBtEZ{^vZ~or@Rbxs;*gSpfH)-L~b# z5l<)?EllvEt1gp4v>xJ)7EzaRC~~`YT=jpJ%S=ovFe_rKBacTj(oh_xK!F!U~1r<6_9s z7juvSxBIE!$3h_sreylBbipCP$V&Q?Pr}9pe(vm*Qdc^;mUp1rOVXM~!PM?dXK3vV z!3PdrR<^C+Ld$rXxiF_;C|~W37rB&t5zG#biBTs7GWoZTG5{oAuKvmJO<>=PubfL~ z|1*FthZUfZXBhb;q4MC zKhj6Nq?KS(XW`w8r&7)BB*SkFxQ^S|wv^ymqIpf=juYP|5Zn4R5&;Z(knFzi3uu_X zmm>A#0oc`nGa0s&@V?bvvLD@`bqW*S`(@LFc=T7pzHD9kKSGhg&Fih01Vr8vaSRg?Z z`I^j@AAH>1`qRAPe)#|)+;ny#9O-WS)Mwa2=DK=@$)R9D zuad~c<)vHZ)hP|ep%i&it2IrMFJ^l^5O{@fH{Hr=YuOu_u9=$l0ho*Owkq)@d4WCa zh!_|MJ~j9SXiYuG4RVO*L~kKe1f+awKQ})~G47y+1-c1*9*N{R+X5cVsxvQGE>4-i zn0W8Mt?RW%kur{lRtAYEKE2j>^1rbN>0St2@^vI1vo8Fxc zNDA#_k;G6@b1$eaifvo}Y$|II++qIeL&Fc_av<*&0VS>8xSG?{grfQOve0Rl{X=l~ zs?+v%8P}GBAtL_`on7}QNy*E=_IBXl%pT)(NSTI4Jxe6SSi5u zT}urDy8!=*mhvirnK!U+eWBx=Y3t>|?YUh1dP17-`lmXi%~9M_z=iNW8d>C4*{(({ zZh(H3VkpI()vRJ2m#w6+9Eo`)@|xZihT+_+nWUucR*!i9Ep@ZGYwd=d)YW9(gej${ zVLF|(c+>bemUG_F&dY&b!#-oUBD8c-tJ?vw8wnpuRwhTuA68nE>p4H?IAnNQ1?C!z z2-7Dw9qM?zHyMjmwgI9o=NEaBwhOjeaB)v5$Tf}M89cqcu2H8X&PKuxWO3=4p2wB( z-)tKzln+?8i&^@GOa9s%N*br74aZ_LqC^nGdNP-5eV7snWT9PGw(af;8^a||dC;qA zda|%kD#fJnMd?hC<2#+>_*~uV`i67pR92ubdbtRJX)B%}6W*oiFq;HcY%Ps2h^R|j zOY6w!?DrRxAC(K;xg2Gm;ttYQLuwMzKtN~^s)3tzV2V!i<_(ZdtsyZD#mED~=fDzx z!-8anuUL+*B1t7;WRemXl;oot#pU9eYn3yu$V4;5AB^ErM{Z{$FK#aIr|zbgsN?`W zA-qvD?NO>-esLb6q~yMApp3T{K}Mhgxd#;JOKom1uxxJ&UlSME6INIZ79#DEI*(m> z1u@SqAmcUds*RZ(ANi^hfP4R(ku5o-yQN%Ugs~Dp+ExweqWFmv;0I(4lk@+i{5iU> z+|Quvq(jZJh+pM;e!tz+)J3oC$+I9bHm19mvWble zi@`>;M%TY;H%)*-#Yhp{zK(3B@E`NGE2GG=$*yi+rHrcr>A-*FZKF;+74R@~?$HR< z?06CXS+>VC{FrsGN4y*Aw8y7<-l9jCnv`^SyOGO?c1hBfGYIdIz3xgJYb`HZ(H2H? z#P9C07iSE}1Mrd(OwERd0%_B&IGWwzS#Kma?`GB9jf8^(I{K0`4{s?mIrpoh_?~i( z=U9|ZJo@G8|BL)>c?7R-1(Q2_(EW0a5^ef~qoGLYrW2lrt3)^q6 zJK-bS(fF)Tk?(#lZF{IDnIt5zdTQ+ zhRmdnF|X)(dg!=FvQ#{gwgxxoxF6@tE=T3$1yYk1I9-=?kvDfnlmZa%!pS{#2)oKs z_dK$uSUl`Y_Dci5F8^rE^w$q7Rv@s)X&b<767kyQ*y%0b-fRH*y_B?+A-Men;^M3#N0Z)NYT0^FxL}KQjDcVa)tZ1TCx@Ft_G?kJPW|iyArVhs0Q=1-*3ogzF2mHKt zr*oJMW4TemdLCZub91kOPF|bVKR9wI8sMZO+dnI@ihiljwAJL$VNxBVx2BZmuy#Ca z>|a!}4ODn@Hy8eR@+>s3`S7r!RvZ`a)hpD`q@;@FK!lRby8Z!JXo7I@`ZXaJo9DuA zHU1>9peX8y_pBznTvtX;-;fmRZK975&vVo0egWn!WEAd|Her2B+ns{?6&5^9$4w-| z6>#MXv&17SQrC z8=ZuBJb!DLSQ6Zu`d-O9GG?|}{@em#hazkF`TX1Q8_z*KaE>B1>bumdIUy-K2HLO# zHy~vQ$bBB##4mWJnE#qGmNUQdBgKErqRyiJ82{~e5_R}%nvTsA`0zO?|NoD#uZ)VL ziP{`&NU$V$(BSScxJw8goZ#*b!9BP`2=4Cg?jGDVxV!5%@3(u-?w|e7IrLOl-}~6D zYM%c}Bb&}j!#&`JAI%<#n~9yfYs;~6Pcigb^(Fukxo z1>+VGmuMMLXj)m$U(H9s2F~B_HdtrGW{oe8(#}y^APNy58WkhaD!;Y!=r3PgQvWd{ z0w(xSn$mjQ+524=wT1xr4N>hZUbiaTfcr;M+fi{=5wGRNX>N9-LpZQ|ImcIFwO?ci zK-4E7UBBwOKYC=k@PYr{#ONnEOM*+R+$U-vA^8Gbx4>(4>-cI`|0bgrNDUFJs!iK4 zR9xTujEi4%b<0tx68Scm&6G~{Z9uI0_&K$|o{(oLoBeXWgo1r!t?Fl)2C=|ncaCVt zMms-uLw>=Cg=3WBnd^F!%mA2?(;+TSZJHXvpE#W_6%F&}CO(hWX>Zc3wpT@YOP;@A zHeZv`$t*l3l|cgmP1vh*R6XqF zt$;y3_HcOU=%{YP*vBPHNDQo15d6!?M{2}voB2D%aBIHwi;-^%Zn!Sx7%rF36l9UC z<#S6DxsRt~D0qDK3p+Mq;{FU)YK?ZDKi>uV?*tAeBh!-N;>~;1OdHfjE1vbS9NJCU zXi_AwuJLGMBo-m@(pEoH~ z#)c$%2EmMj)t!WV+zrJHxCUhXEiWSvz=ncJS3}WhVPR!IJUCoYHs6>nZ3zlG+!?xb zZZT$^q@&i~{YwaR!MACDqSyQUIx(s5El zLOKnA8W}N_J(|a5KjcMKQ(>caqWDLg$2VOdw)f@V37R%~%EX?O2IMf<@sdEDodKyi zKsUx1ruf;5kH2QqCU`<`SSrkQGx2(AYBLI1N8VPAcE!+8S-PH-_qnMWWtrf#GNx$F z%Pyl#bkvY3eW}Iaa)=X^=tDR-2)=v!|74_raJG|^S>9+;-ErWW?5Gqn3JSrr9T2^r z%Fn51tpj3ch6aYj$U_1I{y+S0MbC*85&8i-TH;%S15~;PL;7A|8uL&uG7N$sPUZaumHq+@OH*N zvuA#F=klI-XY1J>a)!rcfBzvJ15)F7!BIlUSLHr+kx0ykMF%`INk(qrHZWLMxNo+Z z0_VbizhM6UTd+f)oE8V5A^NHMe$?Miua4@d#OF9Dy(Luj#Sz2o9fWi304r5|s>5UT~|JCR}RKJC! z=#Tqr)={5jg@Fy!w|h=0o6bZNXAvy&C;1V$HM!o{>%5oWQ)_;CVszJ5%iW?EM$+h= zkPV1MYQq^|ic}tA2BwM#j`v9zh5X;bLxQtVP9d_e%>WW@Z{K z>k(!Efclm7GR4azUeOJlmB3q*Uk-nFnTmbTAVO{PEZcZO?McK&6FQ!p& z4qvNQ`OAKr8}+>3YrmWZ~Vl=e&Ye z1scpV&!?@VT10!7gnOK~r{_xjihzQ(gEgx(7vp>XKjNj+7z9syfUv7}em!kQ$yHEA zW!IK#Q<;9Nzvp`ZyZpJUhgtZE*Nc|(`ZQVb3K7<&*WDh%Wc#Jd{0+fBXGWK;SnbVQZ>83JDhNyWlVf4o&{&^zs3xuf~yr^#9s#u9~*(t2t=NlMu+Q zdH#2{nTB2ROBWM1qZpUuU-Lt=$DjBmpL$Tt=X{2@`5bPB()k!#78m#V7j%psLL*B_ z-}{7=AjYQ6oID+>d<9y0K8tFM{$rKk?4A*f7xkI524-kpRaNU=!NJI9buVfi=Fb{s z4nw~O;1Gpbn9ol-=IybOitJyCZ9){LNKN+%xGuXjDSi^t<;qchV*YoiKF5%nI*8C` zvCp`_3AJB~`+v?p0F>swU;S3*{8|PlCb#L1jA5GaTT|whoO}yT2h|?=O|HmCI(;O? zmuXF2nL^}3Brx-Me_zQK);rWvJ5$in#Hs*-Ncym6;Meg#zNqNO5uS4<7c2KXb>3P_*Z6dIVro<&TiWEGPD7^hOws7ckb}; zVCHpf4G~dBt40-{`TM{J0<|{J2}LO(`0;e)HVzvxb4H3ALqE=iV3IUsagp0-#dW)V zT%5&7LURUcW=DsplyN86Pkx=-;?-4Im}^+kfr=of^kKbyNqN^0+EI~W*)wyqhqX<2Ik3@pgv}`KTCZ@C!Cxdk z`gOh=G2B{%Y}q|(gZv`Q_c|E4Oza;kvv(qX0!KmU{cXvVR^7UBF2?2de6;Osltk7_ zXD6fIm;tcFu=IPQEPMEORop43o|;#pou5lrQ$EspT`pX^aDH=m7#O|Txpd(rKt-Z8 zbL=lvpbJEBR4I4GLqP=;|eHa}H({fMOTjhz+h)@LGzT4hc0Jzh|MBLWs>z0(J zr%UXrNpNJ0*WKl*{X!=aSDr9lqBNKz)bXho=AurGZWh2DAu$NeD{0Yj3vy0M`7?&H z!=FM#o^QWX#ch*q8}1GdsB{1Wt}>(Ih!=1(Gt)rYJig^Hxz3$|o(RR76zQ0xfJd#Q zxSRxv^`Xtsx8aWHiiEy?cdwDg>#3!pPE9)hJC=;B+kR!-=l9Wy)J>$`0uYXy`xlm0 zQe2T}iwYtJ3YVNJ!Syf1`4jU>u9^4ion=+b`GZ^SdMK%X*KI@wslJC|iPE)2=F7=3 z-LfuAE<@BG&o}cTP$UYT4vnU$=z_s@Tk~h^X_^c@e7m3YYB{Aaant*CH9*K6HR{~*bwS4aK>dz3B- z8Z()T_4?Y^+tgscOzl>rQ(`3B^{l!2bV}x8#g=!XcPTtFd+YSEM`QJne&hRm{spJ1 z>aSx6Mpjy!ZijuM(RNIWm|vohU+OmJcj5BguJi6F7m|UxIVw%yGn(bmjL0LCUshIj zJ@D@)i&#fjR`LKio74T|3UPG>bKA$iw)(?dmdf!I zbXw;-)i2*XCwNG@c5Gg*53@ygi_<)8&O=&gNq?Px`rxjm?QuNg^m<4C`H=tN>d%15 zt06Qn54d#vDYW-rNRZBKy~5MQUCRjGYYJ)+ilM!*y}iD@rK6^T$EIJTl`HQyauuEh zns4UKSX*6opab&t)?C6i4V>+{Uz0@<@Hx)nyj=BWKA~Y4h4L!)czIq<=?tSFs~=j@x!xA#atduwq9*@d3|0VKZT1KGWz;= z1uazTtCYnU88S6+I3l0?n`FfPfq)3iCh2$ONVrwR9;C*gUjxh_-*`0@F;I2{8BLpT z$#Y$!eD!KHGp1*+Vx&i$b(kXv{(oB_$B@UQ-8%69ZGr4bL)!W%`Vd8ZXLn{-w2v2` z?z-Q9d;fxnL4wmEm#8GMU8ra76i-RTY0*df$K+%36EA_aW%Yp*Ay!J8^UUTodGD{* zhphv+DS4)0*p7ObFZqYhn*IET!{ADU{p7K-baqGVh4tnYIMNTSgp?-yo++fTF+0!j zpU#~psTB17Fhr)bd(%b3{^QVZsE-a>Qj{D2F=rEmuQ2+~QDMKakO?58R%SnFWpeNe z|L*!}QUFyg@2j;$Sd8^j4F?+pZo3Leq&dk`67=7x!)JN0X=g1}u zm=k0t9GGKglQXSpP%?jNMghM-{d9}aE_mrShBr@EWW|X?a@BINP%@Gyb^YmW-k!$4 z;#8z=9u^+;;;{5^KNXOG3~h|Xf#kYfI2G=8d!?)b{}XFGLCVTmWV*}WwpaymbF&bM z)E=AA0hsX*3As&ZoGFp}5YEKQ@^W2zSS6ojYnk%tpF<=6s{KXv(^Sr7u!6X@*Uy!A zX-B`D8JlGA`PF`wvGP$7c}Q>tULHqd|7_MQeG|v-dSKfGY&NsSAyNK=zG|ISjGS29 z5xUNR1b9Nrc{+aBZ8ZAFXqUO61u9$-7|~g|7wt@pyg@H!YtkX#bbF0#z4Q(}7lc}zJD^0Hc#V|y2IB)pH^>xu4nfWtXlD-EpLdXf*MND(3i8@sz7@%8yEaV!hEpg~%y z=&0Xj3+*Y?w{jgwQlt`hHlP0GVKW%hU~3w;)O1e#x*|C@Z6WXp=e*sdLo|wL6eJn& z+l7sRs<&RYva(1+`xG+y3_pBXWe*Gx9^+YrhcybL+!MzS28*CVmqNzZ%7@4Oli|Zq za;1KF9ou;c<0p33AVyACS56tx;HfxXBR|;!0>)72Au&% z{qD&xM&CJT$?{XD@h>##%o@~3qpU?JLea-NVPei|G)@1pRasptC&>COq??rVV=Qg+ zBU<+9x&Wy#9P?R>kG|@S|8Ss0Q-~5RMq-%3wxJ{Q)O=oo?LI5&yIBb=&)ZeWn(m!g zylQPIhypn!oDhHrzNk<}7HF^J7HO{}5?NN*7$|Tf|74VV=U@8Ssdy~)ke*6VCd2@g z*tzcN%puaR8u)7*Syz>DeR~?rp%s&Ot8b^~nJzC%90+bYUH-ToQUjG>#3M&t$--X! zK|{*wcqYItkVS-iQW#0?zrmQmvuzeEMJay%c25qJ({V=^;SqV5SEbIj2_jox$8a&Sq7ufncACsz zs{^HI@l4MM?zvGX`wH0Mut-Qp#pSo#+qBk|$qDnJnXijq9EvEy&@W;JVRFuF*r=rn z6<_n^XB20rRp!2tqLPQ2n&}4c{l<)&=UlXJ)F8_fAr_=XU6XD+#9H6|cbw>cC}XQN zk?Ix>G}(LPB*(I;8nx62 zKBczs8e6f~I^p8(c{EUwTO?sA9<{q)bW9G(YiqaH7LpzREJ|zhw04p;wJij$E+Cqd zZ)_wm*-pS;qS2c@iDynGkspMBJYzAq0CB?1GmbT-`IQATG|9n4y)+G z9+;}AAc9$NKm8i7GgEGB^Vnq1`erHOj?{V1_d!_es*ceWC|VYoMNoUvkGsvn zo`6{y`oQPTyo9s;RYsUaNvaPmPc1@SLJxOOxbfDcnvzM(`Ue4)wzRy;8`mOn(7My&`dwTz zJUwZ>)3sUxwtJPM;2wJ9zgizL?04$whx8QFnr*ZPN2FhL1#)pXxVhtW)!+#^kqsAcw??5KF! zUvY&Ti4f}+MWRiDJ+11-7eFA-T`Gj_;Ns7Z3^_H0wNSgUbcg}g7moti(|y`S&32;8 zGyW2=sNsFrXEth0Bg`BLdHL|la9Yt@82zEt$$U$0Oyw=n1zmmvFsBxphfE8BpzQ$; zQ@@;&$coPuh@|a)18<14>9!A8UqS!s^dA|fa^%ef5o++CSz#$(-mM%{ z5F?KVo04=rT5l>(M0RY`*Q&w=v`H-dL=Dd!vDvoEK{|Y1$_X`eoU_FXIc`b)3L+3s z5pvnek{4g2G>hWE*`iLxWo1QaDfqqLaC~oSD&;q!u8#Soe#c&f(2Oq#h>J&1<-Z{V zG{vv(+U~lBXy5(e3SH~1RS($o5nOjVIX1J9ftEMB-^+ml`l{GiW~kpDQ!?pUn3hW)%GsV3N?UJ zQ9x$}5Dph!v_g|>Mqe>;+@1hw4Y;oSh0i0#M#p1a50Xbg~d`9cVy6QcqgSgu{p<0dx0T*5+$6xQmo ztX#^P4nh6}btYlv*9;f;%Hf<_QU_=1rvqo*9W(xo=~8zn;(QXE=+D;tL7S@B-0)!X zrH0)7d>P~cfuV)D0D;5;n$#vrakC;&c-6TdgDC5Ax1;uDjC8N(zLsGqv7-h55?~0t zg@{Po)ssYLL{oxz4rq<7432r7n&C`g%2vN7>+b?$<*K2!zwU*PPv6ov3<{Zd2M5#L zaq@*4A3oG871QR8dCwJe&;-k`?B%-O{wv0CEJeqFNUpY#L!2)r{gKen82`?9+VbS* zoD2)ANSOV=b~w0E(v|Fj=CmMJ1#dxt!WiQ|A<&Ga9F!J)0Wu7dD%ed;ypts+71cf) z8hSUY)%D4XGpWd!BR5|9y&7&bK|7!`)tl^|zpFzp_eaM&5n5=%wGg=vBzJC>8C|wg z)RxWh-+x}2IGGko6q3qQ;!#k{VbGNBj%4m1`hE6MQN-2xmPodS*Qhl!FQY^yY+zZe z=L@4!u9KAPXWJ)=yA{X&w7I^$QAExa=Nq!W{ZBzR#rExW>&Yd_JCU`q@WZQ6;$`WL zLgz(&ZZG!jQKD`WsM(d8yzjB_Y)|Mmve4u*7VTjrfpM;V4-z)}K<%(}aFb+6G^5Gbkh}z`2(#MQ-@k_Y%#Q=&T=9qySS?*k8@krBW_@> zX2sPuJHepWq&O)S7RJBMCNN6hm4J!@7bmSqZMbwXj&bSNfJa#h&oqF34ay z&ugfj>KN>`@?;&}a2gF^#IrUzUi8@dVfQmpBeRB$-PQQ{$z`fVXW9US{R5YD<#k_5 zPvL81CDda#9n(J+_ZQyhah=yqpV`@vSPB67#-HDdV>3!iDzkoi2kRx<3~WrV)ORXQ_D&q&(Uewzp0 z9L>4)?PbFtH9Jt;=1&EOA8U%?wenksB=UF1GjW8sHnBx(tfnQZx$eoSd}Eq?Z-6su zF@!#bY%9jsJ<9VAR1UWDzqkq?X*E8rak#2b3=!A6O_HWrCfQZc^=-GM8d53(K=9Zt zg#p%FR8Y@#WhX8sZ1QK@4(2Z(Ksr4IHZ7c-g=BQ1vuoA|ggUsGos2KF0a%7C9x%kD zNWiypfDv?+a3w8iRIaR|AVdl8omu;ah6rWI0K>wT^XLOabS!hd3)_RwiyS-#f8D`jN{8aj7+wgZSrdq-!BmZ zHl;0jwFz63ek)PO(v*%Ot*K#s=37aApNb4xf4}&Ji1YO^wjSpPH}bWb*D5v|#!=uC z9F>i~oT}IHkNZmf=TT``;_vapjz4M!3>TR5J|j&+OTEjn>-{HL7|4)&-t>57<3g)h zaTAUlVQ&=csOwo~OEsv3T&mf8LuP=km{~qdl4qrbr)P?ATq^*){eq}#MCypwNp&rm zEO||p5~hoDl9=fajq<_Uzh_VR?AY3~d@_U+wyYjk0}2FW;h7U*#bCUNYCGe8`<}`! zyNlqiBZ$hnsGYw&D@LEjA2}ucV3xK*J?qFA9*adGX!vZC{n8d7{v( z4}2_JZJQu6nDtXG>A^wH|5sb&d~e3ZCJZMJ`KHHs7%FdAp4PpTz%4G1Q3fPlOyOktjW{P^e8 zZ#~U+iFBoQY8@7m$QCR}O2GhZjqX-2bgAbiFC|+5#55gZa(b}j_=V`+lQUp*qME$5l6hox68nGJ;%7zI;o%~N z6eTB4M&_UDtr43?A-2li(8b%NHvEv~yhlrMT` z_XBb%HTisG$l!3Kb^(Wr(DbTIjvUg;N^8AE<+~)5(Gs8cz24#v%qaAf_ebiV;Jb@DNGbBE<9PF*gUA`S?R(tc)QA1mbbemERpeUI=Wc@h&s zNjm$<$(F`~UVi5i%Z^QVFxq%6DG6#>a(cQ`Evs5+|19(&H_ybp883ml909>DJf4oV zLbQ-{NVp-&CZ#tINXv9fNOwQlujNVOnid`rQyp%stMH1(>B5u8rMOIKW#Nl^)7X;v zPNo2iH6lm{+tP+6`)*0QY>xHk7t0EJVS{Pbv9y}47(aMeM@LxH!H$Jqw*&yIvHZKd&fUHDHTA_J~z(a1=Dw+C<=kMq5eSfxg03jTVV zzU8mt70Rhwcvk^`{YfB1C+#TfB5JLsCTr-Q(~L`JoRnNmOD90^_T+|){w){Nm37U9 z35sT%_J2GS!+bOAceh4k=T01N->WrUAtM@iFpG$#oKo0jvtN+@b9)_e@p2LhK;&Ls zakDY`b1!P*@^VnMzNUyl1tBgME~tYM2e&&m3c}%9+EghVDY{nay6Qlm>pYj=(!!&- zS2Z%)3bC$3jPwrH@p)f>{I(wmn(XLG1&E^;2jD)1%oa4np?vzp_+!qQ2)iV)G3m#b zIO@E6u2w9p?SDFjqmn`JF#<%Gh-PM7p$N?g2(H6JIUXJdC}2NV&@;)zzBmS>loV1* zD)P!Q^2!R5hQ=P4(H|Pv_e#ji9J4Wh z(^?okgbf`#6dx2Y1Fo-@YzO2LC4G3*Noxkg>jP^lK4;gA+(dEmWa-3>$A?2PtyRW+ zC`PDSsPg>RP`~%=r18wG4_qRs=1Z!f&Qg|rNGT~P-_lQywPNE&x)xfQI3SY zzBM&LhLtI52L9%)?rnTvblgAGGb+<&oLUZo34r$gS1Wk&TvZ;aCA#SSE#D&L#4N@$ zQAIvTLa(kie9XLDZ7fk(m$_4}19lob+Oj%!+q*VMuP}h|H>8cTiwj;j;4x_i&)B$P ztihYK6R7)I;zNSOopZf6-O@~+WpzD)wVmr3!VU6;AA?b0r_@o8g71JuUVaWo7IpJFqNkfAif;T@`L)=; zUUIlczA-WSC0+TeNZ?&%;@MviC=KAC_B7Mi;Ok=~Y8U_N%x@Ac6}eCt^*aiA4{hfG z(eYS5u-PCOG!%_oGmGN~cP}9c8O{LRRp8zUuk1>RjV8P5%1DM!DSA8~zZvkSNb#gQ zw`-H$*j2sQNS3rW<44~WL*(W#DB~_(UdpT_dbj^*wy#T@(B)~d>W9Ad+^rNWJ8IPoc&xZ8ZurJ|2NxjQC}|>|R(qW9 zyTnlvrs{UTFBvwHe4sTRtwKP_v(1oq#fuu);!l;~%1+ai+1k;$|F<&_l651F=9r&R z1ztdN2m)?w%;L#v+|^aa^$ZEh_d-&f(T;@$iy=jT>t8|Ppu7Q-z#6FXY@4wU_?&9k z0l}IS_=PHp2t5XrSFc$$s* zVzp_8j~PLX5}LdOQebBBCLD|Xu{k!FtlP!#wtMa;$W(5DNscELR*hxwS#=U8_iK$J@zg3I@nWUg~(?wAKDW;-_ z_ht&a}PStzE7DTAyGU>RQCU=>=8po(#)?5kO8a$eM6@;s)B=z}G7R&eI3dhu@W z-b_jbCb_`qD@Bj9Q+cj zw^Cl*PS0#|x$#jFZNL;HPz+01TmXnx4DpKfa*Fd(y4?n*fuH6&tRIu>F1rAmR%fFL z9AJ#8Sf+JsZ8H76&|>HBOm!`sa5!8pDz`n!VTb>3h*tS0 zKUDf63Qeh_IEiTm%!I@R|3GdAwV}GYfS)43k_o6=j<1c&-Ay^+bKb^D7*Y)~CK~zS zCb`#8yLaMwc|ZUp4=Sw@{Ar6n3GSU4MaN5~GE1S|PE=QyS*+}~dvHJvf1{8k5b@z+ zyraA|iTv+c>X=Oc3#f#`RiRuwH4Iu@O4!-SdwG$ohmc!(>+YhRp7J{7=VpIR5At{T ztuE0dPU>409PD9`b2({9D=GOA{6>Fa7rnKW)EaiRQ{nC6Y-GfSt zUEpSlREbHp4K;6nx7%pLClu@mgt zURSlby%WU6CC-|(zXigsFrkG$k}&I(%||;_Z&qz^FRS>AhNUX|{%WyiaDMIsSPtw0 z0+GO|P^+Kj#Stvesc09=eX63`aiLwhzcjW~V_q6Ur*?r7;O6f-Z>b7kKp{m}f|wm3 zLvQoMXHa=sw;JwkKzCPw(AX`N^i(DhUL2pqH0|>VLM!zxdp0Tr{#utR#mSpGeJiY~ zpPL_xv^0ccv&fzWv$KSFa<~-NHO2{vx7Pfs+x-5V^Bl} zFD@Byf(&OR&DyAyjNQA@zR+ZkNxI)hK&g-G&~Ql|14)D z<}_lZ!1PFGeW-DAhx6o*g4U7|vnlET-J3+gtVkW_p3%N>#~@B1{&=ScP3CXJqH}ux zec4wnc4dzhA>kdUW*U6IeIU4u2(A^3DliR6*~KR~sCG;S?5BD7goZ_dOddBHx3R>f zQGDKjhY~=?>K{q#F?zBJdOpb_wpGCjme_7`>u@`nF!kFynzZ(6RGt}^QK9Naw+!8Z zm)2^Ju(U+(gL->ofJaGgVM)hXQO`yqO%#0*e8t`L6AYa5es^PA7w}d@TOpJMCJ#>n z?w&3%-%F8`@`t!Rh`U*}l&SP3^dih$@t> z5|TNsya6XCwD$JIVV(SXmfpEWaYuZ1t~Jra?u7y+ok3Pus?ANfyzL+{5%{UB1WJI zAE`GCv0gf2HU~@jAie3?K@z#Y#ShBJ71KBYD@^6!;}De?oJKrZv0nTyX&1%_V9(2}tlSNVkpk$Xk$@<;CEe@u_ zVJTAzT13bDfQSgJhXZ{}3Qi(KTz2gFV7{~}kDgi(!(3vu?%6SL&{GcPKW&{7nNezb zLd*3^PI3spQJj)2s@eo|rEb+LM4f|s9OjK`1=R@JI$rKRZrBeWurBH(m8{s$I-Js} zUmqWJ@^$9pGj6TW znWg>{6zW*NU>g*ug!6d;;Og@S(_hu%-$oH)YRuOxrrz$uSz=;^+?p8K=Z zAh7k{evJW|*Wsp0D!+mgnbzV|_B4@lH1Y}4asFS#g*w{l*)D7;SP;o1IJcHg9Cz#Y z>?cMGgh_A=98v81vgCnqq&@eMqAG!;Brsh~4A4E}R$qB7BKOUV*xLkB3c{tWG z^AUQib8rf({5Y-^R5rU&@mus3BBsBt^|ZW1#iih`Kmv;IxYp+a8f1VrOGe`DQB!xI zOMLQ)`NmexR-xVM{xW$+rQv~z{T?KigFJK)1!-_-&x!EX_u2Sk8l#NMO|!a|R3KhMj-EWoF8n?oL%Dt52QDxcbppC`s((v=l_W_(JAn+v`;QR#-4?2DM z<}hS`Qe*D7&wDmzwNRsL3}TM!q(d$6GV{^i9*a*)KcPfh&VFCW@(J#n6IPzE2~m~& z9;6`-pq*L5`K~An-;qGxx;26>nuo@Zs8xg}Ft(wM(QRwV)=4rK6atX~I(mQDsPTQ| zo{kyj7|6Ggg2+y8{s2qFIMW|2DDDVeejnBo)akF+>i{|v~ zSK?^Q`-QeT(`dT?6xj@qnm+W9GT)~v{Xk%`nEd4>zU;KOQ%8^ET1R8wiz2tG$kg`7J%>rV-}!6%@923#r=v_d8+ zs%X~y$Se^v0@xfLfIoXj$FKdFG;>pkhRmYg`Mi_hwz4{rW7qW{E@y^Iu)Zj#H>e?dq;kpjopSRCV7IBIrVsJYZ&Lu8i)&UDE zYwSP*hU*qGQQ|XD$H>0g$Y*!LTHbG50t=wsMFF+~m^_k`>WD@z$OQvbDDvn zsh8JKTeq7$jYN(?4suprLu)J1V&^KV#an4iBSy0E&#JF#d00-oIg&!RRDvb$gGfy= z{q4CT6*(~Y@R({F{c>_+uxA0ZxH&LeIDYzRWV?!@-$j}#zuVX(y1WYR)buoqRd!}F zZo<2SgvE^7*miR-A$jFsq2SRgCl7x5#i@xH#+c}4Qq2{K;9p%j;~Wnn2vS3wBLC<& z&Vih)i6i=@n>I7 z#!t0^`fg)o&*y`;!;DDjXnU3R!oQRKdd2&%;x6tb3V&Ofi02*pDiN|V2V5&E=eW1; zniy(x2K&`?wwR`I&wk}xNc6M)kKVz+lgHowj-Tz*J{tJ@8xcN;6g9DT=T7z;Ns>nK z-q9zCtNAcGz`jW#G_U{x&WH{xp!+7?E?6%D!hudjmhikBUHmY6ZI&r+Get+&J$217l*Ck)?FrR7X)eA|HaNq^s-0*yEVP`nDpy z40)jR^>QWsqZAc^Kjl1CVpHw$T!56a{g`f$cP$yCgYA9F$r_J>jwul&YzZW`jDW= zDVrQZ_>wy_6pY~-UQMMNvTOJEZb%5RJGShK(g>mvwx`=AUHnBfTy88*2CL&mM(moH zWb#H(uAGfEbBcLusGxywAW{SgPlYOOlF!pz%=LNZSKA_vMj>g8xFWAdsHtEbQ>fY2 zZ_WG|1Ztf3T(DkF&9|FbS<%t?&5_}2G9&lezxZGV{mRF%l zU_SR50BJ`99lv@7BCiEC90m-WWGQHHFTbNK`O}~`XhiVIEm)wAe9o$T56I#z8_$nJ zsHYlJOoEFblJ7<`b{Q>Gbc0qOXd4z0&P4Riko@fNvg0y-gNH-C=CHtR*V+WO`R1|fV8UY zdM9V@sF_t}Sy)yXBa*mtc%`NBJJ62|eeaFjrDkO4WOn_IIXSsG8rfM2ZjHl`DEuWr zib|!J*XS>8lAtL<+C44xCC1Zx z&|Sqa!S+3-0O%Qn7GdXhRm1|CWCJidLV@q`zD7g$|JEajjE|pkWiQPy5g|f9`1tN1 ztsewEi_WetB- zS`vBrYy41Cay#PQweAx?X(p1Suh4*4*CH7AdZ3%77 z(mV>Hzmvm|bIR{k1`^9-GdtbVm7YJw_>tdSj*9{B%>!0gLqh7fhzADxHiI8}>2;6a-E<=v!>-S*{g{U&J-OXW3vEONO~CVx6O=<5;r{xvW&IeDeUWxV7a z@V7<2owwc>FP>UfR^6rQfOfDA?bFnGrXwq4H9kU$pWPDjGg@(D+u(V3wDRSojuHzr z49JOEY&N+UDoozLJJ$IDP0z^@Vd=-O($cOv?bmNj%{Kl*@VPe!o^S@liCuMdkn0bO z$v6gkJ2JYAgx~ZY{9`aJ?)doo{$2qt z5-=zZ{72o(k)09VB;}u%Vt)iEZJlbKOe8IUWZdWFJv=7)+K`?% zFSom((5VPY1mq;4QGG;6ryTbK0yLat(Ow7pVxQEEFok7$LpC`i^xE#X7fap9> zdUX01g9Z}YXu(KX(4g!&FdYwoDaKwyih&Bz##?|qE^GPub4v=IzqkQA!!pp6nEjx3 zfF0aml4XkTtxrvgV8ATsp=s>N$G}kD+@LzU7O5=wjXzo<*Op_)N8yNgH~H>f*Wh5x z*ebm(u@~zdU`+6@R_TPqle~W`|LaP*WMqwGbZRT>#&Yl`T&R0dgGpqR;*1S_fRd=e zKuE&Cz>BMnYS}=m9jtr59o`(NF-TYXRl7CS5-^#Q4mL%60G7%qW?8}TBJ-0f;9qp7 zr`Hd(%*4%a^yssijl?D<<7|vJK_QdXl~DFj9U_s~A8Oy-)oOO=U{AO!h4jKmOFtc$ zc{*aW=ZVRw6H z#5`B-7@aO+z!0E83Kq+@MKZyQppTbiXO(~5HhZyiL=N8z&_Ia&HhzNaqmkJXll0m> z*wchbkSK-n;lkBT`d4V_=QnS<(!_68=4JO0&B{2Q$nqo8)U6Lhpq*_^=75etfhz9i z`}cqoD_GP$8&JYtMvM0RB=zZO{59ehw2#!;x}U(}9L4q}8(J&Tw8uMm8ia9eO?~|w z1X|+}R^)dAMeBl{;Sx9hNvwl_%fg|W=-y)3>A-J{tqr>cbr!;M9s4Rk1*dDF^y}a+ zn0UVvagd^H<#6ZCkHOV5elsVHdY}+tI#hXzORG;WpU>;70cwtzep0P3{VO)Sa7X2R z`dY$o*73=%y2?s~#8E~jxKJn%YUf!IIZE)f>~N^8?a20ELWnVH>oDzO z#svZ?Qlt78r7>xuePpc#!9x3Y>LesE)6ve)DnHzy;C+P$HrX}LxNHP2g8xO&OjvjP zBv%uha$W!-ktO3oxKO~zN1zt-Ad>}PC_|3<+^;=N@k1oEWM)tMMWrttecwTY^nvoa z;sFGbNDbpC<5cHa0ZW1}2id`al$V#z)D#HGMO0VcPZu7LcL9gP!TRp@h5wa|mv?X+ zL;@#fO3oT)j3r@;kWeni&F|x?!PDmeW4?4!9E8@vsrY*`*#d(oK&?#+05(#Z^4;^G zI@>4@b1(<{z@w}=@$%8=o81@o9oGTL%&%ue&tD9;B+{Xh#mhMys1k6FwR_o`&cE7H z@v)IX-hz$-Kvq4>mO>miMY5&+bU77MtDH*ZwR^PEKF@iw0G*KmP>P);9+3d^GeFqvXR)BO(4+I(nfmnCQ?i>8$D*=A60kq)Zii7lw z&;HgRE6N={a0;>?YB&AL;PbtdJdgnkhI-5%Wdhv)J=SqB5J}Kcwb7WF?S0*4m@8kS zLzOhl(|E2|3GDwRHL1VvYYQ~>#f*F}U|teX`?e*vQv@PY4@p*z=m^wG*?3#q+n`D< z(Qpv_5}`qio;qM0c21KEkRnv;WowYw zKG6ZLT$x7V$D(Ha2J6ja?kD5<3W)Jmt29E3IzPQ1{~||Qp+uU&0Fl4eWO@s0eKobj z2iX8E;8@=a@$rnRr*O0 znbce{uE}P+4_dv@qQQ()o}A($d{64bmkd z-QC@dNQtzFfJjQGNOyO4ch|pp-|xHek8#JiQ}&AH}YtC-L8wwd2` z%~B^ohLQb^k)0uSvr%=6P!zyDpy^;U4x0n~NE$)P{+FW&><{`&O9UG$=Da3J^CD_$ zb{=(NbX6Jnzsx?ccOt(4i4Ivwl!l7$H@7c(Z(XU87qy8A`Ma_Pf(L`2yQzonO=H#f zk5>uBKzv$@;`Y17orT$QlUkDq7lHvrfM_$EH-fMe!j@*-Nu2^5Zm?M-Yh15XkY5+5 zWylly3lu&AttB)x6hR)BNC-duYTvF-T0LNngIT^1LmfRr0h4V{_gTx>w8yQ>R-LOV zQTFc)^x-pazG5y({f}7zH(|h}1UktQWqLLFto8fHPID#cV%hWu8pK$>WW-zK(YT^&Gv#41bctlsL!D0zW?AC^0v*s8aKI;UryC^)$q| zFd<;^GU*I2R53IK1&Y;R)_;lR9?K$V+`CY{K}v+^{J>> zsi2_pm^V<1zcll>*JW3LrQ8~XP>dfrn8N@o0Fb13(0g|epSi(SQW< zx2UYb8U7viX&*72$!YSdN=<16ZZ4ysf8Jym^p9h;r*q|LJr`R9!T!tl7|8ad$ZUXn3C)x29h~CW_%Bb5hr5%~qp@FJj&O1zyaiT)&qmo` zsvh8bMGL_+`PnKu6Pt51Y;nOdG+^fl=&e)=|Ek`cFc1PQ9|)mYfYj9Cg}N#I)m&@O z)(7nBFl;fuTCqw=Jd1CDcjvwLQ2QB&2U<>7gMR0bCSC?emGzn3U;RTi(7${4;SMP4 zD&JblQm@`lr)_7YB?xIDfaL@2fiEX&>FFUt7rDm+mJ(Sr>!Gu^48(EK&a+dnprVN% zU{_1y^xn!4jw57VlG((bxcnZGA|}6C)YX2yadz>uByH1F0;TF4ScbpjHO|jr%XfNj zsj)!2#px1Q+xA0OJ{unjY>bTF&dXAC{kn9`!oT*k#A6x6xneN$I~+2iP(}j0PV5Y? zizOHnZoH;_YI!HSCNvmqvh#w1+eF?*sWNieJLD6KO@K+7N4NJ51V28HbL3@LvKfEz zq!Ys?i2P?Igns5wPjoHnaJSFSWtoqDWgV>aYK4;;odMbg7bG|k>3*j8zya7RC?iU$!$VcM zzZ`;s&oqPtOwjXh{=E%zg+a3_eLgY4ryXbT)ZqB%6Jk`j=kM7F2mGJuFK_@}0*bX< zr4R=ewpLGZVvJU`(CGOwmqU^f;Q|Mj8?)fb#+{@-c$D!&2^1*HT(>tWyiVM~j4(kE zpBj#r4@#5ukBIlcL{e^qZgqP5S~^ov=;NdbJB@CN{3|S39Lm~LC&?_Sl=l)?@|h@5 zLlCS0qfV1Iul@Sdz1T7!ryat}%uv{f%;G7M`7c*q5I_ld{hEl&?gO+l?bff~W@7T8W@mI2#O08A2it4K)FIM%cYTHef`VB)8Z10?6$J$aOZ6@cXNyg*-X=F*-tHwQCoiKfJ1pBSJFxJ-di4tV zTC^=u&=HREXJbtnFESuo*C7lcvWq=nuoT2)ez!6-UG{=2;vb zj?YRlv$VVwe!6R6H|=+)c7fd8P+8V{dtSyt}`@?@6S!o2|0w{rp-ZIayFpke8QNI+ldjcONu~ZnHOU zuZ2OtUdNkgfZ~yYU%r!zwJpXMmX&-Z?W3=6XUC#G64({c5YW}cc71#6>EUs((BQVT z*d&v5b92L_U5}GrMoLO*QCQeQ!cT)2VLFugaGCWOtRapucjnE*Nt`Pfy>`LH&G|62 z^oWOvS!Q~mbAHkC1d?WAV<#wzybSFzi9NajxtpFImYyUjtmdk1@bK`Ke6AKE*18fP zUf)l49rBurRA2zy%58My@mT$fA$&hPGZP{4G-)#jX&k69X8rlIB*<*wc5|nAA-;+wwc@q1D#b z9y+uYvaQnOlmnCO(LH{XnU0Rf<<{BB>8vw`IH6L|U~FK+acQBhvbgvy)udrS@#Mrr zhJeTE+01S}RLA_wCIQ&iwbq5!H3Jk-`IRPJ-R!9a8S0#uk}~&4Sy^5l6+1gS6;=D< zBIM)5(ALUlxqPq7{j~ifVHN?B14}(-HJZeY_08PuoIWFS2-BHpX2;DMPi%DPCl^@s zFvYx_S2!p@ATrQ8d_1$zMG%Iu|I|eL;*tD;US(eO-X~Uh+))!mDZqWA?Hz?~S?Bc9`4sw>&g8wVP`V3^K_+ z3Mwg23XCJ~)G^|bG;^n-RzkXKUoJeT2!EB!KfOL#n<~{8&k?zE@P&LGO7sN;8X@2z$o6^?-s=HV#MqWy z*Nqc7Xw(j|iTx2nE7Y^!PHdCf7S*{BCG8OIz}p*z&^YIQQRi`Hs`5TZo+c_h+}_!d zQlKtOLs?n5MFeoHl9UNrj2d(}+pj@k0W<{Ihe()23Ca=o@aASAo$$$VG?E+(UIG3vW_iq_*ae+#{zeuB@&G!^G!XHIbxrg!-%y(kyH}W=swTl|?qJV4LX=^buHYUzs#L6`vwd=rESk=&=OYBCx zS?)La+!@4+YY?{@6@e|5@Mlv{#_C6m7kxk6o?WL+_rk{7TEeiTBgvwI;DZKRKHtt8NWe7O9II^hw+Cwj5aK--aAu-K*IexhbKuol-_O9Br}MwkCRiQxQpP*am2{ZyDXw%`Eq z>gsS=fnPf6g~@0!MF3v^ZNrkKixV@Pz-XgZ$Lpt zrq*R|vNwrgVPPQ-BIx<_=%cGUCwwriqN3t(*-yC6{$qZj)`3cgYy;7J3mDiX?*|uP zc_Nb-YOH4hM^OvaBQO19!(GGY(QM4$zb`*)x-uR3a`DYl`?HO}&Ty8`C1E7h_WIh| znhN9H`H^3ikWW1g*Fv4s)_6}MUUITQW+px`ZEi=4jmO8ewLH!|1L2r))*+vAs;a8` zkde&?-W6+x^#i(me`bB%1gB-Vu=%l*n3&62M9Pcjeq&?f;kX@Rn_k%OmyAd-R9l+81LS_ySqG;M8H5olej|dkaK1_I-K8GTMMEb2_J+b6%=N% zJ6dcqujyu^Gs&aQ|5i(2VA-4s3Cm0z6299nJPeJTdk?uY1LoSkWSl-oK}C#9j|IPfVm$qIva-g4=uVpr)y*DNLZJYY35)kDPqD?FJ;;9Cp6H zK8ZX%t*_^ERuO)>KLaf{e45{v40ee;C6Kdso=F=%FNY0oN4XiOKM&!_@SUbi$`k zx!U244~mYb2Xi(2e0-LcR$e#W7)nacj0rNqkx$z{e*79#{H&Voh#!Ki@I5e9(96|T z1Ml?L#okn&JUo21co;fG*WG%eQX^vDCY5w-Hsw=dobcmn6w79CDEf_*Q>u7gb|^FN z&0xlt-CaaP$?Ws(E;2u~FI+D^Dt6=aC9_EL5{8J4;H(TND9}NBnlRvy#&_uG>fYVn zqNtpXO!GKx_5=SV+uvoQH>o`g{pR*IG$cgO-9yd5;BluQD>q8a0|A8+uukvDopOGJ z$rp8*=8>XX9E1EiEUpJ)E2mL@_pmc43ye6*zPBe`u%O)id>ytVP#C~1oc#R@64=}^ z(Q{4y((NK8@j`#~h4<S+^+*_a6}h>&d>)PE z0$(2=AG@I&8X8n$uV;ZHYh0_dw>e*@

!6% zG#Idg6~GhQMwUV^1m2^MChv#OGiY3n?gTgnJs1N^I5;>Q7NgYb_1)aFv$KotYcJLT zUo8TPcFtJSClL|izSGl-j$Em}bY-!#Q<$Z|K}kTy)9kNNzYebRH4dA zhhcrNKinc+J<7o=LaU~t67b2trrJ*00#T={XQmDm+7T2awGn#78qYpmjq7kb{`zx8 zHY2n)hL2=KU;naE)!+F)#(UK^?a?!O+A0BZY(z2Nh0fZt<1{vj2$Mbo?TA~Rx8xnW z=$7Ak_e3V(c?|eznXI#ryr`<>Qo=#|ghOuj22a1ApedJEI9Pbc(XmLm(0DVHjk5 z?!$wFiWx<*H!I_xD2B{H2g!x3uAC97?0t4{U_Kb3$;^Hrd)UCIhQt$1p;egJ+Cnf1 zwBEg&;L>Vh&qW=16q1sVh`#mwE%2AUf*y2US`dj6*ENDws*uvGxI3d9fG5-$DtK%* zyXsMG%&8bP=o012t0AbrfB#OqI;40}qD{fT&<7mP!AXroUj0V*m-%YIN$Bb6!9aDZ zGF#WbZx-64?I+;8&$&RT#8X!n@IKu>N~<(WSW-;qdhrSo0)aRa#dMfrR8Ev?6Q%91 z?pm5y|Fn>{wXm?THV(wQJiWmxR9CBHNbLFYC0&L7(nt$AIIf1fSATbJ7p~<9_X-J; znR)i7T_qHB$G`w3I#;$-&Cv>e{Os4B{3v{tuR0B`B^}~|#;y6>!l403Q}oQRCpT|9m&ScEq!`xAQhUImp8E-C9mEIYNF?`L0((? z+8qVG@IiRP$~rtn$%yW;-Gz*VR90Rt`}VEZRfZdv^>mr_jidV4hWfe~X1fpDyG33K zuW>NG;OB+lun~rY9{ysE(E7P!RAgZg*sn-*$;6h@2Nr2swpi6doCpa?NlCg*u9_-L zgtecSW`UQ=s;Z+43pV#!m3V*Lm4;#E<>SUi7czf$H6a~-XP>S>5;*L54{DW1;ju_v z1@;(ahY`MV#c)HC;wvizfT|_ygVAxgCcs>TFD6AfIk-^Z0$=8@iQ^&89!C$F=|!?L zJ&)c6$`gNExcb)^UT}`>+o`E4Uylh6z7Jf)K1@b;6ahwS3)-`Sa{~`+iBteWkD8@Y zaY}7El$L0J%5Y(C@$lf<5+l5@xG2QRYGh(kMZtWi9cN>0W!3OdQX^sP zAnN;gxX@rX-&psdD>gnJ6J(TT&gYR!7Z4DvJX#v+=}F_Z%cMw&a_w6?iQmxI*ME`4 zrNP;D)7;z~4B59%XW@g;2RWss7_S7kbLm>_QegbMn&iN^dUh0| zK&GF?#YHZqANEqs!z`HDdM`XSs2)@y(dQE*BLTiXLS}cl8AEi#G?^US+<6>dSb4ro z_Zin{E>A|2rd};ibj{9w5!6bLQ-3`3`@+P?NON~bOhEAM+qZ01hpR(f-Pm@Q$5O$wu*mv-&efFUB;(JUKI`HeQ;%e$grpCm-s3|GgrM{FgJUAnS2VU;C z7ob?8nHjB)hu)t)r?NQ)dn*9!mCS6lQk#NcKOF)ev!tY?{cfv0F%Hw$=_IVl2ZxrG zmILr8TR%2zlV@>R*Q^5-3Tvbl;;jbE3ZLoX8HpxY?kk>g}wdp z@xhyl$_m$mS;_Cp$)#E+-!u(%ng#MOs_mCg+*dVkJ35QEfDN(5?pk}acY}@dsuTG_ zxWIxEGRid#*-S9(z=}{Utg5as79Jf-X-^zT-f z$Nj~~oIz^fZkfy8Q4^=d=7VJaq)`cewy(?A-*n@Y2x zOdf~Tr^llwu;ylZB2WF&2SBj0^0$vW0=GByn9U>q4?+U+v&9Ct(z^VO67(0j%SWe3ATQ0NL5l?mMnhwuO}BZ)bmKV@=+_u zz7N$ba|}Ci7f2yZ;~+T99R?QCh_&_cxUQg}%eJOHEa8n=t+iZhA(KIcM2@nEqAxzW z{7USyYriSG9t%vKkqWpKQ`M`l=hc60~?Waw=m=68ZAKOfa_366Q(IQa| zhyLZ)KFvqM@~IPU3oe?XqR?7uHZ}+5J;Bo2`uaB8M@s--%IuAN>?p0Z2bJ!-zrCA1 z23Zx+I=?(6<9q;K>42I;fN zp3VyZWE=v(Y9qx^$aQ}@2t$a+YmkIhrmP8&G2c5oAMUQU);ERjkJ}S$d*NW-PyW<4 zA_$|WZ-gj0IFw5j=TlQ-BEzACs5%^zNA)!NtVtnc2(8=uLvNpZ#*cdoW$~CE+^Y2U z_2n=l9%*Q4xwm1(Sxx;cA^<^JqkM z5FZ*K&rvzy2llaIpo?JgeLMU3?z=GCg0{&#)8B0$OP6&W z`&r=sTh%UL#D*Ap2tej_I37(pB5^q{SQ9(r{jAd`Z;{> zQB_5Wie%o=&Gn8|5h`V1rcan}{!%P&7S7UiK3W@!k7jFOBfC|>=1%f8>wrkjjFs0X z0LvmWxGlN|nWCHS_3N~>EHZqurP)y!$@_K;q3LFuIpL?9A^jz9Smw*}E;7VAf%=~q z@tFzGcr$ZzbCZ*<)#We$q$s3wxwyHA4mVogoQ9y{2Ufc8mDDWLvTBw=m$_bp`t&RY z)L8o{(E>ny^{wh01|RvIg@v}ZK)`V66n}L|9qD)ZI=8QJ9HW3QIZZHJKfxRIz7I2FoYzpi35 z2k>WrxR@PujMVY0J>=NIuJO^+#f4MP!QLM85OoyUf!I4_xl}Vh@NcWD4DLFvi9SFe z)i!eg`c_m_kgM0PlZtLYL&#uQct{5Qx=7tx*9bV$$TODB-oAZHK{R*Yfj{yM?yHx! zHsN@zWz43vczd(Y9T5@Ha*x!lTVPznQvl+!==}VLBAO`MZili0E8j>)UGnG&URo=M z6i)6RF^ZW2yawf2s!iHYq9X=6p;^JS`xM-yk7VeZ{0w%N`=rGgE0sVQf(EY;nGGW7(HX=;4vK6M?Gq zSm||js3i1Q3*1E#7#x>)6bTsU#;y+RJpGTi;w7=ae`k50BB#RYy)7OQnQb*$mRj_^ zv*|WKa%$Tq*HU_`5X0!{uI&e73}p=m*Jw}>CX}U{XS4Wv2Oz) z`KE7n5u3c1=jRenjlX{WXcf}*OR^HF>~SCDQKnZ=v8O4A62FHlfl&EAHOBE8uP8OucQ06k)2T(=3}5AG%=J{gNY!DS0H({PKok}P#En?v}pH~tlp=$ZQ!S&Sbd8ej$(FXFPmyr-mIS+xj$O zo%wI>)W%B*<3k$3u`}8SO0IX@Iv~>eL;cJ!VT~H?@FG(Bz+AA zvoIqhLd0IS%QtY{xaJ9eVSo*zp^`xZwMyrzZGY>OL?1`ieLzMCg2Vw!DDK?7;`pW% z6K>#zD5eQtPzfRu7OeIAK~8SFx#o-k(>~nD?)^wmaNUS?f3b;}i(XC5!J0BKyN&`W zFk3(*KAkK_+5N6FhA+c*ZnC7o_283SK32rvqbuEh({S}ez(V3OXgZ$g)BMkm=ms|& z)>{qk&mc0;@9ym>&|pXP$iG!$VPs@{{kqPY#U4&{cpei@R2f3vJrK&qc>#uQtG5Uy z2REE(JTX4WmuPaNz<>Vq!orDy3;(_LKj#8Zq5g9Y^E2Xq&w(fX_c~0t4d{PA8%R!v z@!xZz9{&HQujCeLV@<{AR>wqw`<3miKcj;5pBwy=!*y>msF|~2C8*M2@@^FnHIACw zu(Yw*IXb$!dr8d-cbAmx*ikDuY&;vJ^*woJ$!7xp#$O3v zFE{x;veVLTJ>7Tt0buq)E>0{y9obs&`JsQo`nF`rP+vN`r4N|ycL&JBL$_o}PH*UcmqKzc8V9-#_W<+Z;-fp_Y}EeSVsM+aR7mBu80> z`e#J^>j0^|fi(85S&|UY6!FAKMyv!#aLcd(BH?jyEfqeL2PFwvl>F^x(>IYUe2eJ# z9Q(149Ikipw9)e1ZyY?Ch5R_oAYM}m#q#lCNRCM%PmxTAmcMu=@Z3a+a(U^AwphQg zdLW9W5p1+T>t1vPGhKyrF;8`tFD_cS7&M(3m(!I zskU5iO>WYYPPg!sXYCCHJWC+{pAbyXqrUD0%Af!S+sT|RwG27;T8MV&T!3K z)j~$RD0!N86##aCt+8i(MG-KtBEcp0=c^*^*MgQ7vR{-*a_^sHdRdUaLSJ5aHre|E z&2GWidn&z=4aYW{KT_ynu*55)2@PCCG4b@E6tJ+xxMh1Qlpc&KDzbQ7gkC_0g0-!t zk%Q(3+v7cT-TCPTF2Wegn9u>!cKz$FG*QRE`+x)22GYk6*cCu%!Ksm=V?(XQL4bziuHFTIx?5HUwe^%RkgqRhPBfHSJINN;DV~{NIuZ z!bR3g zW1X&;Y1*mLIzTNZI8BvZ8caKG1fvze*=2d(zfu2zl3#Iff3vx{30MJvlfT%&t$ryC z4=JdxzYV%tqD_z?BqUr;Eh;J+9UJqzC^j5O1qXv3s0@EQFzSr z^)7oOdD1zVq2j(LeTL88^D;wT3ter&<>jSc^WCow<1}48G>6tlpF0qdtsD~6R91#s zxeg=qt##?cJMPB(D{#A=ceUUrTh9tb)r7P6L|QtCO-NL4M)wW5j_I~A*rxpH{dZ7YQB9)Bb7;jWff+zw_rS6!c0;{1Y7F(V#Z z9xmrtxa|~^<<89dr|Ui-ehvoKSS%ob4GokZIoGovH`x>7k=55<(6wuVhZhp0f<>#; z%$>arcGOYPt32 zPsZ!Q{QM5f^82i(>$rEt8Ud2+Gvu~GWyp@pnO;ZmuyI0~Bh24p^+|1<**pv?K8xoV z40vPBVf(o&6@auzJ~X?PDL%iX7FS4HmLHnGlUyvt_cQ zf0k3jAz`kDkUzmRw$f(#@>OO-;RvU4Tg%GHebLpMUtIh(W=V>UXdTh0D5EH+Q)bj= zj=B%5(ClE=({^5*(ET#3J&CfPcua%ck-;>f$I=00J>MDDFp!KgVV9tS69K*8kB#SOce)GS9>Xy~{l z=RJx}6#ly0czt_5sn&u+Q;bBq7-y3d+|d z8de;ecsuvlF&!O$=Z*S4>ySv$Kbvj|Bh15~*D;G1U}%s(e7K4p1v|CFc+f^MMliC5 z!hGZalu{2|Xf>kv6=@wDk9wM8KFJvFPI&~M+y9QSXDkaqG3`oI7guM04^byXM`E3H+-+=r4XyjTo?GeLNj|9sK{{!A8Vi2qPPJtE_+ zHrkX&+ViS!u+iB2sNWU(g1B>144=U9^Tg!e8OH+#4d6DjH643287(eD6RxOK=gq;x zwAEkiQDspmZ}06@&K>AMSVng|J_F+E{q;jwQO%TTrQ~W-6e)IwRFEa)7w(QYm_$^D zSzd>Api1=FO=wscF)?u)Ss~|_>oSbUeOPq#K!3n3`?~FG{Rk3O#oG7VUGF(RKmUA8 zjDFnVnSt)@;H8`1VGR-V5G8=bb=9eV`5@-%TCGO|YXe-@& z3L|@2f;?q_FDqdTa{)V>rxpS8rEN_*&m&25UZ}TdK?W)sFU<^F#y`#I$TWO)B`!!r zmdX6S(FXw$@qmliog0a$(clQ)j+}Cg2&g;TOW!nZo6~{nx3MHbdb+y&RKk8cqxnGE zNA%lsUnnYt@y7J(aIGu$cXgGBH&o&8nFCBbiN%oZ3(v52=!CZRI045Pv!c*D*sd4a zIK4G*jtpN`)gq%jad6kXuHdQtHDL+=@sANJ&0#3M&ttbqMaAf7<%<`ziePkk^HT2s zV(0ug`oi82h-5&QY&zCmxVRK+mO|!C0_J<^a3T!_FUHHpkc&(-8;1!mw`>8HQ^OE zuWN(P-!&j%BLM7;osTH9K<-{Ezfiu+=b=Lmz zk1T>Dd*L0%p0!zYfqK=)N={Dclu<$HE)5IE&=P-uE=Z#ECrzR-uu$TE05An|iVVdq zV5uF?PM0TDRaF%;d4L{LF@q13hu;uBPZ7a1Y72x1+}5qn)e^=E3tU&r!+@R8-MQLc z@PaQ*M~2&CU0GveVd2j3N;{@mds+^MSVR+`rYQCAXt>r}dDI>{lXvvWDFOU?Elr8X zPKfs7BT&m&bIrlGNG%Qp1OdSo=H~97mh89U$ zYAT3u@0#W%>a6v$c-s(Ln*2X=hb*!ejF7@Ip4yL=wMq$XM)r!+tZc8{KBuLnrKBJR zuJrGWdAS~4-g$e})jh95aBd)Q_4_xefIT@AC+;{*vOG167K&D|SmFH|+0%7rx?OTo zlBk2v!SAV};^Ggur-42XTStB^Kw4s>TO)MV&#okN^KD_}x}EG%*}ylZR5%=hU_I=(e{`mZ=LAGgPfO^6+28 zz8|NjO%mQf#qTw#z@}C72390~bG(X!K1oMahdx0@=xM+5Y-^|>zrd+(B$lJoEti`R zUwANs->sU1TYM!e`;?aZk1*ny*1tKS)ztqPYQ!th*hs}1rJ*QTB$Pa)KhoPqc>dSm z$aT}KzT3h(fW3q#fKEN8Q$(S$LRaVK(+95Cm}xm4YD97m{PRisFhl+r z(?JU)=iA#!yXpA!l(1N=h{e@h?izDO=FLqmTs*`#1FNsz;-J9qKP|W|0Tr!?GE7^{ zjCE*mfOZ-JBE_2odo$G=H65KIWqPl>TSg75MGU7XCap3kj&>lVb98k2m_qcKBnFs& zO!(u6yvFsQAY+6%ak=ZT)dNC8ULY>q&2n&#>j=GB`TozB=2K zH25Q_p%h$n+c%J|mLz8nwjxXzm+w!Pi!&z7yDfoDF|B5_ z@UX}9CUbuiHG@XnHX!MwGTja6i8oCEK~|a$X%tTcU%T7)EQg|#@C=WPlzR?*8Nt;B z(Wkbp+r~xU>7Xvc|I)Ag4vIu3j<_2=`P%;k8hn2%7dN*dMml#eq$r$ITStprZSyeR8(D^LP$pmG8sJg=~c^v!o*mm=Y=Io5{hb0Q^^Z- zVUJa~Z)Rg3;sRL1J4s_QlRJ!ooQi{!>kqQDnQwo0H`IG59VF*J@IjvdI4)yVaw3m) zn?4XnM-a&7pVxR9Zn z5{AGba9R+89D4G|(GgT$eoRAFfOg)+!Lk0Kot=#W2NS+e=*$Oqh1%Cw`Ns+;R(~M&qZb7cGq%FGr#JYtXnx+CmA~OR6EJps+4&ah%xu#Dm z71A@^S0lmGjb@22Kz|1Z#Dr%MWX|mGPFx?ze63$3Ug15~tDA)qL$}?TK{Vr?d z$JE}6eYnh``@_ZVuI2Q55I||P1bRzly6DYZln|IeYkPwxdfcyDvHXY6lpmtP_r*nn zW6}Kle5b8`!VK7#tFSyCKqV(@u>+4SBo?otqk*SHe!h2M&-A~AeAtL@;nEU8P>B;t zue_w>!1@DK?E;7?1-OOY8qJ&nyTuImg#NCZyTR4P)%8#Q&{v@*U~_hIra=vv7Y znJs8uPQ3w9@DQ3GKUs8b0H|vM`x{dFlTm;1NCHQuq_*N+;u@{FBDzYaV%hck&Lh0a{qaPPY%f$2b8ZP=Uy|l6}mvSf2Q~8se{BEUpJ`L>l|5 z{P?q?X>UoHK!=6bnhB8mJVQ!f(=u)pFkR=ZvYlQRSRPT>_-Jxi*gL|Ru)Z*@aKO0% zu3XB%`^q-rKsAH{Uf12!Ea68U33iso<3CTH$D*|;)LyFs61I$%=k@sLWZpU7_G!~* z-U!%m;Bngw*z7W*i;?lrvu)siB@?6Lxm<1isColijym5lomjhI8*X9r;oM1tVk)}p zavy7STWNqPxw7=)M~RFT6pjVmA|_#_79(qNF?Ulrm;2`V&g`ttFtPG|KVIMQaT)gG zS4B+XXZ(Ad6L#2iWpEk1hoCp?a{VrM(T9b z1oxcDuc$Tt`%1xW(-(#Spn!4$9d@^c@5?YL@mYyP!lYqPjeQ>hG1+t%=Vv`zRao_N zf7QPMZ0%US@?z%R8UonoTTw|w8YR25t#g^(t3U}m6s4YW$+{IQB2)OZ|A6_0d`M(Ug$p764qlvqIXg46EfTRT1 ze|LxRwQD^(_ax1H+5ZAAO|^9xrY*Z~Puxj7-pZc^(;vlldQCJ+Jif5=;7k-A|AR-X z40(&=_sfahdY-Qv4@6!{e&!UvU>6orPmtIq{I|~G?}ya)y)H3li39aeJuu0lpK@>X zNQg)R<=?e^{TbZfPf(uQv6jNWnQNPIus0$!h zi}W?$jxTDU=6!`qOCud$Xy#^ym?58;nEE$InUx#UM9$((8XuFXoICVUYEO`2C2vv^ zAW?2O6e*$N=f*wHDhJH}OQ+6k!+jnEcdi~UVKYAZ>c0%#ruPC9z zz{0|swAGVVlwo~Akj6+8*A){N*A*80pGewN=+3lVmt}SB0+j`!1qlQ{3-dpLxB2>0 zaso707v~wq$*O*5=Km4Jt4rEw6L}J8`IYrmL{X)iKpsIThd3~Mi3|;nl?>BFb@|>J z3ACy2IeYgDdW?JD7PG(XY;3D%H++L`S_8@8yC7Mp@Uur}UV@n~ufn_52#NgxZ^=XM zPqA~Mi6DA(T=sZw@m4q8&jjuaRy4OFy_P4vU3)H<4Q;l3Qwq~0^7!WA_kds%AGUYv zyh!dAABIAx=Lqlq&yu3T(jvEp1$LBE{<&Eu)3+;MDVgKUARINBR)S0Ovon*glVrIU zy~5-vqDX4j`baZuNQLX}F6Zy{C=uvR$Gz%0#-OjIcKsfd#;Xu6)ht@E&upd7@Bljyi$qze!c zDHv(GEYMVXm#OEs6}ogU+!7OoF*!9pcW@cKj|Rz-4yTp*L~Vjq*U)4&bh#j?FPN|i z)3UTQHuG@MM%C3Kh^_;ZwdxYwyD=IfCMFgLTE)wb#r2I?y!kM?Ry_x7?E9-betO{r zpWG#rb}l$L5Zj#E5}sS+HYeqq`+mC@=CwCie6J-7SC8adV6v_jz6e=FhU8&sw$xW^9O{-{bjEUkW46 zTM6K7I-=R z#>>!nipB@oW%D+fn(1`{^t3`naMiK_Alf8eis_tMA6Iz3=Aw$EX#2V!ra12bXYE5 zkHAEt>Xz2_V`IsVvMA-A^rL%&L zspn$90AB`VX4|#lLZ@koOr}r9%!%j26~3&5Y8sBvdEsp+iTH6&&UevY@vmrTSE;_D z%WMsqF(jRU5?2j!h+O34GUNRj373DUtfCxomTwntPmeY4l+u5S|G)$*28ABpLx}X$ zFD4d~(ZVFo62H5Bk+(H?xG-!@>(Jf)REV)Zye1@_qW(s#jvTnW`~5}eH=6Kq)KQ-wQ>ft^z6g6UPXdleCrQma|H_BB!gEHa6rsw}cT<(rzSRGlwPinN=^ffBN^ zqMhKKnYxqjd>(7KG_3{gO@~8Kphe@g{(NBfJKL_GKt&A%O{`@ zV#wR#ub59FFmpY*8F^{o14a6RO<`TMrP>Af~{;zekJ{?;MVB1(=`p*8Ky8e>F5`_^>m`>A{Atd5fxKXXDTdE#pI z%*@l}@a}!|=a+F;c3EW8zO}u^WPc)wMdJx5H!J<_DqZ^Co>`0sH+2#He?(nnSY1u8 zEtD2_DPCL-THK4fyIawNYm2+PySuwvad&rz;toZ7H}Ci3KK$IAy=O9+WMyS0*?2sb zH`V(N$U$@HW7gzX7}VQm_sg$TK9M&Byaem?Nnzba;<4!4LOLoH!)CZ{7(qbyb`j^c zJVP51P1S)vPi8~60*z+hv~m#sx~E=%2yhWi0K*(A;^6S_EJwxVh}t^pVO$RRltcT6 zlRn=2MkP}idR;HPlR5+_=slgyh1VaWG1hkToS&9T zMta2p42c1+6eC`GzJZ=Vi53?pY&abNEgAQR1vhChAPaClm0kxqtgqO*s)=R?V^9=I zUdQnbW$2EOfL2I{lHZu{+-#Muv6NW!-3$~xckwA&;Mp7YM-Yi4NMPOQuGJez*b%b& zwC~!Ee{b?Ao58hfN4L+|7w}Yg%iRx)RfracID%daeD z<7T&TB=`R+k_GAM>O4?8KN_1avBWXvj!IH}&5Mw5kbBT*i6K;`imIlT}S_DyXq9fRz=K%-w2ATS%H5mLNiH z!soepiyYDIfF;E-!kD=WCf@z}>(+}-udc_4#m*&%UdV_Er}6vq#bj$bJ+ z_MF53Nl`2kz zfv*vwC;5kyRoX))87gerxjL=X-VZWA?XNDE9{AL#-J45v!_+gdzSje-b=S(q-KUUT zex3w3qttGmo^!^ z7oV+=r$)J-Un$XGzpplngAQ^8`C(?+jJx@#PVSz1ca!h9JmgH}Ok@kyNjf7XeB)1- z+F!@6W@#2GX_Hye>me+)YwgWFx5wzRJe^L5e$p3NxSE&{VYiz^1jgnteHb#|clRxMF$=fxl4Fe<6Pnq0CHz-tA#_lL4d$_~(|8JQ z)L@(%qaWp#7@My+RkF_SooYGd%qernSw>1;KCd82n_8~Q@i{1F`+K1P?`!?knT?e<04r3zy#4e18-;vha^S<3+`2$7|0xqy?x(35;5B>Cv2EDp zsb9G|n0OOLcf;2+Q!@v)?T^b&_`m;seKSvp(BE#0oO?M&{@VF6sYB55`et!W|GlI< zJS#y)TKv!ReQ-q)bO!=3%&psVb+(7YpL8mcB3P@JG}$P!=>*QevZ0VAjtz-Fj^~{m z9ux`AU2fdlbS=5r|F#@#eO3)*u~K65ns(>%6D^u$u4OK=ZWs9d_4275KwoY@&v~6r z=YY+5?sBQi7UVIU;iS19{o|La9bDLJ9_F&*9&|qgWA`iqnCR6BPD5BAu> zP$3t7Q3f^KHrAGKcWqug{NkaD7;kI3sI00)4;4YSay7deA%FSmil{?H1_?3iJ-qMu zeiB|;Do?%`<1Z-+Ok%e{l7%bc_pO?gE)PfE6!DkF)`CiryNfC-&-$zKF+{xC#wo>nR2Wc^t;F9KH*I2Ti1T-wmaFqKb0l&q zJdZC*#{0&*thmC}n&ki$7Yqf8kR*$t$6^M~)q@)%!lm1s|IJ}cUu1PYXD}dNaA;TH zRkzUP45D3^e0K3jbjr=FpqjOt)X-fRfKHEj(3vCtSGv(LHXhIn>zgVx>n z6z@=GBo6B0f@39*wc~O5O*iA{%LA=Ul2ovN39eVHqHZOh{ZfwV10h$uwyNltkZK4B zfl6$Y8|2D1Iuw}Bt~|vbjDCW_QIxbaDFOx2-~JP>aX`xCtK)dt*9$94wSTWSe!`Gf zm6$ibEI+Gm0h)nQwRm##Ou6+Z{J!A}3S z>b~pnItifyy>cwC&>Y;_bP8rNxcViedOt%!wSWTngZ~``+Gl;goL<~Cho+5T^C!Q# zE`|lL-JUAh)}5fg5E0rgtUq?AcbkN>-VZYw?iN^Y-hUsGLoHfG8j->Z*FB1C($ zW;v`OqT1G7lRvwwtRI3W55I(p)StA1SB*6oX=o(+JYM5G#L6@+v|M|HP#4OnMoneM z<^AIW;OE7<2xiP&X^<$A5@&=-PJ4oh)JjkYJ3I`CQ2v@NeyiwyIec(Ng}n+pI8X$X zW{6I7>cZyrbQiTvMp?dZavW&s1Vuv4M}k?I3S7+O>-rZV_t4~Qq4&@6Ym9ia$1pxy zSfmQah#xgECBx6%4m@JrsCn2F%S5s(rn;SG9qS6wLwrIkm`|ZBpMrXks?e~~m5WEV z?T!#|@pqhC_+holkOfl(sIX>^W<4}!>oKl?eQ*fugEJ28JVZp1r9uM6&AM7)o=?Ei zNSpkE5)6`=&*OHAjms4MvWp=KW3S?`%GU8C<~z#EUfPdiPkES4lpWZ82L~!6G!rD> zH7<^bj~`7>5F6&tw7SS<|E!gt_HjD&JA^LVe+m)(m;u1dszM0^7jr%;|1J;bYMBDJ zv)yRHrRra7c#GCzE{vFCROt|2i+^(=W41~TvsP>m13S1MPM2%&-gIj1k4Emw0AMt1 z!~|TdkRd~Japy~rbPCw>`FSem+2z&83;8d!j|4Y^?=_1nN#Y-1wD&@MAATyAIu^3? z0rUH{lUZ<7yM!zvu2C zexU=7YWwh;73NSor)KYk*~gO->NT10bL*R*&46M96u&Vv-iHw>byr5Rai#D89g=eN zvt9PR8KdbmV_Qu!7`r|gd2ceKUH2#q@O`}3%CCR3 za+q22;N3opD~~*|Ud1Ok+p5>uW1OQhP(ej>yLXBe#fRn_@}c7W0S^14f@TyMKIm2Ht0MN5Et9z>@oLa$AbU;zsz zapj}nPCQVAG^6kUYUg6BH0%e%!bN9evH`$}el)xBqtpz&Gcy}2(^_?Hz9eaiC{t!0 z2)+3VuoYNlR9dZ&dU(6W+q0|7P)|h3V>dOc{L?aj!N9<>4xS52D>d5>Plbix!PO#m zoX=L2xGNH5z9bUjMGA(Pedt4b&A)sLIy}Vlh?)PihmS$A;n88WQ1AO3v|Su;{;J!L zivnsq31mg}Y@?tLT`3i!177YFKVX(X5eDqnB2%D55fOqSDFQ3y;!mv;?`d=z#V6jW z0=7Tl3w2f}6J+xBUWJU)@^m=vLmGbEpW-m`=8QuK+F{Swt%IM5~I>>ubB}wV6NuG>krwALj|9J8^S6DthjWM z%rZJy&$gw?W5%;TSk+Ug6Er8Xno5+B8Z?u$CSynKpdjs)Mn2BJy$%$L0t8-1m7K?| z+2lsYLZqzx5G<{#k?dYFdj@JqpGM1w!J;@amA|Kho6UD@o7!M0esm#u!nINqY7Es- z+7?TJm8Vs5hXaLXo~+URuXfOW-Kb^#bB?MFHcfA15=}1AV@9z(Tn0O8*q0~a;TUKk z9Hl7vXqmJU-f$56-K-rcfc>P7T-?$mLz76U)NXX;6#s;jL?aPDHIU^IJid=Ho-$uG z@Ab1;v1ooVqh$TzZsR5QC5X^Xy)f7~E5(8ud8elX1Fm+@oO(z1b?bNbnRZcOhZ;lJ zx;zwQI=PRfxdq+~IAjk>*MuTqR3uNtn$LxZo)!aGxane2XSd(GKA`29X^2z-kG-L4 zT{)B5AxBqnJTcI&I_EbMJ7??C-lOwrq}wAI0Bf65=aT(T4G4?fj|@YMCf079zDt0p z3t;_qlV&fRgI3VT4txTiGGE<3AD{4ZlG$?PU;g#K(%tB0cuZls1fd2@%~d8!{LMxY z7yi$mV`nWMUi}IT3{+k({UykgAlhM)F&83i7|J6OQ<|+~ZKBBKr>m*U=Cut;5eE^p z<~d2QFZIQ~Iem%Z4tLZK=9+AKZ8`^rOKHA^9wG>nFqFUjsqF^^rBJ%jiNdm*N>4kE zWdI4G2b}%v@JGmyKA@0SQ-Z1G-w+}O?R^7WkhypyY8Zoy7APJ=l9 zlZ6Lk29_^tcB<;TLur#?S4B~pa6v#SS4h58XOB1Cr<7}b#-#!rZ;qT2Av!rU{^z`QT{SWnO^nWIQ15fU;Sl8sfkgSqY$18tWlgeod1 zg!&}Yh<_?>RoIuCmHVgZuPSm4`0*j!utHrKiQp6;fqK4SHH+WtZyVS zAN1hs_V~QAwFpv~D_W#T<d}F2z6DDbBst-Z$4@+VQ^s-qVbm`a= z&^DqHGyrZ?C>%-0BJMdz+`G=<`L)p{T;Bkg*r7P``=9 z+REx4doNcq2L_TT2L+LcS6Nd*>X6}{FRr$>TJo-^*Rxn_a$RA0jto_hB8vhc18s_Q zqfv;(TF2^reG)1X7w?WGyK$>&xTI;Ky-m;yy|H6qHWgeC}QFa-zKy@X!b zKC47#2!RJs@xUpqKl_kjbg3HAtzg9O-0WLdfdeuwys{m#4(*CwPf#2*sr)FZ2UL7} zNj)c(R2lSgMymS&8ww7k(&+2O0d5xdW%|7NytdtIj3pxe+{{c&ai;k`aRgNL+UNlAH&L5*4`ymaj)O_sYqT{Ts@3vB%tm?%T!D;caS<+m?5ZpE_d=2SSr z_i^aiF-5o!V0C~rV(zt!GNBw(k$R2gCsJycKJXP1vRg*4AKl?oq%y)uy)s|cm=QS{ z+1P|k19F=XoPf>o4EC(i4p}-X-~s1>Bw|MI1T&?aSKV3Ku2|G+#l3?mp4Mc;L?(Mt zvn63%fB0$MEI5kb@w`l~i_1Bm=^Lj45t^^QnT6H!-}R`8bPm!42^V)lAcWd~Rzc0r zosx&D>nIUguRKnoysr911t|q0urzlrp6}(#upK}!sl^b&+FOW+{#VNc7m${j+3MO* z-;PgKzY4x<(ateOUs-j%KRv3dgdG2H_w5wxt5XyyE_n`>7^i;Y-SIo@NA$Z#NKp?4 z@&PX1!iXV~yQYU!s^teJMy^5lgl+35j+$Jn&q!bKXNpVQA^Zl@GP11UCrj7xGEpHg z1W6`>0it6B1`5)(;_Ym4bEc#L@1o7&Y``hwj3DUYD)_CzF|c&Z)io`GquX+^wA(*LN*-GA6V7+iSV`OBE{N*ZPnc!#&G6IWTM;)3`XH zM0>UQJ2W_<{JFD!Z{7`gvpMIa(*XJl2hg7t_IpNRdvv|5zdZVWw5%=l^4h}3k z1qWi_)R2E@C~-#S$S%1s?>K5kDkF`WIirstW5dI71eRE=m=2U6HWhKtGs|J zkjU1q;wgn>!1;vI&el>crjYi7dnfw>o?25#a)ETJ#F6}o?d^$s`lSd4jQUIqof_x; zA9B2%+m%^l5^*&S)2yUS7~QNp5WC0~p;J?`B&Y&x+THR{iQ3lYHgym8D=HvQS)|I? zz-*qsF&03vosyD~gtGjm06cVBtgO{D0$g04pOvPQgi2EIA%Z!!F4bCQ>OKAoVnvFf z_L%zB9#7qD2^*GpBhf4907Z>aK$v!(K~SoDN1_Z z*|`x4_gbO^QI$l2f>JUU@*U7vP0`ZX3%+>mZ~&G z9O-J5D!!FDSfkl}x_oC@c_o1UW215g$L!ityV>K;V;GjOD8*Wzw3Z9X7s62aWI8oT zk&f0WdH>5&nAaQ?)W4?^h$8xu1wyzH6>Xz4^TVpZksWi6VQOGCde1(MqNdJQF~ zNUQa3>$Jf~>n6903Eot`v$LNzV`Iau&14ECb9D`frPlL1m{I_x9T5r_54{L)Tx%w) zTWT;>7=|EXc8+!3Q$`YpwGA^t6pNp17U&Jl3Z|5vRlh6y7G50rUNswc%FEl2sxPn@jP%F;W5Di6bh^f3Yn zFhklkO1`ezK>iFk1HcnIXmY1cH|(qV1rFxl$ILXGuE(07qhLgQ3uux;(fhxA{eyF*oK<>$bSf(?J2op)E z3iBO7ghOLfHgiuN3NGp7XIr_BPEJ8~GOezwD`Z%}KzKG!GBzW+oq@t}Dr>s(e(?B# z9S1)pLStj`{Y6umGT;k(OuW9M9tXhrurW(jeoJNz>^`7BtES0EX|{Y1Ek5pngdu%? z$5Ja|(dEF3^uE3l1_6d~;!cao&IepEzjdi^BN`8#wEfbu0FWtKbPL>Hn`yY&xfNC2 z`8E^fnpo!8#%O@*5uUJN9tPgP?PH{i?{o9Z#!T3-P(5QB%%21yM*NQWji@01_-p{K z;`wMmHmx@SgemqN!>2-CePtEj!=v%s8py~*Du~Jx3ZHbMqy0)r8DX{XZ*k!R?qVbb z7t|>^>33DMg^hfX=SUCJLR*qv8Iw+F^^#w=u|A(`=FLP%fkMEtum+sJy$WH7^nvLi zS<*PNjFt^!UrV}umkc3xsTwjk<4xIx1o>Uju%iZ^21=FY$(YQKN{weQ%*k%6xHO#f z7ds((f3HMXm|{$XBXGQ_;lK^tIXY$8@F9-~6wTi`Jzyn`OC?GODE9^6H3F3sOrtJ$ zb6{i$jw6Q=M7&WbeTM5D9TChMHgXKCO(=Az`o4_-ke3SR0!!PXU1M1AOEt!ej3-Il ztf$)=1$H5maHT*PGT7&345PtQe)jv)T+Y=mj~q6r|1C`^F>{JUKY4pNZPM_c#^e+} zwZ_evf*EsB80uOhq(+roo@TPMLvCE~afj}vugFcDQmg=;W1~|e3mZE-Ywuyh&+^^N zW;&U1SPZxb$(yJ4YP+Ftj%Ioy(`&i8Ep@nHT+PXbgD>OpBTBNWnZcAOz)3h+OD+O= ziZGKyYUs~rTzM)5%nK|JFu8=GzvCr?5MP0n(lVvgA=%#IdY_pD+BrlznO-Z4-T9jL z95n9*H!CPK7xgN5BxLHB`|e8m2ufX&Bp`R>VhgJ+tM)_Zhn^fmgy=r}CxXM(GC4Ir zS#LU|Hlf0JyxYLB(=jshnU;Y4>-BN3mHZiyG;~1D;9i5yo zDaiLXaS#JQeq4Ei0PGMJoou=m{-vu9Mcm|3eSOmd0oNW=Dz=0KEG^b{kQ3T3OHtj_ zdbRJx1dQyBcaI;t9aECW^9{x$0N_?hND@FopV}`oiG6(WGY#5>?@(N<%yVflX>`dF zzXS*g27}T2h2G0qTY=3=mmH?f2wQeHxc5u0Q<+&;_+*H%)myBM!J@eFX@SSCOF5OL z*3+T=K(fa1GXYW&GmaIV)wt;-^-R2!8XcxoAN$E}JLzwK+`(x9jyop4}=YE)>#Bq*>u8g=fnYGzz9ImELq4ykzw5LM8^ zkRh^B<;`PJ@M%3)$Jh&Rc zZr>g&$`(X0r@5rSm~1ZxJ1!>`KfADU|OeEIA|g6M~Viz8^QC(jq0M73vZ>RZ>h&n zpZzGX{5*W>Fl{xKONK!i672fsW+$Hx;o*Gxvkm`SG(%wKNfR`7gQx^xr*?;-A}~8P zon?z}|6xv+fXgK*wsfF4tznHu-`9g;10d{!$l@_kDVGmIM@o||Lib!7_7^Sco*>hH z(09#?4>dUiA^Nd-7*X}KWDb?W>|F(s^r43Ur-KSQti;QlZUb7eeZ=`UeX@C)N7$L9 z%|qRn?Tf=R0wJQ-4{)*N)l^s9l!*wbw5@qU$aZS#5+pzs3Kj^|Q1Sr5lkE7P(I69z z3>KHBr@dw5Z0y|d?mf6TA!Ni}wkMbRE%x2-`a?^=9t6=A5Uw->nU^P-g*Zfj0U*I; zHQ@QlzklWH<6TiUnxhKs?x`#KIbpP)UKH5nWkAgj|C64Gp-Ev7WzF5)Crhj>QDc0@8ca!w zub7a4-%*W){y^n3(OC42ip8L&uN+!gg@-f9Z(2PF+og(kOdo{-1|S8n z(%U&Op_lSdQc(-)9+g^sKP39wrI19juYXk!udMG+nZ3||>HEgQ_q7e1m^IIZ@*cw?+^1Pm;&Gu3ZL6TtW4hSR z%n*TV9&XjSxXeh1-TMP(06S4b&P2oc5}{r}pNINZKN!^}J#eZ4RGXR+ApR4vu%e1- z=EstP{U4zaLOgS;Eat7Rb{8FJIEtt2#CVz2=iL~HW@!BN#@iM(jiGLm$z z)opC&0!fiC$Rfd%Xv=T`4SBse^XlB(E#^nGDdCsBJZb=TBT{|&cbWnHOMAYdk+mbL z@Iiqg(OBzz=`)^^G-XZ_ia2C`3_nrJgB;AT3^`d#3wyjj3eoR?skCooEFT93Iz~id zRZLk_X2V2h#r~z@>~b_(N;T4!xnJaoP5${aM(uXdaQ`&1Y+;k5X{Fg1PMIWj7OBjE zVPzWan#?BsAVD;QK!qRF|;b? z7%pJ;8j8(%}gtm`8t6HvPB%TQpH2jl@z}wBb z_5YYogmd64XjPHmEVoa_#*`qM@J7LZ|LF3eFqwx+(R^;qy!a11zPQLzW0h6`HVLMH zrb5i+bMN~4Z7AhC@@9S3f4*7_gGy|uSL zk*Zf4=@8&FLbqC@!MD zrpz5JzOv?-#L#YF3LP~{Kl@J$1nChyKj+_eGfD(?f02|tMux2(=OM!L!NnH04SYA2 zGIBHv{lsIJm2?_8yQ-n4cSK;+CiqPehAE^t76UT#4Co}uC~4cbqv)W~2bTEtR6jhm zqRK5)@(r(nhyKYGczU-7LHzQd>@PE(G3_HES7=JqC|C zz!4$KQj=s%R2xaqXADQ3+&rhOKc65-epT8ErH~+|$~RPmnRCcf0=mrTE29)E&rQb( zia&d-2w%>sLQ55};?!%?;|07+Ih}`!I-i7PJ}K!)Mb*?(#ee;*WBpMXYCfj~2BRFo zglYTyym&n`QrKvo)x7{s0_MZ@)|^1Cc9$*j-LgU&-T4FaX(AUj&2O~ko#nF%EaQ^q znc{&}FQE62D11%#5a7^U>6YdB@sP_c8fxbAQCPHrntOW?$*$Mg`Ha5BGx;g&^3#XN zE$umkL8e+#o+?m&_j)BTwJR&hZ45I%V4a;0;!sLUTS!n<1%c@lO);iOyXa(qU4M+7 z5nlen=9A;)#xc3prXFZyD^sK|VJU9Wrh0_1s<_J7UlHDwT0v7~JWlckju>MO z@h^Lmdb4K7M)7`i4hrxvJ|3DpK-r(X&f;;+uZ+a;eh~O@!Hzo!Qj8YssQ!@*Dv4&P zGi%SM&!|W8UDV3Gs3DHi(P&-Lcf2L+J6M> zqlnp{F)PqTaj@Fb6j#IyM&x3{TjvEt9ebU<_q!Bk-=t&a_}1-X%)x7b3MvAyuZ6h? z!g^tU{(Ruhcx~L6IR>L4Abg&QhuG^b2^co9I2ap_LTFT1g76aI;!*DzqVa!qmeD0H zX5_bfYyOW{9*+`f(a7LrkXBU45!!o zN~nz&Ckmql{mM`-R#qTf#0N()S2v{?adQ>c|Gv3|U6|XcYso0=S^=B2m=4D*_1Ow% zq3~6syM4RbB zgy|#PGmvox%n_=+C;!v~wTyLXL$`-2Mn&a{Oz|)L2N%ZA;-jMyabi{-c5+$YFint= z?oF1`?ztU78YzTuKyx2&1)*Za5|eQxuJvzCQpv$wjn)Qm!UZPGX_JG@0z)5%{HQ_5 zl6-O^L@N4DzdCXZL4vh2#i~OEBTwejx)xpQ=Qifsq5TC3D)>Gh-d`9FL6RY>p!T(4 z^@nv6ALhZH{Q`@HL(pt?Vw~WXzB?n(q9zYYj%0dLZ|V?Mn84YZ37`~M38H|fl4SCL zP@|!DsI_1K`Nf^@bWz+kuZ|I8lF6@#}NqP;Ywni@^ za|dYc&Z$71Gk5x*PrikU1w3oB%v<)KR#wO;lsrq7#w-E9HXuqov>$3do9m264Q0h7 zts^WK+fp%WJOdizA~zw1LYE?}=Xr3v`QcUAti<~xvCpjM$B|tjO7dMD-p@W4HnA+C z<;mbd9`43KF7Ce|OimJtu!t{w?~9;>L7df;Uy_)nhuM9ID9XnA^A?%Rgh30a^&vu= z=vlx{5G?MjWI1j^xR!+&aKsELW;F2+`je@>3=| zwXwjlZ8K(dD!^31uHf1r@?xs1F%k1^TF2R^d+q%;+XXO1o#Q30KZ5tOIe zn`cE0OV|M^fntqn+tA6|TGLHBM)H+vHL8UfzwJSUjozFt5jt>klEfIUICe@$f^ltZ zm&!R269{TzAJ$5Kfk^SBYiEb$-O^s`8dCmxi|6gb1Uznhg`n93?1nOFR;d00;7-~+ zh?5xRtR7Cy8f5hvh3WPN&Kiq*2^%z}Xh0&GbQqA{JlJ?ppoIEzTFax5hr1N!X-|qK zhis#tO=a3uEasTBR8Wkldk|u@S7+vt>U1UI>fAp&m-L0>Igz&QmmKgwYcYLd=gMM< zdLz^^OiX??$xSXr7Q0WreS4{wWc3wKVDlM zy}I}-KqhoT{~HaRKjcOV;9eX1kM2I_rQP3)ALHE$I)`k=>7jLR(^eFtfLUx2-$xUj zJZ|aZjUl*j!Te3pGqRdF)%?gV0dL+V;6nw{Kobv9vSs7XhY6ofKJakp)8}vo+@{Os zbWTLfPW}49qs=eU-wMagHF@OXWeR`1lA-amIWO@&a-1LS(qLHT1Z!ZxDsfy4!8elK6hQMI^6vyVGBC@?j zJE?Yj1vRRcu0a)ZWjq#pDkxjfo&a0Ys8MbBw0gO>n&$Cx2aRC^MKAH$+9Mh;y1`4A ze3TJhpWyi;izXMvf@25kN5%f|KqJQJ^QeQO5-Y13&%d746$!(Jc2ZIj&)?vrG^M+_ z0^WycA6=rB)*v$rx-Nm)kWX5@z$|g(38W$<516{J6{i6OfG|aIAcp*EYQ*~M1BDq; zYSf#Fvjj;l?fTZ=mORVKX7bsJ_odZIuvJ_bIXIg0=ATxe(;l@eHR(BrKa28;0Jk5V zoCbIaHH=vg7;q0^eywrNjy$^?l#MoR?!XNw-Xvym9v;(_oGZqNgK)JG(=2Uog4vZv)7Fg;2Izz!}|I$M7L>^@Xv*@6bp~2IcUMALDY)P zTqHogBJdr{{P+;puPAE~ymB_Zp=&=Sv<>WAI@jAiKdni#X)QBmRLSSo4loPyRh3kO!BwN13%dv+ z&|sQ~ggR5z@@9Ts3pT%Q=|I62pdiNya%0m&|tChi5#9m+1B1E#6bd=yuc<7(Un<;(1 z+C*vC(C48$p6-I?fP=O);B~R7taoth@4EiBU@hiIq-(VRGE%IOwc&9ve{`YA$Ha6A zV4V7%JZ`-6(LgH7;kEU=Y17{NFYVfTLa3;^C6eDbA^zAj68UW#5iT})+~M7S3ldL} z6*?tvFhfO)R7HbfF$ue0E+E22_>-%LcYWqsu#oB99&y}V?%QVys{R4m#&ZIS&(>hPn+m7DW1!zMK0;1GFRLjzt9n)R=UPW6MY zd^xg|W#v0CBE?m9k?KQPDryIR;Fs3kJTfAEghMfWr9rtXM(_dGsjb(TUlKFwa_dV& zhfRv04O?gfnp%W^e>Jmka&K(BsbFv2bQ$fuSDLIm%ZZFkUQLO-j}z3lZ;{4wLkoub z&ne1&!!)?Bw@+d)x)I_29Drsbn-W5~J|VA`G-o-{CG=ae@*S^}(lN;0Jp{G2<#j9s zFk5_{=Mp0`w{xXK(o2x2P!c2te1j~QDXl-1y+bjNwgKaycxl6s_@AD+GL2L}<-$NS zT1bX`>b8+UcnY^HR<4V(Z8Pca&&;kP5Go9i18 zLyI)C1)E;wP~pt7GU$6{@NhmdY!`#&5n#}rt+j0)x7P0$^$e<)0EA@e12hnQM;T1n ziBezK=S6>nWOnLnsS@E!)6`u#W^qp~P_SVOyYj}3i&6s{U5RdCzo7vDb>IfkR<6lT zeRJ8I8rNQ|w!!0TrO67FM5gH~U{V8pg&14&2`5Erc+^~{Hv#ur+Rt346cySFksq`kcBs8Vv}lNI1}V!A5+q;KB{C4vJYSPONNHqY-bj;f7oTflXN%CtPEyl7#g z=y)=%kMLy-&mc5i70R@S6s0Z*1Kky*T|xcwmJ-+J1=f zZZdMF3mQMSe|jirUh57gL7#l;=seH?5Sk@REeHOXI)LG2spl#}ou2f?+`4*WP93t` z`U50#{Objx)_*uaixZp0D^fuX`Au_Cg!lw7gCV!oJ)QnLvQI-Ym~PjVv1IzWAscwV38&% zne39s$Zs}U;X~+YtM|ZingUuDPa7qP%HQrNPQ|SkiNzUD)X2 z^6KGrVCiT*m~#x}8t7kbzXWfpoD>?sD_g~mz208LjDl0l0ya|IzSL9swtQ+tmag}q z`vmjIu^?d{KL@3OO+kL7?=HbLZ1(UL>gQP#6MT%f@K9E*CqOD(e?aijjFA%w?u$)( zF_%j$80rf+64u|;h12L0&Eqc^k?V`RM|1&VOt8K^hkF5Nsk3YINLr*PP=k3wyOFVL zp=5M%`sDm3sN^tE5I|1j6oW=A3(2M9t-5M&1U;Ry+zs_i8H#z)wd%bY?U9rTkM}GO zZRsh(+VdPr#Uj4f!h+;Ua|tJ|__|_xwrXh!y(TePsPHaIvy<;2$vcO-kfeIK{LJGc zus6-=iN^~+pEh<{X|))JEa~fC{R)&l0Y_QS|Ko#gcIrZ(b$A0e9pX&LZQy zsreun$I|{@{*zcY}AC}u};vS!Ph-|cauQCi8(|%m)uZyJW~EP6v)WTG^A*< z+wRCTHM3)7jYWkC84)01z=-&VrGo$RM3QHPqAbs?p~@A4BEUzeH#$gHItg4$o!@6HLO3&y zahS=CjpIlaoFsG9Mn@2j+XXM7e%5RDLFxh&Te2Y>#JlFy%Z*=}!h9rGBR=*2uGqBMD;pPh zp?*7IsElSo|Iy8767JRVj&uG1g@RbACtnK>NL`pi5bs3Iu z+!l$VKecY!8&mfSgdxFMYCtolIXmWe%c8FiV9(c++3@%kcbE7c1`#!RGeE?I+h?P}4M3{DOa)ib|dz`@R$o_T^jn$;0 zT^Z`c4^X~hPL&i^W{YuIo2fH+r@Pj)hlgVo`wmf2g6?lCsq$s;^`~L?_X9j0$0;(& z+m6153)B*17@{}<&h@wPp#cdLh+ZRrxdqHOqjs@WGJ8i)cFa$%kKEAe&WY;XW1-MW z)LD}?_p`~f&t_!pw%hKJ6!eq%BYO3lZBVARq zgi>S@#6$W2X`%Gn{8f3Xt>f>7FGM1(B`r!IwB$QUzK7x;k|pp%#!NYtK%Bu|rA%K| zdJsHKDkna23#w3DFg|g3yoM7X##F(b=Q)r6A1j~_wWowS0$^i$n`*k`rP25r5fYa- zRzaq@>2viaXT~(lqdRC-Ilp&OBQ9{*gjs!T>kVi_#jOUS>*S}RE;nJVTd=%bRpgo369kGg$;}K+*mFhCyB)oh^1@~Kts{qZ4E@PnF2iC*0GP6l2 zqNpP@dOTd7W<|8~GLK8Z)Jk5w#5J7HV9M=0EMV3?h)RFMB*v9efAXcHt`y6i4sF@7 zWFm-YX1BRNUF*jT3jnhY{3pPWNrcZ{qn*HEMu*lp85y)$pK06zG=m=z!w2_q;!CRr zQiV*c`6y(9O9Xq}e|ik+4kn8ghsk-7su-{VE3=9otei?^jlrBE#KMLZlqOXmxSsJU z8^oVST~XeHW{#c&iW5};ab=@u(t-l=N&X=j#L8*FzYkH?-yPJG&czl703)|&CAVZI z9i52S7?T0$9S`f(RMzcEdLPa4xZ&$bJ_A_5DUuB#FVRrLo^Jwtj`*)pFqnfx;Ytr+ zdTUnJPOf7Fmu3y5Ol#*&tf&FHv)fFF4y;*Vpjoi7ad>ePq}7&j`(uW>UJ}Qx*lE_E zOD7wUW^X0}lyU^KFc+^bk+e2=#IeB8z%xFEy}oWfS3z~&1>n!?G-in6T%k`#5XCBq|~4z2^|Fh{OR;U4`O6aWZ$ql*^L1KlwrZ|^A} zA@0g4YPxM1mtv(v5a$N~oHPApX?-JYe7_VRaz0ga4EZSxX2(q0l;1<=A<0!Qo^7@k zNl~Mx)x*&rUJmlp(laE<2DG;2HtNoNo*9vBK<=xEr1!+=W=BMIaGdiuFq$S^Mpo}XVUDmuP;#3OtzaofV6_%1R8 z3H;y#R#2QopU~MEYFR^lZEk&Q>i9pk@M0=Vc4eH3i5G4F33T|i09?_3m`I7gM7a5v ztPUvS$mwzI?Ghk{@Y&kdve5`@8tGeJ`L!(OG8gMdjv`1ZkQh)XSne=gA+plG8t);V zf$NUvYneL0wV?ktyKOB-QDgA^pw+qeDBjw_Zi$ZFMmzkZF$H>vJ`rYwYg!r*@TDUJ z_~RmqQTdAld>y5?e8KhU3QohSLrFYXlvHCj=by?*-z?}3D`|5Z_H@OD&LCbntsV{a zYvX4Z#$zBtXEvD+4sZ`6?Xq4u;LV76`&Dps+5QD9DQ$GWXFUVeB1+tps-oQR<_gjP zQYc|n-k6LR2&o)gg~p#NK1Z}`SM5|&Zjb!@&wOHJdm0X(a$$uTI6W0NEiJ8e$I~RO zyL&9B7b;VU_YmPADH;8E+LVhp2KWr5Wu7$KE+ex+{BN*VE?XRi-XG$e&;JLFxvl;S9 zfO}ud;F`NnrgWL?52-Z9Dk{T(fJ5?s)bLwa0L_nPE_W2cY5sC~8E-UVI>3_U9%@ zXG1@#w=Qo!S4A=cmy`QDsfd8c6f_&<+%nGj5gNDw;M<1ylcC@YL@QEm4HSr@nOH0^ z^HG+{B?^GKzf`JDVJ?ssXru3Lu|l>*|M> z#x3lw+agg`QC8A?Nz%L1uN^{$3TKQSq7A}q)I76TaIDbWUvBY>|0qUg==H`2p#uY8 zuUfSUGIXEDM$fj6`c}>R3)qpM75xT@SsA!)ytQTUwjIa3Nd*i54YuZp_8gK}=7G+s zVY6EJ+NqL7Kx|w>m4!d4&oq1p&CMlFc1bq#f(xTA?4tNLx3INVnr+eQhJ&ZuL&tf> zKOaS1Xx#okTkP`TIym5k*>v$+3c%pAogRx9!gU0wQz@6-!cP`=zQ7-+Fl*o=N%(4W z$#CUtnmAZ5O+6mq-ODWk{0f|F=;$8=lR9!gKXPnuD3=d#m&Uc7XRAX1J&;&x7s$`* zxP78r3(9L9^yDYLbkSCX!59z#V&HT*b=rlsK)4Rg1qXfGlKJT`<%}f>Ot4N+f)UQY z&qCE*dlKpU>pzD~kLfchEV+1-N6BA2FV5H30k3*@ z4?29h1Ar*NB@={UCaK|#8QG_d>C;QOCGOe#<>QC$ehS5B>>Y)IgOTD&B)6?U8#J8$kF>Xpi|Tp*|5p@HNtI4P1*Ac`8w9098fj^kZdeon z1!*aX6={*~T1vX5YiXA5j^#JJKlT0J{-2vZ@a&v3GgrN?Gf!r6S+>nfW-Cm+g}sdB zjKb$-$tLNDLn||i~0dGfA}R~Y8h%p7d3Dd0V}KDm72;c9KfDpq!s43J=~ro zwzLV;{>`Og=%*2_tdHv@ zx$2;)F}eu%=ZMnY#-(zVG7yES6#$1WcS#NRwyzvxY#CfhLdlZN{e6#1lo^|vJ1@*gmw7?OGGSt%4xmEyPm9+#* zt#X^AyOYHBcg^JhHRiJy8XN!aSE4A$REs^QZMk*01riKh5<4@1tHN)e-ga=Wgv}xV zLyKx-R7d>u$3cGVuV#@5COe>JKnxk2p%V|cw#*%?!D_~AXNARRO46rwuQ+;3gM^@s z;!U+=s|@Onr$bld=hIM&F>`EZ&Fub19fe7n%}lwRIRI)kUjWjHhbLY@6r&F#DfD6d zB4xyd;?elC&`Hj_Ldl^60$awW*C`1iM(Ml|P9GP=36%!VXMxW-5VeELcw)Otzur|| z$92a?KO$csei}eGY`NO*ay;Q#pQ5;YB%z{`ksa(O@11|8Y{5(-%vti8tS2Dqx6yiI ztm3k3IdY~K9S4#nt#^9vo17ax6Ry>IShT)tEu|>_9=jZ)Chf-Oa!==Gjxs}gbe9(k zeW&dXM9vq2-Q4Gr#!|H0(6UP{VA&m)+sNo%87p0UxOds}vAg{?x`H>_mxWALlofGcylKJPR93Iz0NLE>qVBTancD z9Ti#nT+64#U$TCx$@+@kCx1o#E$qb|o6)80n4N7k{@xWDD04!l^M=LfcT5rdh|mYr zMyx+L_tuGVUhB37z+g~|JoDxDsZHMxwGBRLKdtP0w${&3!l2kQRI2?L z>RpdRjKA%Ih9olb!Q+@u5ERll`gD1 zZdx(QfDxwLfwahF41K|qBZ(m0v{bosn~9Lq9;_YM*^CXsrPCzym8~61E z!9L$kS^k-2BTDuG=v076_{kl^{SLaO3dP!iM#*{F`v@v}{x`VZ9>xxOM;dpHIG4)H zeX8kAivL`pFGU(4U$x90&cl4RN_LPQlGTzU;*lN|FDm$3yNd-4cIrkdeQo#>CH}d0 z;|GmTv@?EZWs1^#@!np`lNZ-DPAc+Hh9uc}2&99S%?wY-M7qXx~)qN^qNY{ zAarHG!h0KZ(EyGxW+8FuWbqo$Tzi=1dV~!;)6>BqP|ASJJwDU;1T}EI7y$vjju`QL z=UbSkXE|Q(T?iE=mb3}`;>%2+oDw(9(Q_KBc4waWE{5n8h|ZcMY#S*#O>Cx;!kuj= zl3!=43j8xR2p!zJ{fNcSV~TX01$V;sIG11i>S&SW#APxv1k%VwnDmMYxcR$JrJD2^ z0x)hp!W4@?=(XvuJv*js=5@ZZbu19CLGLlLPPv=SAN*^CxLAuNrKrmlZ}1Xp+2J8Y zjyn;wK32V>ni=#E2Mtdn&Rs<%9V+GNjb7Y8s*jDD&n`E%(F}Q3^ANqpwbJ^7Ie5|- z^mW!>hqIe8?s9xz@207`2m%VZUc^Q_LH*aa4ZR2yIELE0@M|j(o9B9uWj^@d zYfoN_jYrS1Pkd~(;!{~%*FI|(_uZdAx4ee|N_M>}sqL4Wv`X%QE-~?L?+TN2jA&a{YfyCez5AwtlH8;z$;(PnGrB5Qx2d_Pyj?N8=Jut**0kjx` z4t&RUQ3y43oqF5779dVlfBmJB#@n^Lp2Hu!afneg9anrWU0{*rz0mHw-k_CZTc5Rv zi2A+08i~7)G;XX(Bi)jgY?Wgx0kk)p-mGMT(a`Wbt^h+5~S5ZqT=U^N^pBS z*?(@sEhBVQw{!L5I3y2K@fn=UL-X(G_4!agdTlMPA{7_BuA7ab`d%f^V=k2v;n1g_ zt35Efc)2Id(SV+hQzZhM1;Uv-rfyf! zBh8hwEPio3Qu)rc57?acS+7lEu!e7$3Httjg;_vI~hz5VKK2qeKwp}ULZY8N5sew|&F zh4|F+Hj5t7AYQz}C|==ntRplk{@M1X6$v6>^Z~bxv@h{uLl`vth_KhT&)@r$3-_0R zK>S~#b|*G}9cU$=1dB5l)N$nxtR(z4v*=ziL{?r!VFQ7p+NI`>X;|Z_e;7SvuIxp2 z+QNrgsKw_Wpn9E5lKXrM&_?0DyLbSwJMe;E$-cC&|`{$*P+ z?>=)93<1p{5Xe3m&;A9%6SM0U1d@e;L&9g(n`M#eHBxTu>e(Z@>a^{#+u++PymH-M z&&nR(Dd&Nu%t)qx2Ldk6(Qj+9?ywz}=sbJm&%`z3FWeK!z{G9%9o}xYuz7L&Hksue z@ag2ul|`anJhxr=uHulz5UF3C5tgpVshw&dT!Ehd&{wI&AVmjst1=WSl_8&*1rgQ86;hSlX{$qsBYa`Ou=Y z`grW!x|g^4^iB)Ylbcxr7w58S*VBG+hxUES0;K8pEh8lbx-!J+N$Sb0Qcw#M6=&Rk zZdfJ3H0OJ@?hFdu-u*ZUTS>TUmIp&B+;={%<8Um5`~imO-?uCWh!9fvh}m$*tY`Gj zY_VKoi2Yf2x)opH_T__5N17^>rHZg|x%EThyPvDaE>W;+8%mo3*v zqz{fi-Y2}-7~pCo`tu{s@FGCiwYy*CK(Nb}ipT%GA4|gf&2`6=@IsE5l-vU@j`fHE)W;O+1F&um?vl&~DfT6Rs zDmK>?GhZ-K{pUHBBNKXf4eNfDm8k1S>qPDyZX>;C!InJHalV$o0DBVHdT<$a8H+gQ z8t>_dSXsU1(}&}DrfkEn&W=#m#YoDpQgk2cPrs#|PYqA}%AM8L)Gh=3J zw(G9lH@H`wYV`rm(xp+>0ZT3Rl}c3pZO|49ySvi0lx3ADS0>Wg!w zzEmLEx>Zj3T@G|ZVKqTe6JGU+FV>lQQfHJ|IACmA0`TlKq1k9&cmIVM<-qc_M|vxC(}NAGyI17R)7D* ztjVXst|R)_lAD1&2R2DNYzOEL%mn>+@Eoee5)< zJ8xQnU!NUqv58v!@BK5dgjnH$wlr$myC*K$^ieHn@0H~9*=gUav(Wcd4+0>-ETPu0gVjw((d&ISg$SVLsL=tYv64GC6@?S+LoD&SqkX7>J3=S>>tQ?W`cN3=wx^r<(N}2b%tiLpG^lD|V^4R6@eaZhB-(Ao? z#}f7aO>V+eEcs_@JASNyVw27u5K3PC^&IlhKbB8AMxUl>iOr10DP-+E{O^l=_y_BW z7Hbv(S3C=KD780=oHy$x{v_=Oy4c+*ujCWa!+lCxJ3M*Q|MP3N(sV&zsS?@OTPm}T z%eT_rborg<=h@dgfoi}3W_km9BS{5;{xU=<^S|}6TjU{vKkH<1TA@54iGwo0Bj1b%-RQS_7s{m_wK_kLmzMiI=ko_ws?Va3~|_D zc|*fhBEd%1O>P4&|9kiK8ZAmD0w!!363M8})UklG!Zxg5>f|gL9k}D@KwQt5hc%o6#rv#%=N5r-SFIDUjo0-6#2%-Gsc7kmGp$BkNV@ z!X4T081F_SBHpJiO9|oxMnrz9gpjXcEPoccA#H!BjiBkoY@CU#V(=#qxvG;N60wk# zM1A`z@I$0;DqvqdF`?VESeuF=I-#8?Q{o%-s}gy!&x8<8b?sO0tIIT+7t@#^WVdlm zzWBEo)5lTc9frmY5Om$5!V^o%fAHnbW)vQ&P#-c*wWvZPviCh!@pt6-0_Eqk#kIo@ z3pxno>o;5Wu}Ao_(JzTGA*TMK6l(WA3HGGkYs_Vg>O5>cUwoo}fWPxktN`BfzYRF# z-_r#C<=<}w1R*!GaC803Pl6fwmr;R0{_VgZH{T~HkW*Q|{N8l0RvFL0lMkpAa&`W+ zzRMl8Vor;ZwXd_+jNn`WqNZJK7dvsjIZ-wu)AI1fb$dE^vB>tkvUs4GF{ z@Fwilt&(GHn0QRN#JKDw7N?X#E6OyRgOu<-+RM znxO&JVL}=S8qxA{ow!&5o_84?mK>)rg01}1ovwyWI^_Y-J-#~=&{eE?lX~&70$d~l zrJ9zV+UNWjZBU>B+7{2awX*}eu0H`Zim3`%!_+dpXn|%fI8MKdh1uH1W@>Ws+x^z^ zF#~x$2Gt@!KRxIfQUT}nhPIYCx8sMr@H@*hOz~VvYT_Vw_P%Jo(!WA^K$;PIKZ){?(RFq`~ zy|GV4<2>bDr=fT(W6H*tc3PA}^`OG1@9eR3#I{iA&Q|5DUpHH&YKItBrHGEOA&^_& zDP#{N@!Oprz_06^QGEc;=euQNs8{8X)@gZoaWz$8=Y2e3Vd#NAGvoFIXeaeoFFtH{ zk4{~58(x|K?y6zU8pHVkO8jC1VE;Oye?>!Newuy@(xCs+YVxk|#Hf;MsqMD1V3K+1 z1TL0obp1j`O_p+IcC9es-MK9`R{P|HDYJ5cgsGgN;b9)rwy%r;oYKjd`uK{`GYPRBPjA=k45D3Gob*-fm z1p26u5;sVm#&fBa^xb1oH^r-ws6f7dKQE17-QhxLgxGmb`y$;S>|(6JZ#OsgB@<6# zuTngl_ihBt=b)GWP44iYXl%e@WEcF+Qc(4?tn6EIN5oF;&Po!r;8%f|T#;1Hu=V-9 z;1&RCTe=fbT-;$-Ig9YwWb;7@&sLxQ3$mx=diC6`h(X7#bxQ z(mM5=L{eg6G}UcT z@%e!R8h5@g4`${*+ndS6t2sS<(eJNTS@kMSHyFy0-MY|*oDM3himEtpGy!upB>UPf zU!OgjU}k0}P1Q1^_vnw0A481id>|>(`^3NrvjvVq%^f8d-3lK)BJC$;Cn8N6_BJ-^ zcjyzKau(JtrmYCM)j?_2+i2@`;J-i(0B_G32_@l z^u7-zz#V`uorEqv`a`eAg~KLZFU`DsbhesMR$Ab1xpdE3wp}J(K6BnhfJfJE@9fPW z+N!pF(O5MnTYWH!8k1@6MN%)uhq2LjiX?Hz*z!r%rs~-` zq(8qrBD#pA;LyAun5LN*i{?ps#a*4;zDR9*&A51AMH}J>_deFCouT<6)1jWTH}JqC z&|+8GY5Zt-Y{b#CPP!0Pg(VQ;OX3^<>BEQ#UA81FNL+mE1Ix>&L3M%ir;mi3kR(2c zOFMl0@7-ONDmA?(kGag!)MltXpUAURwyf{nNp5q@Tj|K+X0`x5MA_IS&eqe1X(c85 z1G%>&KItB?8J^wu9WS>bC0_?L7Fy6c;d^~GX5daOOQ~0Bt5fZ?{9Q#H@ARtSw3VZv zVIGSwsowPB7+Bp405GgWpKnl7P^1DXCZM;)#mCQjju`;@YhnF4^8~JI!HxB@f`!RR zV}nM&sQ}oesf7i~b<7Y32wRD-vSjEb<$t{Rd#kf&H54mgK6M8Mn=(_XJzJTkLTTp;l3>RMM zg{x$_M~gL7S0{cA?TJL}|5f7fJsgxb3z|LKcDLwD7F?30@f3AgKRZCt)}<~|%o!`M zJS~KyFK;}c-<6lpT}%Y*YQxab_h=*lo6*p5i4C_MK5%TJFFEMuDcg#!r~oLe6z4v{ z+0!=uU%&E#S<9faj=|cjV*7I8n)bmXiwY@i4!>54-hAbG2qLV-9`VVoCEAw_zlPV1 z@joVudh;b_wwg?oS-o+@ISNIkz|g<57_JT6eb3jjTf@w@;JWTr zII530w3SJs`Y>9lj)owRd$>9}iAj$6&;D|Er7iN+sOyc#%8bfwk7LcE2%R6K4n!_ z#r2{xU1$39lY)tzljSzK%FiqE^74uA2NDT2?02y|9Y?qu9fI3k7dKw1xJNRx>AQ<$BY~PEP*u2Z+#&VkrONzi6u(oMlkjgE`E{P4H@v|q zAH!kM{}>xQ>k_{PxGpDoh6XdWpJMWN`lRN^!P0amU1Coo9QGDkomYD3hMrA12&K%P zk5+bcw9Gp&#DF7-^x01ql-MUqEeMXvmE&#NdJNX{*wJ)Emn@0s_u@vDwcH zvHKzS&y6_~m-_IjiFK)*B*rF2N97zF-M6a(n(-&|vnncTYcERs#cXC9!12zQCCx=+ zTJQW47l=b1=4h;`gy{C^)_kj2#S5AOae!&hvd=Un`Jnj#o5;y#=`e1GIg2>FZ8Rmd9wP6k6y?*{z6d>R1FYJUt0hKfoVEN` zep{@1bPu4?3aAG%2d-aTqj#=TJwOqXh9YN!B`SiihI3}V|3a7qe=LS@q{OeT7y4$Ku z;W{-g&(Ai>0SL{f^O;wD>e5jg9wk7_z7E7r9FD3@R$lLTX^egQLx5rOTM72~`0#1A zIHHwL)u>eORegZ3Ckfp`)+gyF^x9hxO^-fja|l`egdr)G#+<^Q8d~8nZtFxYR>&{L zsrpKU4PQ8I-H7^NZU5eEM^wBd_C&3FVL$2(E!RRI*QCu!<3iTA)-V=l%A40E%*Luy zvJ}Enn88hYFK{^Fd66&=UBaJtP$=~2!>G>XV4dZ!Yosj_X20XKkofTbemr6Xz7Y!e=>$2|U5V>^b*!8$VA9EKJAHxAi zaA{$OgU4G_lomY#C)3UViEB|g(T2Fs^fd`NUS+;93W$gK+Qm|78qtdY>77oITUe+? z1*KRUta%`$z(n-(hy2rrc!EPB{;jVu{`1tT%fNeFa>iXnU)1emeprK=!X8&rZ>yk+!txs%F@gJTwwz?R zAS0Nmbl=H_`_)+PEu;v$18gj5yF@&ZoGgeO3&(^xza^&Z{yZFRD%7hz20(Z#TieS% z_XeeUS#;RJnzxDj$XhK}cURy2PR2a(bA?>>dx6b(8)F9^b(HpX#R5UbxZs<*yHD>s z|5Y1~e#P*hq;Wy6d!a397|)0^|#Ykl(Es_ z@}5SshSJh}8}-_Ls-kz^fy%pUOPZ9{*vEb$ zSm#1P5H;=G-QCS^H#v+%B7CPRKmj2DNA%Z-^?G%RvW1rWNt9Hwm*)QS;p*_iuX=n? z^vsT5`-($B{dP@BR5trpAs4)c(`Al+;hnlML+`DE+U@h>$_DB$ayt#z=uD+}8t=(= zwYmqOe8GY11g4HMVYpv}A*VGgt~#u~HH_bxlHg`X2LmYVFVbl1zGjbv7PK&7gatQw zX{XGjACZa|E{ho3*ozvlQ$gEvv4V`Go4mZdV;f3ZaDVU8(O{PB+tkw>3ea)nlcfSz zp2^V6n`wYu*Oc3I>IYZUH%Z>d`JR;ID`wb9mp2r%M$=Q2LCqc5|Kz^@`~Fl>yGb7I z>}>RLr7gP!cOw1@&M%E$>WN>4Hu+~g(laxc=LqYYnp^A6yI4p<%`*6rclRpd;2HlRZmo0CfV>;+;ltQ*9URp ze*Xs9W}tet>4n?ht>EyxDo-Ca8AZ0E#zw|ywPkF1%p}ee7W?E~L`|nH@P@X)Ys%rJ z$W(uscB}`jm%X4mgq9J=A`9y-o#eg2N0WBD!{4TgckIi4y_ZT7Tx$9@2Z9NmI*(#) zR=@S!Y)!;j*4Reoz`RjQZ{fr5%Ge*98pMvr<@2;i;jV*y8K<3_?wivuS0sfa%Xg-$ zV-QN$N7xvxq=Bs~Dh=VqD}vN!z~CnJtWXQPfhFKNoduL;rc5J5D{RIJ zv{^|a+Aq$}X+Txx=U|RbM4p}{N*_xAFlkGkut z!0@mvv&z{%r@*TttaXvL`jyxA!PIqS9`kP(Z_5vn8~XKL<%4DqN!ya2-lwYjYRdVM zQV?k#*`VjwC%C-4tkGeE!^JW~G^6&I@JFfY)%m5L(0->16jQlzA;`ua?k;eXQTI%T zzjtimsoXOH8Flfeug{V?sZJew=WZz&A7VLE7sM>)${`IL2$ ze2M1Oy)xY`D2>Mt1OgpM`tEcK3ahoBsY$Z0vD&WlG>bIzuCK2LAauW-`jaePo@tQw zv>JDT7F}Qr&B*e^FF8{b0Z+Pd+X1BABr%!)I?3L_jViAz?T1s-QD!(w2`QK+^C>%1vn~JUkqS zy)M$rp4-Vuy^KqD72P?!mJn>0q57pSmX?k%BDlraNpJXe6lu3O^-IvFVpPMqAB}#S zjEJmz*|?L<`O(Lalki8Fi|7*JbD1B_84|!gMoVWnJ%Lx*uKle!_xd8^RL1)z$oUCF zx}!k6WOh}R>TuZO;ke$kWAE0w zO@Ugj#xQF;@@9R6?A;#K@6SN%!+I~_XqL3N-K?7DhHH3o?&8;z+(FSuB=f>SjIz3nO%s#l9ZwK=VM z_3=6Tl@@#aP(EHe97M||Q=|FsA}luI*bEVC3?QS^^m_%B>OrVM`FFuFLHHAS=fMHicu->y0CL9uAK1`?p&50V#>3z z?x4@t+(2JlB)RWo?Jke%LASQoe-@nA9rPPk*pdr|-X!B_*%d`TiBV0h zs3;Y<*wt6rP<-d8VRLrfx`ZaP8UyzGL_T7MA~X&Azw!{*S36^)qcpC@3Q1cj?nuw= z35(}{e{Q7Z(T}|>CNdCD3H9L;R1JauCc&xBU@5GN-tOBu7_5(+(k-)m;3;vx@0|zQ z)9H^{nG4T8hD!mcu&x$`5tR(cG3P80KDa;Gu^A@!!~iv7o0bi!Q<5ho1JgI>4 zT5ZCvw4YH7-oLnV>2|>(`m3g@pe3~|O_}>+)jC(9(spA1e4}t@qBOgpKskL7*E74l z{y_-7q1Rrk@jEQn#86U>tXaO=de5-}z)W`^D=^SlYfXbMq3x^o#_<3xy+4uDHn(@V?sp(L^cO33U0Q1yhi#kMk z6baPWBuouzj}#kr%(L>4DS0yT7Ltyv%mNn|Z|E8Loh$Y!v0pdB*B~WjrKBYNwc1-X zHOZitPAB4~$4l0DXY9J}o#1d3#7R^4Ov^+%Mmr&tCpO)TQS2S5;VlXfhH5y@ZDf(9io zuOLH1#!(GRc#L>ASy4Y~X5)yJ`+Jv?d=cdKA{kUPdScTRT37RP+CeQd@t!AVg-CI2 zFQv+C`P^3>ime>lWagC3u+2yzgMALO+h$N{x41IKdka9AskZ{56uUoe(&gYi7pviu zm~GPgf$~EGvMH~#he>GYl9w*A5?=*{%OPLqYmyemX&_qWe^h-CnbclCwdJez9LfT% z$NelKBKUU#inVS1{jjh)W_`=Nj$VVOb_JETvb7kM*09JY>89#)QX`77Qs~h8mmP%8 z>qWiGmre4tmvdiR4Ri9viQ8$jZj#8b;?^))5D(qN?a@={V#Q~KeirDD;5g54(yCl{{=vo{xI|i*q-c2W zbLHoSW!v7l<~uVuBy21!wCGCCDobW5w>&n^WKmvBe0#xSp4{kW4Vrf3hu_=d&iLVX z*JoJJz6mmD^JUbKaQHLe?7SED+M$3g4r*kyPo|T8@|_* zR8+;qS;0+ z@mlEY2DFYYR#h4mHI zBh2Z8IV0Ak6Slxza4rW?+G~RvKetH79S8|%BLPa}s|N*OD|tGj{C4Mqh26Ig&wL&h zSN*D~0nYF1i#~zvRR;)!75_$ege2H%XlVK^QqD>ULjE;80`-`G6yX2=qUMe039kRI zHu?zOgu#T($!zyLsdvSxI?68!;biti=hKS2dd`| zT88_Y-8>@X8eV_mZ?hqGay>{gdHW@9@d>9^LN^OEo7;c#LEsYE^X;M z2R`tA!PyUwJE+r#*7{OKy*I~;FL6jm3qjM25=Y>tPd{`bYlpCaW(D`#zc=qz33RQv zZxXuK-PdPuLFX0RnD&$7Ln2~Qcweum^UBu=TXak94!eHUZWc@Z6!c;#2IhC^C?(Yl zySzkoc6M62nLP{$3kA^hNNAm)P&FT*=ui-FSyeSRUk0UgR-*fK0oM`mYag(a)CLFj+1(SMm>p)j>uYP(E^7}v zz8GtId2XMfEP7Kx;Pvt2$AJ}ahVc!9n;h^bNS2%}v6l*pr?zBUTfOR$@Rq%}%pbRW zE`>m7#7TzueRy)x-_s)#@Z{!DM68$5NIL2q4dy_p>RP+H{H0ETK^c{C`t_{4W6~YBZY20T7PxsjjKeqfZ zFSytaL%|kld?HLcKDlzG4_fjii7qd#6KeC5Y)*M4?s$ZDaT5Qr3muyA42z(d51m44 zr+XG!PSZnfP621~ClIE>4`>>goV<^qp&((1=>%WWsKztg#i&?YTidf;M3Mf|2>D|& z-ZoX|}iVlwQV1dks(2mM^IvoV2*>yvmYbIxP6~s8pM^2!4F*CZMRG(6QU1 z*+^sLojr8#g7k|F6+X6R^Mia%7JY`_ME3)W9^!A+Ti3rMumG6*xhLg{BZCw7g8fSa zAGH*Ho(^os+p%|_cYNZ=f9mpE)PD6X<)K%sEnG4`c5PDB_K*2=5L}As?AgDoyhz4v{9)mKpk}7J4jako5K!2XZtu;F z(K3y<#GeTtSu*jdnp^TxR7>3={xc)+TvFSPZw69?y-UHAiIky5ra9ohISz7kpv`-+ z^VVBsd}FKGGv+$(3&2zq?0jR)iAh|GI;svLE6CQxu+tfpro^gk=IvVQ%t9{efG zfjBkMa4F-bku-bG%6e%w#Rtv`fAr|~t(+e}9t#PbFUK49^>lqyxHb5cgJY)=eMQQy z@8QxNhk1YkdEX0ue$sWT(=H|P(Oid`3{=@B)xwWTGcbOZuEtEwIz zryJsDFRiVaGZx`~=WBh`!jCtlBw#>0;1@s7(Ps}9B_$@VKWP`|>lk%()%OSGX`4EqGB8M)+{*Pamu(G8A0~j(3XFiD z?PRVg!1ulL`}Zp>g$N-iQe<}k=CdnlZvIT$sHr&+gp9+R6Qy*9ABNCCrt#U{oXCdn zLA1Q&9dQ#o8vCzCvc}I(^XE(iXC5qIS$-2@Ia)Mh8VAe z!e`!J99>_)RBN_}Um7z$d-e==F*V!x;HRlcqp_Zzu8FDX8+G+R4`0f7c=Y|&xpnK7 z`vY~K-+hhLKUSEZvm+Z|;-@<+y-7`YpdrC|mzT5KM*RGNz3D}^NvjcuLB$ma{cdNWLl(Zid)^dt= z8$aB3!FnPlMk9q~TM80m5QSSThY%AAk+Qw3vp!n?F=w=U4GIDNQ}S|hx~wGWgC3i! zYB|5iapmj`W_ps7+4L$TSS^8A%)<6sMJ2cwi&hhP{6n=Jv`kjgZC@VFqU~CO@Kl?m z3mi^&jX%F8EPbro+tC-~amSIiBDjkt`t}a7tc*-qdHJ)a3{p#hy>~y3SJ+VwKN9y? z%cQ;B4JK@;(r5p)nJypx^iR9=(|W6I{CNU5ZC%}8nt7xgI?>6=JtoCJfBq~fEv55n z<^{LN!81PTSsQ8(r`=gyeT-%Ox$N+;+-7Xwv+l-xoPoBD(@%GbwZ8@)qh+To#3rW& z^vEeV@W^6OSS_S}Oz=uqeh01&PM^c7s9H)hMvMLM*IZConMtgI?9?;`=JJKDKMfEq)!GYY7{a8Yj(7o5;eqAxNJqM}q)cjzIiz)*K<8Bi z&TeU4UxspIWoCW+eS*J8NJR84HU;mjSTh||V2j$k`yUH1S%S(1(ju$z`z@pSAr-L? zRaoV$cT7H0ykdA{eGasnvs^~FewF1Q*oyblfVxv#P*G8t-F^}F za5&@EEkc(=tlO8J$0vrogx~4tZCr)!zC@;+934q+_Vx4}Vy#9;M?Y$hkj{Cn{Bn=d z!>Pu0qNL;VU4_*MT5G3oN0jl#z8mq{1iI36W67F`Z=N{%)BE5j{ zKfBYGJb}PQQqXFZc)FH^;<2icrjn03|`~~ z2BMv73DFkMz4Ih;|6|=Jk<%KQes_&z#0;XoriS9LOODqZXtoh_M~YPIB}bk!EG;Ev<|O!gbA7vF(v}`h@cmnIo$Z;^IOFgtl2Dr3GT>g5 zy+fJR=OFKsO;9-R0jI~Zv9SpVkZHcF^LS9EDC1G(9vM>aeL@k|78e&cJw2UPsW)!R zCo^In^PGpZ$K6@YzRK=y{ARv^dUOmn{IdCb@K}DWwyLVbo{5f?m7AvKV|>@(Q_a(x zM1gi@OA!+$96`zEPWdL{!hYvn#|16y(s4(u9#s0H6z(8-T$E^A20=Gb-^%hb3MIXO z0rS#Rl2*pD@Iy~mKMN&Q!m=l5@toW`9#2S+%$!eu8+AcV+g-PF_tb|e4;hy^W-(vM zqO5v%N`twh6gyZ8Lp}R-KpCPsH@Dr4!uZ*?sq0ELP9qlaoJ#tj)BC>FKezE4d!8te5G2u68XipD{295LTgSOfDfimJMY+M5w!TFpMGs(11j-|H-WVUm!Y<3vH{_cCT? zc6My1kC(U}&(J{w%CP$KGs=i6UcOTNXuEQ_HWVrDsp5Bffic#~wdB{{&Mi(dt(|Oy z7od#2XEd;pPZC;r;?U?X3}$*Vzy0`VuxSS)Qi$KJF`>hi9YmJoye?Z?suAi~L9$gN zd~)fR}atnccoe*IF+SI3)q zKmSwqf`CdODPGI>jC%>&p+dC2K9a-(>H!*&KnGwV2yR4q`<|$`97+0PJ@VXi(>nPX z`Fz#!(ezAP$KqTSL(IJr9`<3(_@HIY%&)X5|S8d zYj0O7aQj5|B_M+2QAM9@+oMfy&d#;1t#V;1(5Cm}2+B(UT2fDtQmgChHG9Rms*nAv z7zppyU0up;{6IFQxUcjmaUisHbk4f+3dPQrVm^HMFie>mC{>@D7)3`C3My>*>bZ}J zKZl3o*L!gg;?Fw>9D3C+zh5KrbS2y5`uHMp1IRLcMb6IjtBxn3wP8{1O|77G+wdWc z5ulzODt~YP5pzcM20UV6W3#iiF41OfkDyfnbE^bGIMB23CT|2pjgeS)J{i~%eR#!d zH)oniOAE3)aTu}==-rEq$`a9d2uLQ8;(oebg-4Qj*q}_p-=jV%hEh%V#q!N=g@lB*K^T8q{xrM{;tQ)i|ZBAAn z$cvv362MMd-j$w>fj$FZXoASiN93_-Jze?4{#n|IgbEonKMJn4K|X7U5D_4}C4-ma z)d1`}q99x z^{n62-@i_I9UE5dp00htO@Pr|jTHwK3EMzpEta{voL*c=f8?%nBs{EYYMxa!6nAo` z)D@GTnQ3cY6nWX8jVoO3F#l08pGJg9@RMX=-II%+Byn*bp2O*CXOIRwPj)ubAWG^@ zO^iubWkQ_qcYpu>J!jQ2s$(p*&12D-+fm*enZ4kcJ!RB;sCD9K!c z+A8cQ&+u7x2Cn$+fCzlQ?2(DxuWBiw;N*RV9)eey1=`gQnLE1QzHI;{;xzjpf0JVE zVe6yX9Ypu?o)p%0p51s69WO7j7&ANj=*Ce1@}0K!_#hGu0u||^-3qc}Wd|>V-;Q`a z-Kz+pi`)ooUi>otoV>h^%~jy{i-7N$o|?kJK^iAuFXI3CeuhKBBrUC^s0jRG5EAE8 z1PQx783l=^hQ?tNHto0ASdfY8<&OfhNq|PXmrhXSs80VfxJ5AMWK8fZGc)qDght@1 zrmpUKIV2hBO5kj#xiRNUp$#YaqO3PHiA|&MO0n7U^XaxDqBes8T0bj0<`IqKr>D5)&-(@lj2WX`{LC3O=acHYEl7xk_>|r>vwwD(_`(9T-L&9i%X@tN^5vE>#FK9I z(}vKqSv9JbW|5{nh7F4R(Wx%X=8{gcj~E2c?h~!qbzklivq+SDT=`^6sreoI+ifP5 zag-|y-E5$#=l3?9eAV|NSGP9ZcJ#5uNEiiZJ2ulArNeGxYBR@5z3*Rkcw7w^hrXL` zoDQsHc0veLMU0TIT2%cMDa5i>!d=q(R z=L5#6iWE`rQRh6B!m%}%UDvzXFt45Z=4Pq!MoS*4!>?gsfsmzcNji3Ep5VJ9lYcQT zbb!+0+%FF0A=A~}5?-YfUH-WHRJj(TB35~yf5wl=4Y z70_f|UZB^24&z7eh6jm#bp)yM z*Mi!x!1fQcO)r~k74s1qnr^_}f>aKVlFtL)@c|1|OGpHgEBlK%j>%;jQ7y6g@9HW3 z679(EZaYI+t~O%=m`tZW=mK`=Mtdd|7lz} zYuc{cM^$xTz9qQfd|!zPEAm|nQsSEwxq#!sA6FJhy2h@VS~pifK6>ikLwN`Cjf&|K zLCVM;k7I#hCHni$!~oBLC|1Zxfk7=ZGxHCl?&bZYnuv(lDvpr}&{leVh!Stfc6cm+ zEkLdv*||K1$1mdM%Fd0Rp84JR%{cYvZIhxfMxYY=k{9?xqMDZhv`A!k62K7IQ#K=DEhUVCgrd{h|VnwA^p0Ya; zK!u`v3~_H`9TO^&-JV7+4B#(7p`tg2WpVp@AfjS@K6t>E?{7R`{{8Uok+Z_cI2fk4 zer`5B;jRkIaU(GaydFB=ZV*|BzxQY2r4&91u_P20 z#D;C{0T=CxfPboBX}>SVJAr&`vKDX3IXte9PyqjQ z3Rh`O=64J0q$Ui6yid^!rkX7GWa9?9TlItRVoC9Vkz55zl<0yn(AI&{=;o2+pQ1PH zfgxhcEPTC{LefOgenkC_SMc)cDs`5>ZG1l=V-lR=ACE4r+yRlFN@fyf&@D_43NQ=E zPa0i|K2b6cP{TQjMb^~u6J|ho0B9xsUY!KENgFaU^4WM7l4aeZHekY+8W>1Pg|p<5 z!6#N`AUfB9K$~{GM-wz5J`k})-u5E?JzWIs0}k!-gQ-GYyV!^Z z#KZ-HfJ7)lG7gSd6g~hw*|6a~2pFijxBwKoJDl8Ly&3g-BO`+LpFZ&!@J{@h}U;}{rMYYf4wI#H0a-FfMfCc!RuukjWTmausvfNG4Kq83UpU5bp_%hPYscQmbF7NGGW3iRT(42i7Xm6kWeKrti! z&XG#wFDpFn5?Jk1CqT{!ZG^4Up#EABMPvwno6;roBR%nf-*oId8?sTUJu2`2FW5K$atdzqh2{Usdot5E!-C%}q7#036#_4$v+|NnIVU$>NYas_mYL~OS% z^gpKbBHRme6DLkV0A69bD1}l#sUl2#SQN*#(eC|l zb9`5GE++W*JJCgyNJ-MWhrx4PmQkphAo-tnXO7asF7*oSC`l)aK?KgPa~z6p2`yPM{mDm|`J1WV&nylZ$S4~=r>aBd5zx-YrjteUCavdS*K?Kj8tHpAKtx5Z>Z*I z>?ot+C}b@pZr0zGIvW@i?AG3B`j8Q{cn|fF?^{wVG#Q$=_+R<9A6$dZKKtEn%Xi!A zaesAC@g$B)7{xB&%E;BYVv{cVdjM()+u^>q@1uyY7~Z0DWo=&l z6|Uv`ltbJhSSbM(AMx*sMc@LgA6e76+!RUTAt9k4``?`fzv>WEVlbf_>YI_j`N%{o~^nBk@Y zyxUXElNhzs5SkLIF$gD8)P184>zKVoix@b{dQ0=FWuW~c)DXoiMt75EEO5gycq}m) zD6wUj2O3SSdlog8o}c^LuTvjpd4BYkAn+JW&l}fhY{j9HzK!jmqe7RwDaG+6_Ep(Y z36k}9&J(7N{2KmMCSvQ{^?z=TlrZ{rG!|7;Ez#rNL0_3QzT;CW@D31ZhgZHRLco0PUv~Wwjm!#+rJLBWveB{kQc$*Xn5-p54BpZb%;xF9=@2V@SpCC7>zi1=O)MQxeLM1itdP9e{o5om znndtG@D2x_PZFhKKF9Fsk+>gyc8p)bj-5P#VV+uAfk z%R+%-PTuy#N*08y$g=c{C+;HM*&$2pB>AAoqR6Q=+UgLMu?n>EVX$N7e;lCsf;pVU zvftOne}DbrX*~UYw%mI?-;n+V5{$tIqjCdes~P7!eHc8}!Rxa_xGJRP+s0y_^_m`Sop zPEV+cG*m>e!toHr6oFtE^?5mXOms@jAQtQ>Fx^7MvP%5VikV%B2I|o$+%z;Ol`Zx+ zdos?YV+IgCJ2TX^9aoBSC}yY~Rb_9!Fz`byu4gnHL&Z;)&j8vtth+Po=tE9U0Exc2 zKFoe_$UZdg&5qb#hU&3lJKSNFrl(JSLtm&>hKvdZbhzDEQmY<&@X^?Yox!HzFKcgq zfm&Sa%qDNQ`dEfW6H#{KBt@ciVD#}2MxxTBA}|Q!bLAh7HT@!%P_eO*lL{vcM6Gv$ zAtb~HCU-VeE*z&d)rb~Z#bub!m!}8a<;%Z?z0R+}`AGnu4q4LExdUnyqC@Bels1I! z2|I3?>ao`!gWqrTb9E|*)45)^0IjFHzo4KdK=4%`N%$2FDXS=$AF{7F4TbcF>^EY2 zkILLH|D1amHbI85@@9{eZC4lu$}HlF`fM5ui~j8H?Kac(3E!eB6wEG629$un90_>> zX@XkZlbf;nIi2#RlLRCi7y10?HDv<=^u% zxR3DC!OCmyuzD0t+vTRs{PCROsvt|cS zBzV8^Gg=N7+uz%2PpwT%I9(XEtI~vp!lWbv;V(b~6L$iT&%b%aCb;YEuZE9M>A-ni8?KIbk)mi)q*m-phcQrdwMrz=oi;UHEzNJ*X?sn{di$YTUXAs#*n}T`Bemy(x62;Ba+pl zm)D$z8oN2X*&kFh^G);9`7)L!r#)7%i$)M+@=pnFZOnuz{Re(32ELk^eoq*Q;?Xo4 z23iLV+87$u!Tf@$r>Ys&LH_}9dGYbxvQ)9Q%=v)ETyqJ!NV>8S>wzMw)uuEUzryn3 zQ>J8gtA)ZV0pGs{OIn&1(sQfLlb4PTFPRo}Z6QD@8y5j2A~10y>usjE(nXzJUa~?8 z&!!_-Kdb8~>NsREI=US$i(CQ@zXr@7pW*=}mgvy=lv!E%C+N7@@$J9>IxfNpVD_>B zpi2cNU5lm^6x?=qnd$X>ZmR3?=n8Vf*#K!%(@ROnsW-R^RWf4_q5YAE-vt~*jt~&V z%UYVw4J0g5O?t$d)FLIoUi}R(ow5rw+U1Ir&5xGIMWv4Cnvf=sm(YFroq3hwrkRo= z5xaal|G}UrDd+wl;f*lIC)>$5OKYzH zWk%HGl9atRZGSW}k)c$khIWggn4D5vyKwB;KBm1E-Xi!;NB3k!1hfKee=AnV{}aE*dh>D-t&lSL5cWiM=(+SUgIZST3x>YD zg}(>KTlq^DBR@<3VmW^E#rCm@B^nu7S+`9X1tatnh^D>^A5w|`Zy?`cU5hItAs}(y zV-V|L>vb^^ur16#SyA8Y^iuAL4r{!%6(uYxwuuz_M=&=HA$My(7xUfa+We+>cWz*$ z=6c#u%cYunv=hhPUL6E$SSp*^=eyH;?=QP{dz&A!A0qUCn1C671B^N7?h7GP+ZJeV zYF{#gg-5K`C=94QR3hyoQ2VWwu<-RpPI;DT<<4-}t zceuHRA^E@pRI@YEgom+k5dT&sh_P}8AYW~*|-2}5KP;zE^ndE=g|KX7=m_^CVoZo(<@oA71_GUx)w28-#E6u(BmrbFy z%V|6oiQ&r(jObccgGQ;nggxqk%(lR1qegks((=-b1~VOD2k>-XW~|rUguHzdZPU~rN`>y`GeiSn|N&sYD)6+H@Bi3uozGgp)^Tl7w?6K zg^+6U6j>3OiMQYO`^1UK7Hg=4tI`HJc>mu({zsH*#1^15^lfEwQ^Q>5Run(MU)dia zmiQ>ZG29xtc2cs?*4nNOW&VwniRq*#(GLVNqs7#KPNuy0o|WGwG>53}CGBy%{-d8h z@#yj3Qlrl4?r_K75L5eu$I7Xam|V(;2@v0(oS!rVtOfO1pU_`aA&U{6F_5L@6ekhy zUhFkSpdm>*K!s`v_J1Ah`Dg8_dhZFlc>5mFTUM!dmK2La4lE?H+F*Z2{O z@UP*RVSoh67by?wEs#BF;HGkObE%bT!*qVHD*~Fd^wCfkf~{AC{MGs~E$(P8W7Qug zaPp+_!QV(A+xXd~jND5Z1Nze1t8K(AAgT~Ph=ZPfXTem+WGqY9dODH_O`M=nD_{xi z)kS!TF#^2kFP?ET7CRS>Ve6kh7gAS5gna!bnMdCV(PntikjCvv&r8E=t^qo&QoZ6Bp-wF`Q=U*jAujm`GrAr=X#6UTeeLRCRyU zX1@G9NaRWgNu*q-D`v>LvZ%+&`)M#5syZ1S7vUF#oP{fLHarS!U<$kA>HrJSDrHEo zw74)VBqCaz%yYLbAz#&hm4nx^S(?6tl7`=PJ6E2R)iD{gI}#=pQZQjwbzaqj6%LBp zsjsW;A@2_DCYgqO-H*%=3*OD!{wIB!jzOVcB$Z=x?>mO*>=w{R`KqP{DULlld%rBX z2Ka9|$q%H4;PgLeqZfxuI^ItlE2k_)9p=iXE2o4DenI@9mBFu1<{_*f4L&4OxguM? z)B|dnC;h>_k$&o=1eqZd4OaY9*0@kT+v4kwK>8{?i!<)4f`=-hX0%QiKM=;-Zdhj6RO$hFkg<^mFl zRYwPeJaMrJ$LW-GmZ~>_Kj7kxF**j6n*&iOPz$;crMis;0r` zML|>wm?9-9t)(#)#c3RqJ73-_kcV2O`luB^m>!UrdLjlL(jf+^#&E2vw!eUM?4dn3OXSviF>KMuO506i;+seoS z6%Dh|{%-hmwaq=L2{-Y;(6Af1jaujhafhJWrZnYF5y$x_z1ATSGCXuF4_Lycb^Prf9zCoc)}J#2-$qr=$vCvELA3fXD=rIo4W;{&NTIQ-!~+m}66Rn@hu>i1VZ+eWuv zSRFzN`pETbngqn*uRedDJm9!TW?t9^LW^n!ZK-Fh=y{4v<8p{RVDv7T{%adub|8n3 zq+&atopsAAJl`|eHgAPrnSbDl6wT9T_-G{FL=4@su^_|582C}~qAm_ZlU@qt(`5Jne2q|CAo-K5$d${C)->cK$ zOp7sTD^Kl$^+P6v_g&|b@7bX@Dd&8ni=Gl_U#%j-S6rutqTSmXwDPe()tbeDv4=Rg zrFyL+vLY>Yt*-Ct#)Waz5pUTl02w z*WI0VO|NZXXizC0=)_CtW8=*}DQEXPukCBoW)rXb2y-SpcC_%1n>dL52UZO9#q;$t z-Uq0hb_}}MC@9xI!BA*aK}O6!CV+U`CuAcdjL4-Gk6XQ^^PJd#+=GfXdI@pi)a74~ zUz|_dl*kYZEK#+>oj-{Vjzh#6-8ON0WppT-d99*oJT7~A(eoGYiTFAX{tTDAbrm%y zZRKUIkVFCLB|pyHMxgCU20w6W^qEd3diUv@q!Ka6Le~850nu$uqEMx>=n{UdGR*r&cSY)&pvYf}U+kHE<%S+oYI%bMKzOb=i7@z%AeJtXUW7hy`VCBN`_*2-mo7DbVpYYln-#oCu+R+$+ercWCu1OrAk;%vqJz{FLrT@7 zi~G88p1buQDqp6`S(Tbn!gZeZoXNEDZ}&#TD#{6N-TT?+M)DIZavsNZ(E7N~T z%kV8Y4w&`$)Uxu$s{7)jhaILlNb(-Z>wEubKGS(JDj?@g{KUsjlQQx+(qlxHpFL%< zm%;T5ODl1&9>*C4%qSy!1XHEoZGP}ucO)d^wE?D+9emU&pG@N~q3LgMa{4Jb_!Hk# z+>-~671zJdREqQ&l}eKY0)Hq$GKuHy%q3N%U{0)T!4wNzX<(&Bx@!24f#X6ceRxj| z4}i%=)4N%0-zx91D*&>?=x7HxP0T zh?$V~^#Ngx|+QOn!V=X~qUkycrH4_#p4CYK?~_$I&*v!siKG zwBXT611VD|Bg1NQ^RzcOxZpSx`s*O|NXTe#y5M%8O1wE;Hi}wr`~dGODKV4TZt3@A zKqGccPY{T~eeH}H*dWWy;B;YLe-|_edlon(9+Q{v z%aJu{7vj9VdMlMFs(q38n;WuLV7WI^LNgQmJR;~d0Tu_|sZRm(?u5~vHML;NcY-K1 z90>C&;LQ7A;2`Obua#SJIyK&n|Bg;ng1mpjc=t|1F&1>{x32!>5zOd=x1=3Km~W>7 zcu2K%UjvW6FW18w5be!nuxHk8c#l;XF+fCH=|&I5iIO+2a`~Q zwYoo`hpLb&q}&W>EWiLFF&Eig-3UTNI3*DQJRQbmJ8&9esph!�t$^Kj}kcm4BM> z0qT9*(#qPZ?74JR_cm4hpetNgBK;PX5O2fYFDh1YrGym3if?;5?{=1*HqG1>e9KBo z8uFU17=E!Gui)3+bX1B+JsN|Kg#sgx091V+KE`G`COCuB=Hc3D7Sf^;+XwtK%0 z31Tdx3muwb5vJ>ain(UPc*40*Hrl^wh{ur*uJ00 z@_Mwr^{B5j*)qMFt>u@IIbDm<9ZtF@WiD;hOymZA7HBYNIJC!YPG*tEe7YE#xkA}Y ztL65FhP;JR)x;k!I+q*%_U}JJ?F^g11aM4nFsmwPR5aDam&oVxJk^pCzqR&z zt*^rHFs6)S*jK4rlp!A*-*Oo`Srv?JeuVSnqKg-WON;43fESD-%F!KMwn^-n1YOCW ze6_u=#ifq#jiJdVbm6cV0sB1%|6bbnjV!mrL~MOr-~0BZsij#9i$aFmlM3|Yh4WNG zIB|)*FOO8{==1%B%}4^%zgA~dl)&y;^oKCjHJS_7;QlNHEqmWALEOmNYTw)(F)0C7 z@vSuosp|KQQv$j=f}4a#HYHcks7a1Y^hD1I=$iGT_On&$sR5sUg8&X(GB^Lm1O*Yg zeBtk%6DRU0!prsM@w;%1uXt8Gl@)R&HVpKv$_c>?nkX$^aYVFu?sOk=#7))J-378* z3&c3Rz0Qs~X|s_3(&T+?Be=J@Pf-zy#ngJ*0uUgkJAuG*Q?d3U#bLE%XTaueCeDGC zKy`9oD%zUS^@8k)kj#Pkkb_FFgv)IDOqz5VK!)05>m|+Ut?-nAZ%q-U85z|3wC0G8 zMPcPC$m#u7in7zmt-qfb@9VDrn*UFe3m3p=g8e`;PW~#MsGSLrA=!qJGl|zb#-3b} zL?oy*6Yi?#^Hz(Gmro}evHNi|FZQZ?Dq4ue<%fi8>*Th1&GUozC+L}z$NYvm5yyLFXKm|? zxUrz&^s)6zs`+u~CK~9}vTLAVZ&uYil+k6?NGwa67!@7(g%oBan8>UqucvW7 zGjpl}?(NdSbQ-GdwPJ>=KuQv8 z6Vy!>Q?i03L3Cc8_VeaT?cT+`<6^e6x2c6ih;~EFd-RAg@tBrRU!K#dnp5n!x)SNo z`nvU~1oLS>Ulo9}V$v9mYU$XCd$-6sZ~UmML9=Flc1VbKn43XHbU#aT^*e(ub%~ys zge>ce`u4aJrCm1@%_PQO%lA-V3y~|GO5*Qz5wE{s+ZKPnIrMl2{ZU}r>%sAyaE(b- z#Rs>q+IJZxU?iW*b+T0P4hlSAIJFO^8-@nu8&tm$h1o2gz1F+P4l7>!+>&xgMcCSb z#$7wv0_r)XbH=+zKuI^kzCN5vP3GaZs@Fx8dYJ)C0M*!!=!@wu%iq_FR3e$MCy;n} zF3VnEhf@R$s~iJ?irQVZ;;DkPr>BgpG?ea-4uOH%j*b~(P~nLoBsrAI)Dp<+2DwX- zy?@LHS`a^l#{tO8C1AwJf)iBPP=-M>dY)TT+gP$&J!GRan$8dw)_IT?tuPKrZ@Tr| zI-~17u~rU%>)h5yjbWi9b&`qc+8|ac*ImsQoH{o;Dazxi!mzccwV+n+GHp>*F#OH9 zk4@7}O(yYSbf^$x$s;iE;QHeVT3YAleJj`3pS4Mp5P&-AK&KN`vq;0c&b-+pAow)TrajwRCI!T-|m+qw3O(M2uc4^(F74)jb> ze>wzl@9VzD@yh!Z?)%!5i>Q~00!z91D@r+>FzdVM4S*$%Gqa7QvuDObKeis~@c6Wz zH~8H&G!O6)87M=jejcJG3+i>J3Cf$*CI!z*p`ilF^IPieH`Tj9$1jqn(C)A)z#Nx@muc`r&Uhsl%c6*yqd@2DgF;r2*MQm2l(ac}Lb# zq#2V;77=kF-FdRtr$G76boUmjA07jv_s}9_+l=znwwuFf{upL)W{!fYGg%5XRLyy7 z%^Vb+doOLHCc}0B3Zzpf59^J&h(>{vEy;6wNYqZGp<>kljMt#+B|zPj9WG&oi3Qtd zT8{--^2{|AO{J?p6B-`>7Ovy?_}&xS-5l%6MxyYHv-kdFq5<% zI5psLPAe!1&!1$4Cj`*x_FJ@=$g>^ zJioR|4-FUBO#z=SA&-nnFC}FN6NoP&0wfPOHVFaTojh!Z9@Z#EfYI06QaXFcz;{AR z)ydS^M;T|y>(VW}n-h%ZX`&3>Pjnv^ma&Uj2<{I81@Up6p)#A&>lOtxSGRuu zIXU6GEBFfea708^rx&4`I*0+WNaTN+mRFHzt~y$!oSK?0hNwkMY%|aM-s% zySi6=pn*U+03`UoKHfw9csrF3lap;Goo~t#i5rgaN{DUYGM)ErRuGz`?5b)r9#2h0 zSsA4E7l{g8Cm?pu_KJck-(CYC)I}2!BA80_LDGqS{OijdQY9%hIC!Ol(;*G@F?k%%2Y*6Lr>#nmG8eCz3F1e}{!&$- z`7dt|38rP`UJQQBf>jy8uw}sUw z5AMU#-&ocW5w+s3=P!ZpZ9{+JlrIAF&nzA{d$pmlUF#rV`Scv7?2$b-0MxeGYk1N? zpbm&JJUX@EyYjTvENK_UtunyS#R+2<5PfGrRso1iA5{v zdhe>B95G}95jgI2k(5(`G{S6b-=cK_ks&+4V_Zne6f>~5=D<>~Og+|rmMD1*4C8Bd zvlC^-|HF*Ryth*s-c*e4knys%%MArKa}5bj_<+@$R zqhm0r6dmu4Ox0oZYXa%CO8fh}O+=h4karoR7w>BsnFq}e7+&^*50{lHeN2*598}bP z*RrA^ij5B^|M)Oh_W ze;!3thIWpuDppK)UbJ8pk5ly98#a~71GE+CRl|`+6v4q%VUvKs#*ms{SGJ6(;C?n4 zOqBIba3Ht4JN5Hj*3Bbl=hxr<1=)u{DsX@901!YD7U28=d`%f8xoASl;P$2C-QCJH z0>|v1&4~&mMU`|Pvv{nz0tJhnZjJyuAWyuEKibxI|I6uym3_Qv8PMyY*#_g}{UIRi zhL-aO&y{O7FF*|aj{uL5qh_@~^m8+b{uE{g^Yo%|;rvb1*K9%Q+k9Nanx@N1veXG| zM(Y$Jo?&jK3%g>_28q5)z>tkv=4cPqBv1m^uPlJ~p8uqW5K>yo-&h{nk-PoCc21u^ zfO}*+1rdKdF}_K=9Oy`CTr_1)ieYiEU;sv@bW_X`kF%o z_f;CG#nIxXblgNTQh=K0Lno_>yZa%pNL(@Q>-6%&A!~}S>R0KVg-MlpLruQEugqw) zs^1lQaMwt|*3#K7uImgDuN~Nj0hc_!7b8(E$HiX01Fd|ma8JQKk2yg1B^~&hO(G@6 ztw{=-lrV@H?n%X{FO>*@TL5w#{$Tk|JrVJ`H3lgIa<^*}b>s3(rBd^PDq< zR?ox4*vO*hc_V$f@ry1UpJVz!`MYk(NpV@=_p<)M3kS&?I@O`6DKd!x2k$YkfQ)?d z*q=?puPE!A0BR=3(+nY$$%v0u?%i336yakXps2Ujtx-As%(yD$bX5I zVS8)(D|xZLb2$r zSE6V+I$Ckrf`2umR4$Uny-{n>n$>9?TkjdvFrPM@4}VP2mq0A-u6~|LTGA+KzwewL z|G5pfN$9GK_dZHhKvcY4wuCbg%1;UJJr>7@V7i3wGQEiA7qx)T{1==cyn+)p{qL#E z-Mkm#ld}|C>{g9a3w=fKqVv@|ej(5;1G$5|fxO7k1F-lqKFhG)MOODT{DAj5B8Hg4 zcDVU_wF);AMz`6I40R)NSioA3ZJ(yWGnauON1m$c=p&@b$j^ze=on0zhL-F37{Fzq zj>N1oV7n0~fa**vJ2tnl;A)gh^wx=u-X+_6f|A<`Bf?*GvECzfazvJsji z68Y|1*k968?R@RRKDWVA2ndPF0zpvs4H3;mCL%Tj9e8>qYvx@?;&g%rd!lS!Uen!{M(D=GD+~h0>PurkJcN(LHfP|q8hc!r}bOWUuu1h0vXf+ zv?7)ofrKZbw|!XWR|$=5QYMC&ytD}DH<=hylR*~dB%X}>VVtKtDf$wOKi+RX0eTpy zBm3C<;Wyx3v0_R&p9^-_dKdA<9pP*mO4g4Df|twX(0jf_6)&TGM|j6lQ^5P+M~O=z zE-LD~nvg$Qz3J;Z&YTx2!2v$&lAXrQ&q$Nnv12j1hch_Dcp_w@K&F^I$4B%vk}PdB z9}G%55@B8);#Kq%NY6uAylx0%N@lCU1#2W#ZiClmy&mH8Y7C3nSV3sQYK|%szr0I0 z-GfL&){|=#b=`WV@NpgtiE^@dmOyeh^>q{25#xbUXRgyO1)i)L(#tVP9UW=rqoQq3$5F4 z??@GlfG#GH)AUAsM90%mzn3Q&F>|JU-|-%)DX-fU4tB)4x6IT@D%RzX;w$1vq0wGSa#7MF{RU*d--ZQUtHOZXQn> zZj4N=S-pKRnwkVsnCvf)O%2|wmClJXW=YE(DCMIz%&+Qk`{}ovM#{d`%dHrJjQhE< zfD3p6tkE}EoT5?gl>$|TgRAj7xI5x3vsib)SoZjZh{uuwnrIjo0~dHWUNVotj-;2F zS*Gd|Xg^v#Py`~GXZ>e>|H}9Nlnx}g3cx*9E|6P{=&f#lE@~y>->52^>^8zp<-H5y zb!^efzi%FVc`y~T&ssXz2Jerp=R>PE!igK}>-34h#B6P=sqJ4h{+5>q^!49=ohy z3|~N{iWhB(dcPBwyR>syUeffqV~Q^V5wOy+4on3t{km4WBTKO;9KE!8{L7Mox^ka8 zFlHjQ+Xxb=XRlQlHM1X1!D(&=mqBe2-mRPjh&e5zn}a~}n?U}%tg5+rr(c1RdU;)s z74B6w4(-7FfdYoOXwFN^w!2Pw_0_dv=rZ55Z*UiiOh;vZReLovSM| zjV~>|U~53UY@D;Ru&|pV12&m0adcxn>T3iSeox?TJ^SPdVg_$8VMG+-DU&i6KDu99 zX>CE#gaM=YvW*;`P;@HF<+xDqkcu^hEbHlmY)TR~(ApwB(jWFUXi0?>D5zj$A`z#g zOc6DAvM{kUX;oZ8cRRw6M^$8hL>Oag#023%ef{hb`w2B*$Ye@~L$l?n9F=4rT2b<2P?@yj<7SNT&z)-eySN5z}G-OjSi4z;p-Q8CYSmtvZWM(Ia zkF&p7+5G4cv}*(2V}<=@LkJ>e(F5C-eOuG^6mV9GrZ_eG)0DxjYVFcOClZM80|G6qCJ=%qbx$S+&Jc;X6FMe#k&zlTvr1lnPHDiuYr3vA)s4`qtG^rf zo!t^EOULIOkx6_$pF6DJS2HpSrqjWVjs?&$Fv)ihYk%Ph?3q@{rd{pi5p0B z5EM?J61tblmCPi@>pVYx$xy^eV}X-I(SQULJki`wI9SLSCtB| z@otqS3Lx8XaezZyv*+gESMb1$&`IfdoY(oCnz3Zb0RoH7R4x@47rF((=#3dh0_!JE zTY+gXB$&<*g{)VIMm&sK)HVC8xr9ai!@HDz<3wnMe%l~{vZhki5NtDq?RxRJI70%D zaSPTYmEuL)`Ufd6()08AZs^xFef0gHMr!57bKl_z=y2=4D8L8haC5g_(FRCcPr%)| zZWkD%00e2w6~jpReCZNg9w=Ngsa?3JwLIIuP%-)}A*8%{?m(4jbk|IEyxXhW8@sM$ zM{{a1odbHMcA<#$0I`MQw1#nA@-7O<{#$|AbmKgrdMH62n*Jwd=r}1F6m`0+F=LSf zF1brclrS*;X=Q%=cE$Oy#x*<1tX>$NjVR^SJQ95j-WY>P=Ec%cZEeeGlm~n!m!`=H zQ*u0~&y30{w|CaTKhnrhFa7*oJ0x|)L)xWJ84@bHQR_bsuRpza!t2owe3Fd{}q@#HKP7U_qz;R*X(L^kL(xzElVX%{?WX?vW%dB23QbZsdl{50p3 z)r^{%#cJ@*c~K`6HPnBx9Du!IV~aE{4yvvWs-6^$FRm*6rlVwHz?5nxRLkD>S^E8j zj5vH6=MtM0xEyKc5;$0CQFZmb8@(g=kum4$?RR_m^T!e?*y*4 zXx>XnNy(-UE;P?@5)nCc2>L3ACA`grVr)zrnMInwPnny1P;b_PSX=4hH|KlWXFVJo z!r8$ZRWr&xnpVM#3-xo;mWeEHZl-3bnMu)*eMW(H5k!GF*UE~veM+3W_^=5Vh(}Pd zQ%f8N^clp)#l2#iX08dh)l) zdGzX98Dy;iaXJQ7^Tp#p;~udRqH_@3g+2A*$z; zuJZY#C1~37eBzY;R``&>v`SgKHM^`hwjZNhf1_~>=I8i2ul-~QnbZ|q-8I?ZmAB{M z&ZP$$>Ny14>w6o`O~7d)r4?B>s@V+pZP|G=X%SLXDHt$?agfLKkZva(1Xk`qJh>g! z?ax+_qx22eiB6aV#X^@SY|OFvafyn*%r-nOU1a;B;MTzxgmh6+Z`ln(R`W@J^mg8# z|KOaC`@Um?h_|uffHlRUn!&&d&!2k%xlM`nd{Q7{fB$zg4G2! zTeE;laY$%<|G5i-PnQ42c{VV$=H6xXD?UPA-rn=tTCZv;tahXL@rG}U?wd)l+iSYi zOh$Lmw*jLj{EX_2eC_$cswW$)AFJ1ybgZptC5wXFs$ZCIQa2c#Rm}-0mV$eoyp0y0 zd*`*itgu9v!i?0;xEYSib?PBz%Rbz)W9Vx<4K{I;^o2f;@1>#Z7^?A#@teW=WCc^8 zfAw^WA79{fAHp0&rhncdOgT>5kEhY@>T2R4XcK*t3w34*dv=~nSPM*D{P}4U795yY zvT?lUZ2aT~)XR26J>n%EDg~Jh~K#Knv9vp-d1e3-qhKUE-DRImzkekC; z<+x02zwPZ4MPJv9AO{ZkFyYc(RScN1FS}W%i?^?) zjLPb}@Mut|OL&7?ssNiQeoHRQ=`^zYS$o$Pn-e~Cz;$zOPu!opuMXPL+QHdbmXQ& z+IC+e>3)x&bxUR~A!KQWj@QL7RG;0>?y)@H>(Yb-c+h8{`(C{=@4FOQwxF&%$UaAv zKi9&TUGvH83FH-z4oqwtSytCrUR+++ z0n17HGLw`}b%q43-bm!IL8AWYjT&WljX=zwA|e!z|Xdu3%PG#P5xQ0TCD00r_&Wo$kdLH+eob+6FSKqw@grAKWUfsRP90mq)6D$Cj1 z?w)gD64nXiAlr~XJZU8rAccK7u{HI$Rp|e5Cuo{{uQ3aBpkd(h=pUaqYu%#$yYqbX zd&wv%pUWCVD_o`}vdo%YS*~-UV7(rzn%W3(I^_f7!vEZl=R{<@udvX;zq3#k6%f_Kk{46o{nx|B;n9 zL8f6p1L!n(b`MnOiHYx1QfPF`Xyl|=QX|Z;|8kH~I*?8S{jOzA!qfBU+u$+XOVL2f z*Kp*2gtqHpM3M5w`u2@9b^!2*X}q7+3nsp+{QE0o4;pl~D$g#P7f;vL&U0n!1t@4C zL@DCGi+8q9@Y{?+fyJrjG_|=qTMN9EWfJ_Ov)**6tw$t#Ddoc&SH~(9431`4yQ04P zN2QI>jdKzLw|*At6vL|Rlf|Ne(fXtjGtB>%+yo90IGnn7yr=8FC3-&AmohjsLH>6~ z>fOSsSAIf4>q3LIC8a2-skVz`{>Rcba9P=`aIBV~zynLma703YuK(w%3n}rlFnl>z zzl&RYN7aO)CLC+Oe>9{D>Vwm+?Wf~eE}X)^=Ty|yieMM`_Y#Q)$Db?C(E^y04-=;j zkF7j>0dx5JFNi4!Ci&wS8*2orf9$tRdx&@cRx!(yla0<~7&tmwtm{=YFxE%+AGsKN z8GUQ^8o?pnr=%#ir`gcb2*v$JkRi)uj^F(;9#x+m?;VC91~K6l!4Lj)WQJFQkJ{sR zOsQ%2Rx&mg5e<^f5lH=?%S^*b2s4^r2 zxt>J&LB_-GVf{4$KKe2Q_;d=Cv_NpzB44#k)c=3hL}!pY-4{Hxr=~MtRa`3kKYs|P zKz0!o3+Lr2{!;y3g}P=U2MGOf0W@r8A{&UpHSrI59%xFZ=C+D z@D=jEm%x%ERqXB--v-GzISEmXGT;gxyiFv&dV$xl@KLB~c>GTM2GWGmXnf-hWO1ZoW1 z=M(5}o+8I~CO_|yW9Cr3f&5filA6@F$Hd{SzkeBmhtXnEHr)qw?-{Z?|M~)(2JYc) znjH6OKJh@HzL|Pl-HaK>!Gveh;8XnUoQeg48(Lc^*uJx9O>%FuMLMR;TgEpw)5=3+ zvgF}7GECb{JQ=^cL(PJ972-MyODim`Y))qt`?vpy+MBu}ebxoeKWJOl6i`u!hS2L_&Cu7KkFH5WP=*p2kl^6n!;_Vkl(j}DIPs9}bcdn=J&*~#F9u50Ywm5o z=-SSoc^}P1;j$gJues51ak>5PCljZ=H)Bl!hAf>dHYpV;hxKd%t?VWg6o8*#M0_`+ zyNldhQohWnf9s%wfq_Az_`fK7%c#1#WnCACpuyc8f(Cbo;O_43t^tC3aCdii4-nkl zA-KE48Cl;t=dQckZuji_Z??u{GDm0hs(P#Xcpur<2f$%#d@u?f9es}YuwvIzORpf3(w}q7WfDP zU<$`(yL1T{XH8|BPGpoW9z9M>+#f-_NpUM8UB@=T88+iRMz8I<0kO9SA23(#`|)X* z|4pP<67XZw*Wb!{=8~(DpF%>|!N$f0s4s7wtt#bel(MNi!1|w@a9>7%d#=?S+Xj~1 z^vO5coGbwLS!Cqol|I`+v9X`i^5m%u4Gp_quScVB*%#*K4sSh6bv)%&RRJt4VEfg! z%CxHUxqYw4?GHhB;1-8=8qb%|0mH1ja+NssHNVZ;`{4L^R7e%@8sab!X26{1`}glz z2(+ErcvHK^DGOi-Unx$1ZpYlI^>fLltJt){l&@Htj? za&l^Jnwbt*qJwTBeR#x&D1e^ICGbW!Yfq}Zxd3g?81KE~P$x^WX*8{Go#$aGjJIj* zvEAX*zW;jK~uu+r5sza_deV$}1`5+gK{P zdjNo}%oa36tHGBDpmKtO0{t``KMJKWjnyN4?y9T)D5F*Q{S-GDwri5R#Q zn@V@w>hV83G)HoCv-IA--^hxM-P+z3yg*(ZpsHBAJ!=M>nt_cB+=DEc8z#qmnHMFQ z3`>^H&K=@z&bPyplSqh&wqCbK9eVZUGv+L(@6y%OdU{5Vr^E6f&?g zKyo+I)6&|uPpXfI*bRTd9G@LbW+NdX>D8N#|N0hhE?-l4olLKjcP<$yWG^8h>v}(5 zu4Xow^#&LU1qX%HFB0tS?^k^s({km=hDYT42ez?C`S`g%?WLro*!nc9t7&-wMmvBT z7Z3%;GB}+8V0f|LlgU9ezKMy6a%4e4fts$*{NyA6pzeAxc)3q!x0^}faQyST`Q!C~ zTB%5$&Rn?-K(hA+LIbXT<%>srkE@&JTnI&!a#?HLc7&BraeJd?6De1KcRui8Q&Ykb zJP)rofN^F4ayb6n3jM|?$@Ha+jQB~xpvOlb5`Yyluw0tEIRHGsGaX-B#47*dkCJ$= zLzj(@$5m^-=C>nw14%1l0#3N|bgDNH2!{gbxi0j8yX^Q%qjSN>YyD(2J~x}^?V-tN z(mG)AeNI4d=ra{&p;W9ZEtUV{40uqk=wa_jrCdlz$Q(MKVEg=>fRJ!^q|gc#rq?8t;QJ2P3g(pQ2Z$0}`Sd*6Hvsrt$H8sE`Y-hu#loP1N!-k~H-< zyL^;ok6Gv3*lborAagtjbZU2!XNxU_PqUu30+Hz7)-RUg-|Oq@-tUfzSqi3f-vA5W z#!i&)bq|2A==o~bNx8wV!nbcZ$C!wEH;BKFX!~KF@8n`Z_$miVP@6kG5dudd_kj<=o-5+0C zT54(GxF>Csl_v!3(@#POeOvV3y>Y&qPNvq|Pm}2J^B#eSCb3gu$a=7OV9R7~zA^8p1ZKHH2B) z6x7|%*EqSbGPpc`4#qWFElfFdYUa1PUy;O&77C8f&o{P|goX=37KMffmwDVAKtn;z zV9Z$X8^2n%OCnM z>cmm}%)HmtO=`%?SzMg342~S+UOby#O2Uup{$`RTsE)K%NI^wKG(G>Zy|vZjDWA@~ zyRcF^n<-G}4Dk7H5-cGDsu9w@ezgj9gLLzlW0#%BtA6q5gyiJ(inuqxzYpL>>+PRP z2NgsqE{5WZH+l$*la48>Dsj8T&s**iIL$tf@QnNo=gRjJ8X1;;DSmxWyDuNyeBEbPM&?ph0yRH{L;RFW7(7}CI%mvWdt%(3C-Z(pnKo-! zI|Z60Mv`VGA_6ggK3A&L%E=kOyR){ozN*uaENZw&RGT%gKRG-cX7|8rchL-XXbZl! zj>iB$z_pn4B^SgTfCt9!?o#)amsNP5UJdo1Nk(iyXXZ4Y0${IVs;8InbQKyEz^4sB z&#>8TbR777ywn;Exq9q>i}8|aZ!g^CZOhM(X^xp}zvwXXyFIG=5f%oR%*AwPC97#_ zO441v-b~IuQx7rXL@}pECZz%NYruz|zMyDEU67Np9VN}5f?l&_ik~QF9d<@iEDA?- znVW9!=;#Tsrc|<(o(1Cj^Y9QM@TWOBIiI=;$Y8HZ$MH)Y8DjdD=AlvOWrAH#R~jP> z5xL%{L5%r*01hw9=czb`vpz^z@h014pt6yF~JO!w?3T<-TVxr=c znd}!~l-b7FpF~N)k{RLYHtJUqIldKw`G0RZJUz93F{a|+SQ;1*-QE)gjX%@h+CBod z8VgR;n+>gYg^>w2C}=i6GqYlqd<|vg^UKTZig{j9o961?PA9FRmbBM{)A>y$NSju- zEBg@K&2Q2e=`5bqzO)a()e%7VrgK`UwwuA_JP3-HjO%${4NP`F2GoIJo*bQ`wY~#R zXJ##e*315` zCL`nJ8EAu;upD3;sH1~Ve$o`5r2#na=T=EEz($16S-Kb)5F^kkp3HkSd6@HPdVjp# zcmJ(1Pf;%{Qo6jKuFu!o6UoUV?{Js8XzD9Ew}Xr9J$P11di4*_VN1niQ9eOJhy~`F z?Va9`yoGClIyV!Xx){L9VT>&3-@81FZJ6 zyM28CwUA)n^)kUdrw4@9xnY9&=FY)h0v#=_)oIQUw5MjSXXo-C4bV-UBcUk4z^*kl zGb7~lb_X)N^=H5LSC0{PD%cA_B_%{uG%Sf$L7;Hd@$q3OUy~Cz0ECiH7+4%&YkC}I z6JtMja}+AEeh1(tfT%LJs>Nqo|~VAWyTrZx~_9|Zw~Wg zWHUIf0v|T{J+2GH@|R!N-L|*4cL6ij6y06@nDcAyC_aYmj;9+x*>9Xcp)zoLtB@~l z)ujFBgC2){@0#YJP{PocNk*%aey)AllOf+G>-Z*F4~fliv#fd zG(9~%SElUdnl_+@rltg-`=X=wSV}T^9Cl{q_@knubzl161O){FxuLCnjA-9JgfM@; zP}wIh?^559K@thjF3*-bSAlYm@;s2#(aCAgku#|5K9hu*`MQ$-?FfkEd^e*EfK4_P z9W^$$tF`z8z`@ns-2!dUde}LQM-dYdk!PN|hV07~22@u9E`+AbL(&l2DYhFRAgijX zd~{77=eJkDTW+w&-hE!KZ*Bl%U0xoZlGSo$ns8Cg@r8nUMQK#5&x|BIYZ^3#wL}aI z)lE%J^VUsr$P?Mz5BwiD{NDasZba>as41}VQ4@_Bf80YpS%QqoHHP4VneS$Vmr;T2$~K2^gA7+T{X-=8iE zkFJ~x3Gf0>!q{jv@9*u;R0FstNJvQH-rlBm>;@j#t3|IRgXX4{iFl0z8_OqiS-Hi=JT3|_44}RgE%9>rMRx>qlB5ll=7CRP*yLrrNy;MG^ zbQ1u`*T*IGFp)Zo*`kcKH9%|*F+iC&l9!E+Ups2509kBL|DSMz--!%#CEB78-6`_p zjCfQ1eTb+ce7Lw?IG+7p-!52!I$3*#k$BNiQH2e}H8nL&ObRQL0h{ln&5l;%;h#%O z>OiFR>kX*6ysRi!<9|NP2Q==~D?rf!6iK%Cb=cf;YNuM-iYIgoAZf#|9albgb~)@q zkrUHVN~vFrjNRMU_shB2xv3jZ-m-4K!QUr&*zzlGu*GS9uWWqFIJM}jT(D?hQ!aN3 z1yUuus3V0UV3*#Wk|hgHi{NoC56Lu z46AG(RgRAn2wMO~;_c-@DF(QaCKM0_I*<52p5%OeyWVgGy+)$~z*aUXWK*`BUKSn` zXlm5rlQjw3r7k$eRSQ+!TJxLQiC!?8fdGFr-6W3I%=_G+9pL>iJ(OGJ?8Td@{Q&q; z`Q5B;0y{{1d@K@=vrbD7|FA)G)djNQz20nsDk9?IW86+mTvP$+ST)hh3GMt()c39+ zE2LnKWB)n7D!uNBtXKh^+KN{5g*U*FV>!0ySq04^m0b; zs0JSgMaUsc{R^-qHyW)lqXqy+Y`B_15~qWS&e$|f4TU(*_g5oY)gM7Y(`i6b2K>?c z9*5(XV_?nm($iM~sLsdJq+fJ4qhP7BBX%%U@ZjKJAT-iU4WHfn>(-V&jv&=SZrI%d zarNFgp^a>)G2x)DvbwsRPdF?B!fENMvUrrH%#e#_$HKFV*=Q$Xq*#>8)S_kMaT$$f zs{~cSbV)}?$G7srWpfA3ACm{{CwHs>eRi_Ex}xCdly2KRC4T@=4t#+5HFw;?vZX^A zLt@#G=uZhUmK#829QklMJ~Ac})6-WKG$e$N>^f2_b9o=ejxBo(gCkL)g>P5~^$rjO zwhT>!+8w&Eubi~ek9Bx#@bP8)-D6i8Xj@mr-yuVwwU4!4@Bz_evxAe72&iBQotrl< z@H&xJ_RjW1dCdVa$kI`*+sVblli>>Q=>}+uA)q80HLe4=+n#fW)2Cx|^@oRIUMtf^ zLsa=i4{>dQ$wJdl(QW$MLYg+KkQN8I)RnGM$1;cn0u~pATU}?{2!|Vy;C%Kyd1muf@6ubjqls8K|fvB&4lhQvS#SM&a(((qj!4vnBL2iQ(5w z$Cy&d^d?U5L*;8tq};w}MW%KS_yv+KCs`6(Fg&atvB%}b6xsZK@8vEhz%4y}4Vf(= z(iz9~1QhA*4*kJ)Y_@AnE+_tf{@mU=bEN?3lg{f;95Sg`4P5Y#AHRl%W|8B9bu>Q> zkbB*q<6|RV0XDVKc$`1+oy~8*NlPbiaVM85I};V?$^Z{WKOdQ8`z+koLb&MQNSgQL z?b3>}A@N-Hl+BkP^=K$7&oK*;lTE?6Z1sS`LIQiPqv{@q5)#c5=8F=?GA`~puvX` z5kxU_C@ee)WG5gliW2Lnn2;y>OUmxO4sCv9rKL&E7kvM|AWbYKBZCm-T!~Tanja`1 z6M=?>1r&sMe1;GR@hrTQl$5*ICR~4}t}2N5v!TXce*QEaOA&OMarJ6Nzb%!$-BybC zTG$QNb<6Lhr=bCwbS*7yfBO)Ygq9_7adFCQ;WZZR{Dj2=F$cse`Z0u2m+Si`-kKq-?UVWGPUS$YAKjip}|Wp^ZEiZZ?X7xjSP^6JOXnUI}r z=XaaRXdrYzUch6p-saK(KC6f(z1iUruS?a@u@n-$YLzNjTCmOyq>!Az;@rkMy9?bi zcW~S!@%*>5FE{-(~$G=Dy}jz|&A} zCMRRc^`t0f$IRQ|^s=Vk4Vmk&T>uS!Qa-wzsM#;&aK)tCeGT5P<>*%UGkTL{p`mlQ z8E_lL`8j4<-`w1+lwKS=QzGM6cqNf5U-Lkp!wDRGDO4;?PuGgEOJ_`wXD_G;WR6X0 z7iei=)TW0dF|5UE_Qb-%98s<&;Jvl<-mxPknO=XM;+=k&eu3I3BYYSkm$jlCfNX8K zcT_=BnjsJcB`LJIRaK<;R!fRoIioB7qPr@3_*NJi|8Ci?zR-)`coyI@lMh`-JFV#F zaluPSm>rTt?{b+`G+Ci5GkjTI-SvDJj;@SP^R1m!E?cb?mDim#xZY;5%6533i5a(lSd_MVD~B@kbCXSTqHkk#TPcp1VEaYYrV)hcT`v_wRPAdOszxt zxwTV1^LcLa$`E~Cy01-&8LQ;d`!!z%&26~~`BET`WUQ9AR+^V*c%Q-P*xCVYa(RDG zP($N(g8!q7uyY#X?_5Aw(aEWP*f?)(*s%6=y`GYTBZWEYTo)xU!tdW>S>71M0GE>m z017ZRxtJ{Uy0f#Rrt2|qRgFKUO2@9$7bWuVH+EK)mQn-$|58Us7MS!BWIy=<5<7qh z30$PX0(?mnmw}@429q|?vT+4)!J0hSHP!xS>adkXmME#le-qgrBHk!gZ$6!;QE%GH z;l1EHGRc3j*}bXH5>3e8B~tnd#0wNuRG@ul_Du=m^Rp&miZqN{ACYI=6|#rDzB-roE)Ru*8v zJb9p|rZx);6tF*pwn3Cz${D>?Ck9PxL)j*&E#sd zS$n+;M)+v>CqzD{}r$ZlE!uSg10Q&T|aJm}%CX0^_}g!eH1u={&ZMgLGrR<`KS zd-x|gP#d5zeLQH{@xDLq8fMm9MafUbv3fYXM-SO1%eV}2eSaW{9Pk|9;9xgxxbaF=4`}04JOJim^=g zn2}9NbpP#7l$gNOw1+pQQ!w_8H{kT6K(!oT@MxW@8rO38UgR`Ayw>V9<#Q9&rk4Yc z-7Et0TqEAvp}44-vbK&wMe%t+=>G+~0~v2+WyMvN>3C~jG?PWMxeQ(yzU%LKlkZ+w zkQKmx9t{J4KTcQsgM!+gpOeIe^7e{VFDe=4DAP2`$lO{1H7fwF>aY@$}%*c5~EN8Wj1}a z6crWK)Wo#_voB?9e}Sno5=6E%I#m0Dk$+}}`ZYOAfHj8;kQ{EFUV&^bU*iSvDK9TC zfkusV2FtfE7-puXz8`N7%ZpX$XlU}k+W~|g5HF?zkmz*UfIby4)o5z%1qMxs1UxNn z7rNp5{6H7HNIErd+FUk^rxid_0F^sWo%a)fTK9e24oOHr3m>p(pXB{`1;jD6dC`Ey z2rz-W0QB;#Bvr@z^(aHL-KMRUhpVgWDh+_)>kmOvvX?8*lMXK1IyiW^rmY@JVd{5{ z{v34lxBKrwRfL52X?S>|3)m0)?T{v$u`!nPaUdn+U0R;pjcYYq zw`L_{5)#T?wb}GiX1VWlK5Td$6($P_3%9Gp*|KW-DPu$N|8qF!fgpZZSzB9MP3-`f z6lT%eeFd~3tl5z$FhI1isf>t_;!pH9z@iK**n`y%%!PiqnLfEQp-}cB@$Xyp5Yw`;t*R-BWNvU!EU;Jq zgA&%;gc&=ihTU$Xpc`?8251D$FD?QNphP*I>FL=|36kWHCuj*@eH@ZLKAW>(fpE0` z!WE0qqmQMmwkbVEV>Hm(!Yf(#Pc{_{s< zZ<2w^{Kek~D5p&z&uwid6sd!*|ITb_8q$i-l0mF>nSS6R{FBcc0{?591iJeFX_H92 znE7*7X=Ts2-3si`V**t5DqCCN=)vMdriO+_6U|heXQ%H=lTA=i5G(@&&`^Or1i+5M zH%sS&A~*8h-N2N*V@>7TSCKb1=x%Te?kU;*_ zP^ck3izp_`NsLpXLDcJQfdLa8B2gFL_G&!#Ju^sHL9yitJu^T&~uJ_eSPsx2EcI| z+ge*w1MV!Nf+-wZwKX$3+ma1$4GVv+<5jZp^LGz=x_+jU^>cA^D^A6v({=~gl7Ki3 zghs@Z`<4ozKHnO1a`XW)3Pew2JQSgu$xQACAxldWQPJb4o0v*-aLn02|87+jBpoX`$z5*Oyq4sJ}b!c>P811 zrN4e%c6Yf1Ff9ZK?SOt=T$~4D!V7SS15NB=x!uiJ@;;%;7Er^;k;!d63^onZFPr`l@ThIBot6Q7fwu= z(4dbC$8pJc93K?}nNWi!xbhD@Gd4Qk2jBps>g?P$y!n&hEMXW$>n^pMF6Qwd1WW(Vc9nSjao4m6sl>zQq zP_o)8Wg3F->A@A4e@}mZ|IxWP-V#uVrwv)Nd3kxw^4OT=jQQue0^wt;ap1u-Uog2z zr@f7w_6Et})7O9id_CCzUDxHU0%_i>{nfxAbF%+mk_zrxyE0fVUy#4|$Pm~XK!x_t z3BCXO!Ki<|`@aZ=DJdNu*3?l(iipBx<9%lHa!`{d^)Gl4y~Z=xQRWEWeN7nCQarfj#!1%oir7 z6r4`bGwvR&U|M|+RxbQBFny4zsbyovDWo*8obIbuI!dQS}iLJ4dv!jWD&EHpchL*5Q zOsqtVM1NoL@Gyv3SUa0IGKg6lIGc!=7}*({Fi4x&nmL;jF|o7q@xlK4SKU`^Vwe#7 z7~w_TWUm;e=3G%I6Xl^HBx+Pfg4L-E%jGY+w}fc9lx5KSg1_61 z&|8S1E9;PCia3@Lf50xZeuGmPUkb-T=Hx_)I?_VhalXl2wp7py{;`XjIgp#f_ch-k zDm<@)XpFudC$3)U6V>Eu)^A#c&)kF}&kZt3Qd%Ai@o8ZNb{Bi$O3TdXH?SLG5BJoB zW=gE}RB#JteED?z`TyNTbNo*(nwgD-@jtJ6UQ5aeuNk@PKy57U%OZ)uu1=hXgo^j? z@lSFJ-bBfHG)*Q$h03B&4^KEL(BB76$HLKM63M*aB6@FkPbfV@HlbK0UKIiKQn&_eRpwuPCUw^fKQR@&s+97x3prUN}|+mWAv^%^cSCl(x)ALKRE$M*72F;g#IO2J{Wb;4o&@(k#LKY!p3te zE3e71JA}Wf>sC-zP&0xMA-xD8#|>fU=Vog%w;OHexpqzILtRhXrlK{LR?KXrWlF27 zPp3$A=`{uRv2Me{uS3{yY$;D|a60Pb0;awQve4k3`T0#rj$YTh)BSz)>~fXJ`?lW? zT2w4HXi;SZ26g_@U@BN7a&%;}e>3EwzP-wrh5y^7!ey|W!Ihzp+DMHo700kz9^(4U z@hB0camqR?nCbz(*smNlcNR&5QwsHv01nllp?% zuXLCxrG>4;3I@d-?RJw=d3DjYa6xtN?6sQ6+PpptTtUR;v{13GC4V9WYAdg>$V7;s zq)Kg$k-WBa6BR{}Y-}B3lN_!4hHZ%HKVE)EQy^g}u{-0=Gde@jJZzb1aav6I*?vBo zq@qkL28b+hdpa>h5M7L4ygU!@NOWN~G=1!w$XI5&kkpObRCb$KlP^U$@AbL%mTeKV;Eu&qmIC8}r=&;Xc>b93SVTiwHu9`1xoWo6K zPbO?kDvOJ!Lfyl-u7g7%#zqM9N3_9IJpC>qt(iPG)m#z7=fkp~U7F8QM{VR3>5o!u zyZV08<((w4JMMDbgxb>0HDAga9noTtUc+Sahu7_*4ksD&EXwY;Tty6L#8j>$2s$Z+ zPp1fZ0kd(HC*mAvnAn9d$+z?li+eu|;|ZyB39qZdxUdRNZNBvD^HPs(5gYQO02Se?%G?Fe^yS{ux0Viqi!r6eR7X1qpR`LhM3LvQ91pV4IVc1vRxOc66LHy>72} zMvKDKr|CZ1sXGFnTs+z<2p?Eb=qhP4zqf5@e3yvSSt+v)`N}4VQf%YIzV$0;WNoMr zcm={=P($s=4t}=v;ty)Lvv%k)AZs=ttEv7qRmgN_w_TSe5`jQS3qIb{SD<7BAwvOa z1hd)Tb3`Z|w1`Tnnf8imOi-nG_ae!=lbaYX=;u4VC7QHrVd8@c{Eiw8pV)e8JApgU zE2#XWLPhB&HJ@0g(CB4{*LLp^#8SdS^a}bvK4`~k1&J!6V{)F7Gz_Q>P5L2y?#)#o zs>qQYWD@u&<{;)awwYe(NSXplMC*_xe+)_ef}cf(Ly}kG<%xC@!m2m)gI{Y z?&mUFUqE!~9CETXErM#5{4!m0Opb@F+ly4$@pN)>4AqA)Dq|!6#!v)>zyojXRiKOL1><>Gt+5`nQ za(80A43zSw0&9>56~ZAV{kQ7!cTD57Svf!OKE8KSKU0Y>h;eB_2F-I+TCDRP zN^~jUF0hf03Kp+7x_(+B@8xW6r*4c7gKDXA5W;-WS}pSW@?6PaU+ezuIg%O5C2}HJ z&NYL=W3zsiC%aaercM}UHI{BP^`M>7r*D1NC_B?UI|}z@t~H4=>Jt@hfUWzRw!6>M zQB+}j*)fWI+kM`BFc{y-&{aUv4EdR$Ro2g)R_ce?;zIYNGA|Rj%`i)q;!+Tp-mcSm zU%2HO1PxCIB9$9xP1r#7{(Q))G=6iOInxaO-{~8!=DB+tZ;+=KIGU7(w*rrqdVGrosv=#p+}Ej zPv>%r(0kgLWZp84o{$yK6W^T@#+Ytfxj=2nJ{8VCf^?3ShWq`_V`I@e5`=y;m35ea z537y}3<-S>yP)v7rXB0&_lzB5`fi0$95H$c9&W$05sfyoIAHTtmL^s1=xveB!`*d; zo7I2gzWOWZjl-s!&g4$Fz?NMb6P^HkMhRdn8v>r*&AoeLeW~rv#l=r>nibaBSPSdr z&%8HCHH{P1eiGkah4?#@{T1BeN9`N-ht;7HMUuvAQ8j4|rI zic5wn>t5%n&vH$?Ug5pQ%rdkWp1@Fa%wADM_Me+>M6Xa1ODmDJPWA8xP?Gz}(;Tlz zf%_shjpgcKncH!P?B^l6n~wCKt=wM9-(7+`#n&H*RN;x}YJ*Zm5R*(lDZytuu(N?# z5y4bj@byW9@`_{8Zc5kw87!l==O-(<`@OA^yi;@SCSfBYZ*!B&W#KQ^i^+`9wLNTo zlvK%DrP~Akz;P**nAajFmZ6EdArpo?b{pG{u52QP6n`g+JM@`9Chb9phc}`9Y;OC| zL>(4ZUTN3(h-~o>cX%ZQt)=YOp4+aMHG^q{f#7|;3Y$ItB#sGLe*b!|`eBATD6*+T zNF@d{9u2@xgpP>px&tnk1_#KHmC1Vleqdztc&;fZ&+OZgxzwS`2B``2&Zh0bNXM1A9LULkabgenrI+ff07m< ze~U8YNtxc`yw81z&whPJ`hcdc@+16j%2H;g|4CWO#L4;pD#q6}rR>O9KX={GKBu7L z>|U=brhud1wSaQ=I!c%V$!}pKg1s@ z+K)xu|HFHU7hZ22Ue8>#FlT!QE$dBzW9as6Vc3f~+gPEgXFB`CAsS0dT-pkEDDB>Z* zv2l{s#e(~URx(^eQXE2b_7K%xcJHw2nFfNLYbdt`f;k;0En?93<==PiYrftKfTc_j zP{YOlu3qO2eNjsRrQ0t+Q%BxT2G1CRYH4e!w6>x>pRXOobt;_lRj}&Jo8syL-%E-3 z)Cq?49y48^V&Ph~K-A&R-+?yaY3sf|k$O{QCp)WHj4PF6ti_w5hXy>S1?Q#2H@HXsP43n*h!YRv~% z(VCYNoRLP;BqpeNI0=Et1&Frx(o!1Crpb96CZqT6Cb>e^m&sA%Vor=U3_nHWA8l#Z zTx9!GeoAPj&bp)8ZR53&RZIC&;K}o3GVAW%b)MC#P6*R+fv&Jh-_28mCSY}(TQ5SS z8TEyNFIlUC)1XF0Xmrg#a~Y&L4r3k7^?sf)&Av7av41C`)#t(W?Y^Kg_)JL3_A#pj z=AZxe6Qy7Y_%%#Q=*B4OD>syiPu zbnuSvP4QE!w9}tVr*Ld!mDzD=&D%bna0@b8@@yshxBanlQx`0{`D2Ka;V;nzU@!{5 zhYDyr{)RLgr2YDxo7Wt&UN$qo>XZx|U9si?6#@*Wm8PJT%`Y~d+AoU}HR0wHN-p!i_OKgZyhw45`A`g)@XT#(6k z3@#Zlnr9PfK+@)~auh;Qr!d8?MKVRaVIb)eSe_VRaJ&+EI^y)LwExVe-N>$DY4;D^ z|LEPWMSjQNy)WfXyf%)ZZs4?>`WbqxDuKW{XFxUB=bkO~yGxA-lBe~%d;?0(7|wTQ z$egx2wiac+bw!g;kRgK*90B!%Pz0@Kh_2*`@`4m^nQo8t-mv1wTbYd<_<33+x)6Qr zAOvQx9Gtpk;9a_1o(o2uEkTD_x{p(=jDnt@CVpA)iS`AEKlR(^Y9H%-i7j1;PUO5N zBIVB2c|r>nr1AIPO8CjOA(M-_cfu15rRvliQ-nVK11v!2@E%KhHfw9D!wDgbRnWCk*9k7u$iC+u{3AC$#qQ zoI{s($QmB8t5vS!@8uD}@1XcK(p)2rfe^XwQ_dDu?mx_;U>)yE+?OycU|iVHklvgv z^(hUh?^*56rpIPRy|!j4l}h=k8#LW{sR(T6z1bxm~i_jbIia}V$B4uZ?y$_la`<5BoI;p1& zj_s^P0308@8ccGZ`1jD}hMPya{?CvR;etq)>v|+4NM+qbyJVfvHbOnLwPzk$+Vq1k#c!!(p@cEr_rPd5v z&CNaMiffcw!hF?1cgmQ>@96#dm4O+q^=Q!baJ+m$OWK0TS4_Ty-Hl^Wy%M;q|GsiwCt4QUbOHCe8l+I%N1Pv@D&Y6tQJ`I|o z&5Bv8O6a*CcYZUYgS%ga8@C;W#>JBzrpS|fgYP$4#xJSE4c9u!eJ7XKPAF*&s%NJ& zxQ$a^rgI@ncD>NN&&E8f_;X|VpmM*RDXD&8F4rr>(@@~eM@NFnD@akABfgXxYfQg^ z<)p(XLaAJ&@M2%ejVVIK4Vl|2$|{N~>|vj1*x*43nnhtP>$u1oplL=4JS${W@8E-H zJDq{?HbvwE2TL#HIp2}fvupURN-rF8ncN#)kKB^&-vfE^cI+^Z0(No-)1mICmQYK{ zl9b$#tJ|aNtlgCLg+Sn9`Ldk6esAxWo$UAtFnyzO5h)H z1aY-}W2clr{spF{w5|t1h?VQFrmMt+?8egFBrj#7T1X8p92P>pKe{Qteci;9$zAWF z)A?}AeuJ+2nkE0=RRk>mql$o?gXKRPRRbEM(OT^A>kqWHZeOXYXnuNvRbfJ=iMm-p z>om*`xUYf2vQP(nNqhAvg?4ed_(-(Y*ug(nj5W|Cy7PAU5>;96PCS4i6D-xP%AtAJNTqnF|V0 zrlli>`$cN7N%2|O&eV+>uh%a>?k5OmV`fiK;^+6zB4oFZu{tAE{hdzzbMYF}z3vUf zex+BB2!~I>PaqlT3s^)4@L_|LYqQ+lysWnAL$1NEP_dj+xTAm4gI|By+^jRo3XT@s za<(_a(<1$vF9$t#ApOF(87ly~lZwzuVwGhwKSJ65%oUhHoSy(WtvU8>;L|pi21tGd z5-V2HeZdnlL8EKhN8SR|s1@q{SC9VepA6YWZdWxGbv-fSzELlNuXil@3V*&?A2p;s zknN~F_Pi8!x+8ffxNX;ncjIc5Vt5l`5aH`-vV|~H0AvOMi1sv--vmn`&C*x4(}H#TB~$R z&wcW3 z$fxERYDWb(wa;vXg#_%loJj`^l7v#Q@YYe&UyTGUzWCgS#EHL-4O-ZiD|Vbwl`3DJ zhv&bkqTZ{MWJZ%XG}2%23*XY%7t^y~9vNg?-kz{C7hftHOkg3F7_~+zc<;-SSgLuO zMl>z>S<$vH5fly)`334j7!OtJpPPQ%N}T%RC-LtTH%!egu96jNK_qth{v=+$%GgqU5>X zPleC@mT*|9H9dTLMxC`2OKNS|cl8u?H~It(n{@T?6NC^t4XR-#i|yIP350h1X5XUZ zBd;XuB|Waf5NV8mCg#f@dxOv%jcKc(Ddh!s_E2ySle5HVIFrD;RZE8^> z1LQXCFTW)mu=c81nD5o?S*&H*n9{*9P;HyPN!O#0Y0HMvda0EL*EpfiU*R2VYQ%25 zT9yR)yxJ*b%lr;h!^SZuUbZ$|t3;M~D`8CIhg{Fk*=40lxX=|53`q;E!cIsy{gmGJ zsQ9ZMrVPVe zU)4W5sQl1@V{WK*kjaci=_u%iS1C_*{T@3dA>!)GCj_U6gpv8+3a@sXS!219zMZ+1RT7Q8gDd%fxZdM0Zl088XQ}|Xd*GZg$A7` zVy|nRVvy!IVrcYR-A9Ot?@fDBVcos6JsIO_tVW4SeDN6;n;Lqh)sg9Z_zz#cZ~Mf7 z2UBAthY}m!GEZUc?^%L>zPc_Z#g&eJjZqjx3v+zsXhGX+ogQ-jIL@dGo~fi7)xgjg z)mm>n9O=2%ncURpO^Avt`K|KHAzPbX{6r>~KsH)6bxB8}K|eD1`aLbDND)C6c(Snd zU{nzq@-tV(-M%6_19_WIZz4>*xM(bBQHV0vQ7N`mIHIszTls@f#?8&_n32*_q}NP;xgbuMhr9dG04eZ&3v zM70S{z|7a)@e9ws$#jkB_ySe7F;{@LZ;+vU@ug#?YqZph0)Z#*m? zBBkBsEW(2v|GLFl))l|SS^UCn(Q89d#d7gY80lu>Ce|Rk6MGten8lmRCF8=tm!&#? z_Jiz;ZhyEY2Y+d0wkdlyV@(QWjo4naP_WS*2@o@??2g`_fU{ zXi8{HXv<9vOS6>l)i}oZcN6yWu`lk-52TEeUKa2GZ;RRtVoosCF7&y@M9f1B)SI=} zG-^^E)v-_ys0HEUZM@~C4UCL-cl?76q2Cc;Hy`T$SLLv$I4B>Mpz~m_Q$8D%-01Sf z-Xl;9qm&gRLrr@(Acp50N|&mLFNG)Y(|(SrC+a2Qy{*Aj@Z{*1PsTsPnIbu00{oHT zN>pD@6KJ>;=l1Pp`pUs;+y4B*Jy?zZl$-v!Pi&u25dXH|C#=+i#6)V6O5{!Ih7^kp zRUDe(XH(?D9-+^@Q4PJhzWMBT@vV`DpjSxGW6!pvNMQ-HppgdlrUsFA+-?#h%Qdv{ zugC^9;!v)FP$$AYP*5^;?$2Hb`|Y4Sc$ja?TNF0KrK38G{c_^GPRq)Q#Q?)Xw8JZe8fHhtMyPuu{y-*H{M=`QEJvm2 z4<#9%ugct+`eKu{z2)E12ih+fHaGjCtHFeZ!D`}y0G}g8ZTa1Q7M&#rrkAa96@D7= z^J%NiXGg!^R&zx~e$en2UivvOV3%-=9NdA#m>(t(A~aTDum;D-pQ*S$D^tBC5TTC9 zN~iW`;!+CX!Zk0p#)<05k}%7~WDMjBC_ICx>Qt1=elI;~UL%!WC$*ZZ3;E=R@Ll|4 z+$2kRJ1)#d&0_wuhb={dT>G|=$^f-yBHJI^Mz`UE3G3HumZ9)3`25nEWtDV|2Ygug zj{2Rsn`<@u>O9#mcdfgjFgHt#raTuTpimKyOI;i(sQlwEi$!P=BXcG==0yo?ZPz{o zT$W90;uX%|k8s2&Sq-jaB}0gUf}=G(E1LNM4ZPP|P-6%#CJ|Ye`WSOnEREhhg{wcN z2uhDU88tdH{(+X)t~Z2pC0?@UqvIVp-N3{J_NZ~c+HabY1^=6&l?_c#IwD*@NMkxj8Ai*)j08~nXksppE^#O4cbVOn+Rc$5K>=!Ms;sXqyr;r!cSykD&$);?gig$hZ-cqM)n*AN%lZn1M&F(i9*^fj z8bQ)q_*44xnTj)|ae(ZpQulY#_$-U+h_J_)^NDm60{W*z+y! zdtq0*$3!KBF?t$Ws!R)^Bq>HXt0g zKpf&uKDToxWQFgWWZuBRzaZiM8z^I<{~tjaI~&`7LRqJJYaBKk;^ZePGOfR_kM$4X zo3ecjn>}s}TSBEqD@?M2Ken*jg{=xGXh%QkVy^567|V0_(ZcqPvs7Y^kA)+LkE7Eg z)yp$Yhi9)K0dlD4!7-x(Y3j|aiC>k82bb5fkXejkF+71)ywo=fRU6?n^Qj#(Ggtlu zFhJ<(`*{k0X^)oep7(QuCQ_^E$btfnNHwwT4H06&k6UL3{r7GumQJEK-VZ6g)ZJ-X$Da*DEannyYbo1Dyoj}*_nKJE{H(On#k-# zS2#Z%FUUa6arC@jei(kB9jsF9`U@*VFc^dG%EsKo_3lsO`dFe=92Nt4AQqkC5W*-! zbohI2QL+oZ4yfY>sqUm1r#Lv9t-h`bYmNqlActg#wHScJLkvt-wKciZ%mKk;rmsjl zbnH1coi-TKY|0Qw4Nky(me85co=SsK`NXB<7-;x5-RG9u&=6cf!s*rbF|d@tVcdVa zaWb&ivvp69u>V;ARz&hgo{mH*xF$?c3&WKH+j(biS^EjiTR+h@J7Fg4D_oaGnH=EJx@NimYlc;)BqltR7 z8`%IXlpS3jow4hv(i)u%#Or$Ga%X6zgxX<#i%LFnGyyR4F<_vibW>Dq2J;j%YUwsA zL^*ivBuSxKhfu%qrxHeA}bu-Icsls|>lv&9-zphty8zPwT1m3&a= z(DyuESfA<^2PbWYOfZyF&i7N&f;Fu$2GwCow#(tHjfJ#*SyxRufOa5GU$`Hb)ZAk| zrhkb7jF7|$*=*T>ym1uVNfWr6eThpBCeJTUtXAh{0DaTKY!RDJRwiN;wfZCZ3pq3Z zM+k28Ty$LNpt+2m;*LFs^K8)8y4kkiO{Z9n^&9xyh6*bq#W*|t$U}*1O*uLnu`edm z&*c*&H)SGsfHK8nMX4th2%_*!l`#tkXUaH1{6v~rEVjxx+Sv-zLWc&LlDQdSvTeuq zgYT+CQ;z9&#!tSZNYrybWFA?~mn^Q_ILn^2!L{vZMrBSO8LSGt!pk-9-L^ol0wEr4 z%y|J6CZs@=c~bryTG1+W`Cq}$v11kis~eK!pnrXovNd8@L-Mw6B!Zhru6yGe^Kf^e zAqm2r(w_4fA&!&_p`yt9GIt2Xq$f;?c#^?Bkw{c#ppyY#_l#xsUKhXCX6y6DaQ@y# zkAX-N)1YaUoiO6o^Xx!cNrV-W^3bT4pm!h+E?XFM9LOHvz9$7HT$fMK8fI7H0RT1u zW8>@lv?*5E)*dEEvML%^c+t$%)TVT?jhkSxDl`?z%UVd=jhDxEav0=%N@|VqRveE% zBOR5gTTc0b^n2ajrx^=j_LS^j>3BJ(Ek$7nJ;Jj4K zqonnP59PuF`_(&d5eI6!!WpBAmLySr=)T4xGna|`X^E8w{f-FP0NoPsWy7Tj+5|R!rck$3F-7#iUeU zz_*B?bZc}hOxC1L->qBL=f4rQ#E#S&FMQ-BdmV?MnmW);o79z}sP6MBv2zt z)sGqc5(}x&V+~oVc=(d)wzOmO?e@3#mBj#`%xbga69^Un(TiBnPBN{a%@9RF>2XJf z;24BPO*1v(&Zs7}=FwKNh!qVn+Ng+Es6VGNS_uhwsfMvH7D|8jmzH8vs%GLR_l*A- zdz({TmHEr*tpOd7Ut3BgD9{|;*UBF`)-@w>fPPbD+h%Oyp$Sx+HZRRtq0qdzIMeFY`^uW| z!mBDP0HX5AH1h@{Z39QTJIcJ`7o3}GD<>d~BbjOTD`4Xn?C_bZnk$PLeAJ2^;I(YQ*T}PpLaUq&D>dPOvRX;*wE4q`SU;kW3Lrc- znNW9~_?MnV7)-!yUjj=_|7_i?=0!s1$!5tZ@3y$@TXo<&ND4L zN){b13WP4GzN5p-mC2TWj_J?p&bVzC+~a5eW{`hdUvVyo-0l*t2QDXnWHFc8VADFV z7#gt)q)V#2BXy!rX;^f=WR5yy=b_I{{5&J=y>$SyExSQ4!O`6}M04VpD*JH5?uF@F zDOK8)FxN+%J$&##%w4fT+Y!^)akLruis(>Jk;|57g$rquP+DHynaL{%DZM7&MZT2IthF?tc`8%FkQYRe7+= z9j}!o@}3&p353&l9oX2GV=XZaJl$c@+=~~}C?*IZnRikwXkoShiX?4XMQTgWA#u89f|?52CL`0bU{=5?pCrmJ zjVqhBHOp1)T#$fiB};3?IQO#haM3Q5OBWoX;)Yn!TCF_7#sfBl%hir?i@BY^SQBrZ zdXBTe+0mi(X*QL+EbJR5PmJ2d&_j*O2eNIj%=mJ*AICAYgW^b8v6`E91FW44T4e@i z6QWkKDI%%2OSEJZxEQPTIs~7f4be7GL+ForOE+zvP6@_o0M;BS4%?e)+FLF_BcDlp z{&cOHMmZyDNFnAMd$E?Q@>mj04pN^1PaDECp(<&{RLqj!WIEhtxf8dMGNm4UW~7plzYTbDp!0NneDf=BOGwBpGo|tj;_ml} z-lxfdF$*=q<{n>#=!Vbt6w}Qv&p&uyA!y!O1;JtvuN_93HSl$$PuNA&Z0_FiA@29d zD6hYB=ilSBTgD{Q{$He>whOt5-AB>Ie;ifz2Q*T5@jWi*?V8K1dnX+#D9-)Fw z!Qg{^-Bt*b_j%|^80Tq>ik3<4jXDcn>WSkLH5QRf@{P_lnzp`f@L5(mT>kgA%EabLkuVcCAqWnR!zbsDswQ`XJM_tQ93X%fC4+6iiwNbu@vjYo zfbvJd=+*P+Q~U+UQ^XkPJsOS-0{QKQ$)#opr#GjU3CufDuOo0k&jASGc89H8`|+Fq z-UR{wRZQ%$2>k~ME=n)cc0VGBZ|1N<9|9FT6yi6Kfhr;^3 z#ttu>4r%xfRlskJ(c)fgF!>&~Bx%qofgYTcTNxoESnwMkpSkuB`ZRXe=oNx03<6oB z+m_=I2WXIU-)mmArl?_|0GjX&5zwp{1AH3h{e8oo;aqwKlao6rWT+<(XxEKXLh_dJ zQrIzjBpUD#v^oyZ%9|D#j2;5Q4gm-+?p)dxIwdJR#{ty7so3Fta1OF-dj5tHq3By~ zOgC6)pO^$axHy<(|HCk*4>-Z%U3*)tPB|A0pVCnEpIFe=12ooCFJ-PbvP%1oHu|kaK{vO-Kf3Wt7 zH*8u%kf6|ncA9!V8SzIzWy!G5P<8`2&sfO;Lq54gjx0G z1czurc-XFt4>{%xzhF)OF+Q-P#EF^>YJG%wJp}m*LHX?P@r*#^Bib?M4KFBOe|M0{@r6u17v0)?GLM)X;$LMxvEU{#l|H{ls)2j?5n>g@9R! zWC~V{q*eefN_;~TD^*6T4+}0er1MvT(Twh2#8KOR6B%E0P+%c@L}exAx*NZk6eAwC zihdtVh%d6?$&kFiQ4YQxe|}7?p=IzuA(r}nVg7LxyqnM@hcQY=h6p6*g3W~$&X?^K<@OL?VHqG9VUbi}4JJx& zfJvGP>Qzlh4}z80tJ)<}Ua>+~Oas%~5hR9F8`EU5h%F%@MdyGW(MLPvvfM(3F8_)4 zLGT<{fb}eK|AJ?g6ShPbk5zy9of?K}9!f+9!|4stPHwq!xR!%sHK6K$kOPJ<$Krrm z&&H1MX3tk23~GdxFntgFjAH7m3EAKSNjR_P*P~#~obVW90X#0J!HsNu zb;c;XPMi9O2-R9)_a&>p-XIuC1 z4ydFJ{L{oz(>i3O zi7=e84eyp^br<;P4<^30Zdu?9{Y=Sk-rrj71DY`+!eB3=7<7npm>#_R9iUz?=1g#t zKc;RU5+3XnsUM(Xb)0@6IA2MzZ;Xv(fAr!<;mbHms>2J z#2xsE(dGvuRoGwIbE<()Z`spEQHzP)Ey3lpV*9JQ6nChsfYMgtX)8yyMt#B5<4 zabjO4XUvaDB!3icY!1|ZEdp9U(ki0rjj#<6gnrV`sG|ufm{o6{N=y_=Y(SX|Hp{w`kY+hau z&t}Danf2Sx$!#0H%lk@Nv(?jB-Oi)m-k4)C-I2!P`Lvsz^Ckz&L;nC`UY$c)PUd1< z7;iNgeVw!r>zPl)-5OK<^mpTj+!6UrsQg%smA|aTyaqFZ@kPBxH|U+%uEb#!UGiy7 z%QCz0ojAa+9=sN+fY~EHDAR&%$57uvtF>zpjN38>rl^1SDrivu=F>3{3<;%UARHJ# z|M}`!D|@r{e-(`g)t+F#syl7elowC7dAGbhhr1E99T|7!#4Isbo_(oelWX;6>vqT&d1^}6Zi z1rGfc+UXpS*gVCcw(d*{eW;!VzA5K zi}DG#qsU;p*P`rcm!)xRrO=M745Rs@UeF7akixRd0TN32-F8jsKNiY6zkwy0sh12} zq7%_KL0YxaoNN);a{hToPq=&8#O3eFu?@W2|0=5gtDv0dybn>$MO_kYT6DtGJ{DQt z&7yR07p`Y)7VG&bKr8;Mumtn*X@&j;|M}Cm4z23@+ zGq1JO{h{dG^_J#Lr;i4F(}<*$X>KkOK>V*`z7WFN>&JBD^*I}A!lEG?aZ}g({V@5N zyEjAjhEuvE@e9;+K49rWwuVrKpz90N@B#GcR5phnIVor#v>W);m(c33t$_5D&EFcr zze|>X=~bi~3VQ)eRs#I+WTZryKO;$=(-sziRb;yPH7LH>pbd6+q?1L^hhvn_AyDeT zcufM7r?nAbL%+HB)wCU@l!>4XN~YP_aZ#4nmV?|Hd;A@ZE0no|H+y9Nli)@iSjN>Z zjP{n$C<#^*>@5vz=1`QXLp}bkiMy6LS!>2BI+vwTBCYYtM8}$>^Z=rwE*z7Nf(agkAo@3d;gDjC0FBS9~=j}!R}b&1|e5NZg##b z_FH7!)3TD)f|0hWWqfwWbvRtcvUcsQm%?W;RIWr5)zFd$bm{h@sa3l(4OZ;S5Ya&f z;N0n;<`}7q%bT$N9PAH~vzrk76w_V2!-KI9>~r!>^&vZ`jF-GO;b&Lu7c<4#cqM{oZf{sV`pvDNC3c2cam#JTU>R1^ z0f_@X78mux(rhbYvwwXOQ)y{Fw+^JW<%+6eLD$CK>tOeaQ4q$PeFim|!$qX4zRPk9 z6g|Z?8Frb2Bca%r!-;0z`kGo9dgYKv zX4%a+D{6)-(Pb*PFS~g?CcS&6s!LzXf7v1kbf<#AuAAyL&y^zX z^{sD=5^lTw^(#VF(*#tP$FzgrE}z$)Keo;5*W#qE-t%yJx7XL{{iF*Q)~o01W%6e= z!Yf^tv{6%@0oCeSgfRMKgth3v(w!D1dELiGnMt_~uh;8a%(woS-TRlyM#t9&_RWVn z-H7DZSJ(F^;kQ%+oFY2eCr*glBSerhcyAUvUcuYKwCqz<*cpx@s~K&IJ)9z+$LcrT zcf4~g*EfRU;gV;gJDEN8d4I-Hw_XWm?CNaeA9EANr*=xFaR>b;v1NDnqv-4R_yWF8 zPSrsb$T~sFD5274ZW&W&p=E2RP0QpgykQgXNru?Z5m&>+WjjQM$y%o3e`?C!7w@@+ z_(l7{BZ=LWyb|!XaOtHs@deWB(b`RBBCwjy*6+>{4f|D!=W*vpACudYPKTSALkOM` zaVB}!dI?SQf^4#7nZt~S+W6(|a(HwsRwNQ)0&}+k1@jyds+6{j3D^;tnq<_D{ks#) zEQZVD3eA14-bh)g)S0L856e!ZFUm0Y*wePns#KZuaXT7e%+rD_S&iYrQ#o|VcB8)GHURDb zu(NkprQD`{h<%~-n=!$$H6Oy87TUikbUjsm*(Pm?Ixj}=9@?FX#t%&Y%xbme+gWB0 z>QV8APA1nh+}2d;G>gY1xv52|%RX`Y^BB(YZ1hn++CUZ`GH$ukZJss*t7d~A;~Jr- zs|xM3_Yw;l$hF7bu|TF*xTZwxW2JQ}+Dr8R6eIh->I6v z%TV7|?h8FF3n^Qj?B+7JmP9ONBF`%HtE{P`A-eo?N{Tah8aI4Z9O|vs$RX-0cF7)I zDhhXT=Cwf-Wvb;hfSF|xWL&RC)wiDoVnL1B&`@Y#w`fGz@jZngUfLv{Jn6{}_h~cS zrOSo0ppRxC3`sG%1=J-vgySAb)>xZUEydiuTCAwq-FFu@-j>IJOS|@EIPqw0=Q4NV zU}lqLetarf&yyVS3z7*;@4oq{5E4HB_nSI1{eS4G6`c$m|LeB?UsrYpq5s3>ob~@V z4{cO~a8xu+@)FGHkQ4L?8Nr-kA|#OkrVhZI6Bm>K z7aM{zq~BCh6oe)XOeKjAM49`;lsfU9vE5$ZZ5anuznYp^ZyG)Q@AxIN_<8$%^V;jV zJz5A3U&f9dXSc4gx&x>CZ4{MC^-surQYbQ`h(x{Vq*`)aJ3SL2-`fDpg;JPjK)($3 z5bu~VJ~r)#D+k+cb$+n1-Z_H%yE5?~MU>)yS`TfOmJghlUiO7qgy?^axmkkxcO!A$ z`C*w3YfmY?_qPHjHW~s3Q0)4y0xBv34if${a3p=Cr^Y0vWW-R#6_A8F+-0Y6SS)3T zaJ1HW%w93uT__%OV=|3AuC55HU-YHcjw8o0+82Of=B)%=9IPBNsZK>`ClZsgiPYM0 ztk#B7m_enM)^e2ARu@`^ZPt7xI-MIPS7>(XPrePCe%a@_Y-=aRXD7x;*kiJVab@i} z7?d0bb&AvM&>mIfs5tDGf^zz&bN%J60H|U96Q5?Vjle;MU^f|?u9Y(^Wmqr@%f%}y zQiztDFBvXjHwR}4Pm|^mnas^9LQ@DYNiJ0_8C*azr)Z4Okg3d3Q7A82T+lGbZOmHZ zA5_FHom@aOry7==#1geD*;Rr&eyIuEAZzX2H4Mteu5}177$Dsu(V5~gyylRp&hhrX z4vmeHmyMW<&fIx-qdwWh zCZA8x@+3ExZVNsYEaQl0cFm4=QkcB@dbkeLOj=x6U_-SA^^iB9sESe2ptR=aDNY6u z*xwfOV20JmEp1?&rfEhK`kjCg?lf42qAqFDq>(>Y;;4|kqVwy)TKt!E)hHw z0C`EMvvTWF)om<;^dUgkorIO)Kq!hX2 zX>SA+hfbfbWlZ2(ecHHv#q>4H{#PzggWil~M%IJcTz*l=>E=N-^b{GcHY_vVGjvu~ zsiS{z?do%`JL2#~AjU%hI$hdu52bdks74Dt%zTU()dg1a3_?{+bNv(XG^XajUh|99 zSCS2F?r^&`yJr{u%1=aV{y)z!+wY3b43OjRnU_gTt)%Fr`_0NH))kn-Oar1VjfI>BF*8#3LC`gT4bALg>DEQ^^t zt8kQZsSAJF76_J;%f=SM?4?U3twZ*3@c%hYzX>bHk7+6ZNPV(1jQdFzuOJXN9Z9kVTd?W*X^#!iUW}Cyblxz`u+!4T|)^rw6RmSo1L* z_(T+E92Wuy`i5_fcx86M=#;;k&L#I}qvi`BqBwQ5hkMW-i~QI%5_?rGlP9Fr6Piej z$7yrsNhh_ z_|M1qbDgn$SIeEu&yzg@&%s(S*^-hi8s*RwamcGtRQ%S@?+9ql5HGx6AhYBts;D3M ziD&e)hAo|aSlo8d?$2HGK}iEvMHJxQ(bC4AOM3XzHVW7h(CCsYB|tfsXXGaNS6o&W zmjcLr8~f(X%4?S0IC}+D6Wb02aSu`#@~m7N32f3Nnw^#$5bIm@t|h=Br>2UmnPv5= z31!z$^;(Nl=vjsfB>SUbJARl4{#nd{8=811OFq?O292$sWSp}TNgH^cEFEy~Zf9v5 zT%7jsg4hd7Dovp4pXj3q;ycr~T@T_b5L5OumHApvNbe-wGQc8&9`UM>6g3W-8unYx zGqb-WvuD82()*nrI_rhmPnbGjxlKUu;_0PmAcz4cd6JE~Ef8ALT~R%RH80VbqW^%I z{gR{hmD=?vMhKTl?=DD4f3>w0h4JtH3TKV+MAZrYbK;cskd^a0`q(B|CCD~to6PT; z1K)dEr26qL9p+r*K^mOhcW8gXbAOHFv!y9!EShv+Z{N*5|b;)+-+?{Fl#=77$VW9h=2g7HhjM4Z<%k- zgwfz~i)r57Puhp$^BXWv&s9=xjS!pLusj<_p%5TO6#pU0{B=;{95zhY!8CHegkA|QK&hKnXy-sgy&hXXuI^l^k1x1h z8;Y_!v4Y&8s*>h~EL4-=OfBO2)K6v2a^b%!4?Qt8YQmKOD}!0-fw5nhBul!4lQ9n# z0;bGm%By?H=+)XCULv=mIi|84z9tN|Mc|X4AZ^bdiR;7GK%c`7bOvd@B>tf}1rL6a z0MCbj@Db7)tV~Kllz53;*FzCs%9>By3DWxfU+8<>)Wg$xu_^v0^xyE;&X0I+AO1VV z{&&5eU*V9Ybiu;&{j>-96b`et9|Hth(BzaZ$St38#&@Zdk?IZv%nVlQGZubd>OMIWN^9C_=gZ58P1H<=x1zI`FU#?#q~s@u|-=v5$(+? zdoU(M5#v+;ZW)d?VObiHfV5bmqQ{8bpkCvuO0a@pkuMuzI{l$J)oS!#fkp6H)Nz6~ zhN{q+!&bqH&@ooha(Y7=g)vyw$}zpAB`j{AwB!=UAl%8VZ9Ju8JRs>LTvlUUx#cV$ zqIvLJ)rS%x#OKSVjL4aTBsWNu&q$ep(KN9BlsKA24Nlv2j1?B zs9d;``**Up|3+8@YetsWBM1eV2=Cz{dv+k+#>?p|{TrF*h=8^WV$v91FuJ{SPt7T0 zq=2iNa1o?o(*R`1;MQ@?Lhu^OQowx%?cphf#&n`#(*j-uX35g?2tE`~xThI&M4l2j zwn+HFhKm7#?w8xpPj^?f4DQ*qe%u0gi-r;81v|mOG3{Yk`ki*?U8%lGqJx{#`@6%J z5sa0NL(g{TV}`A?CigqlO~(6odqT7q6PWyqT}G%wElTp<@yw0bEHOD8Y7R~T8gFAX zLb&~H1v|I%d70@lH=N@JRksi@I6U}FzHs&S+toQTo6pxy{Nsz=QP)>!Kz=6N3DKy= zFzfxcrZX-d`M~w3R3y{LJk*j@5q&@;3*!ERP@^iCNGS&inXTG|$uO7^Y7Y9p6a4{? z;2NiLQ0(Aq&oSDU;yF24uT>;A2c!C40S**Dmz@3TxdX4VPTWrrBv ziOX#6+0xpxK=U~UQLEl@i~D&!t`Y3S>pX9+U_7C4Agdg2Orkv(O{@2gx5QZvVbdNM z{5*NFnQ|kY8nYjtb!6K9dy|v3gk>~f+-~E0(b9aJ6m+7z=Ursiav+`$+PtdI+oxO$ z{_ov2m={9uba0(L{|zIBvwIZvG@KkMrX7A&Q&kt25q@MSORKp;D~9k}zYr@WoA zue{;H0o{r+^&e|#$#>JTogBe$mb z1mw~i0$7LKrHW=lAIXZbI4CAcs_|@jAqHShUS30mvADOQ?r0n11;JO@oarSO$ayl#;;1b5sdf9gXC`jdDRBJkE4Hzrr30cr8*)v)qCWJbfW~Bo9L=X= zMvnY^#Ck)(+=;FWpDzeM)6RVL{Vxkn{iC)WX+t4?>pI4s8gq6xrp?@F4>?`b>Z^tU zRPON6oMM6HutrD=URcKY=?U=LV^6&Xc!OxA1Uk!GrK~WxkVxrfM!%=HUE=tZfYpcW z{9IGw%Gg0(#$wKQT%;wSWY{nG#{n(fXI59FO`g(7BV- zPO9qoTRt=%8LVH?gZD3|Qq9*g;2H^Au9?1w0hDw>e8}v5dUo#7U0aH?zZ~5Sm&#!) zB!-_y6!PSqG8$qZ^B+x?XR^9(=sY0o-UqC)BQ+j7*e3{8qI6>28=`$b7j+wTLNYj< zc7BfDT;ss4q;k-Og{1a|47Dv_%3*R2hT6-sR=9Ngy1OYSRlM&P9oI7p(Ou6XtwQ78 z--=(~6&g-x#WW#!`rDX&Lh$p-gP;hNQOwV>t{4U7we}^B4By>_?(IXu{9|zW$Nd>X zs`9qi-=GUHWziZKH>t#^$EP|vOj^x2<^SBHKXE`${3+hi4QajZpgI6+t^afpdg~Hh zcS>KDW61v=Tnf#9qg2l94q3`C9Be;D^+WB>NVBr}6>XM5JGk))*?0{ZM?Y;(^EGs` z%9Hz{)>W`q4&+ex?4J(ujk$%iPNehojAW5#HU2hu7>Gwv#;t2x&-JTHd=0y+gHd$G zpG%40Aw#dp)ZVW?gcDiDAgoM7UJ7uH5daA= z;(8ooj+x&pyOR@gXkluz{D>+P&*|Fs#xcQ%cc{`n%mZQ^ZMncQAiLPXF=r+{Fn?$_ z#x;YJD1hfys8st9-*{zFO?9w+sTsClg_^77uSOb__DvxYXFG0rZs~+WETBTo-ROf= zS1<^EkRrr_P~EOR$xmMm{it;9{2|)ws-Y0a8jsaU5FV1XVX)6dh_d3@aJ%J{W1o!s z9y`L`R%yiZQlj7QcYTNYpX_&qNohUxZ2u^PGPUrsZ|^LOp3Jx#VHeuZH+IKBcmOCF zg}Sn5S#(-JnoNq#-O*Ja`Jyc1w++4)ZvuS3iK~`cN3*m}>mdZMq5HDg`=V+(S%>y) zFIl)Mu0~FmhHQ;Vgg*{}ssU^u*b4N;dWjkp#9w|}OG(Zz&Jb=3sDuCF-A?6hkZtU| z)?IR6m{0HYx z%9hxZ3^5vCrNI*aFUd*`~avjK{C6ZB7Mm{}_OWjdfhYf?72;NovN(je%5G z1G3H|l^PosmT*sb9Cyf9JtmDvA2CB==I79mQ>ce3!Ic>k=1I5mLlMvNQ;zj~K ze0p=}&2vahHhUZT`#R-xaV@LQ9v(#y-t|{zl+N+74*}nm-b1r9q1Jm8Q?Pc9yq0UJ zST=Xq8V+Z77K|6K^w>=u8q`af5-auo7-e}ziGPz+nu1=w@Tshw1N>FXq8mW8)pKPC zQQ64HSgQs}f&I0pz;S6{N+<((OYAwyC(*X`#duN+goK~)k(Gqq_&$M8@LbF}L0;2- zFb2K|Y)mO$C9x{GOqlPB7dXmIRSJI&y5dWR8OzSA;G+$6B7UeG`XQ`4|D#6w{s<1p z*9*gPiR~I(u#Lp?GpXJ8;NaBXp`?%`W% zjjDMELejZ(porZ4>P!PgYWD>)jW-3H>)E`4Y3-$XS=&pZ1+(c&Mph+jLplD#m%oA9z+X@|A{e0pwM0Y|&aBv;=+(S^Ymiy+en&N8=|mN_-CJ%*ip_ssx=5bQ zZB6}p+FFteo;h!p{ej#q0#dQ&zgJAs%W!6Q)*^q$SZ!^A9 zFVTYIY)vsH|9oM+`qVA-j$hMjU?CE3sZ0aN>p8OF)IxXWNXHHdU{i`~B$859`}NP? zd~ro-9gox(FlQPt%<#KGeoVkdSfT>l(-DN_1f{)b2tC9niTu<38YBDsBxL6)x?gQ* zVz)6r_;PXQ<+XXzh+B-F_^mLvWJ83YZB#RW>tRs%k=3y%<6}RS>yxS4wmjqv)jel z5%{u-IhIf%XJlziai4@rABN|%@*}=)d}a$7)*X5M4*ugaS#_#X2+C#eNbBw)7sAG2 zl{x7sd!jty5d8oZI(MS#k;lMlo7@2M*t8$~K|FqpzlaZ%wpl0` zrllZgkfAj*BR%2h+w!jj)b-5Dy|1q81#^~AjL%Bk=jz2k?Ix8~AzJ_w?P`dJ)1e>h zZtW088J}@ZOh*R|xAd6TwrF;DYsn5-mq<4z`A+N=ma;b)8Ef>(%=lrDe7U)|fTx`d z2_|z>@zEK+Go1F4N7!iMb}c*|@aB9wg5RF!Yu^mc=_1Q6dDg!d&!N}vzcl??^~exn zA*Cr-9*yL5D$@DmsZ#?&w>a+7SqE#tN&z3Yh6k+!_|fici#|2#R$OX>6Y8cGQ%I%} zX+o@@6w{hyB47D0=_x9%4&Bj6-2Tf;xVSV@T+yf5Qibw@eBri^&R!skvrr71muj-) zO>q-=A$yrGmIe&utmA#Q?ZK&Hy!KVGv0oqow`tp`iU}-ZG4CB#qZJ|-#&D3x#Ohkd zBW}j|j@jN>I(WK+?(~g5IlqNZ_lxz2x}%V2!C^#jDle%>NC2Vm{|n?+Q_|GRgn#(B zWFqA(Uz%*`HE3oR44z8UHcEsyGhfuUr(Uy6k@rFTbHqlUM! zTF)9nD*=lxS`y{8DK#s!s(wI7N&&(I=JCWaw^~~=x312*GQUaeqJ(|rwpR7a+Ulk}y>SuJD z@CF(Y$>#oVUOO26LyGl3e(hjn=J@}Z$yzC!DJd?abrITLi`bDb6KJ^GXmu_5LPQE> zD`zYBmKBEi?f8hmVVOV%5Q-Bb4#h}A2FUY6fkGw-3R4j&(5yf=j&nB5NlHDwX3>UK z!OI-))sDN^soAJ~)-Q8DXSjD=d$?cQghRT!3;yJGSZ|%yAAL4jW3#chqxyre{|1Ht2 z^-iuldq?iO4;q(3W>0LiASozA9%4%rBo_)LkGCuSmmniV71Gp?u;@2ZUto$%3ljCN zL@4};@0BY(0qBbJjI<<>n z)2jh}pG}}?-l#-!M5)s_=#rhU=c%%Ag9l{FgkNbiVv;x^1&+>~1r9NqB~(*i!`s(8 zszAvgDz5t?DJj`;dCNkynVKouLn=KdfiNeD$b2lsz%j%;ueAUHq_%bct1^*~JiJ@A zW?LH};DXv0oHH`2UZiS2Q2oW|cM56lf%3Cmg5UtuQeRgokOh1rc|J}tWsM%9nFdX? z;}l0-mdq%qwNM;J{^HXv!v$DfChDrYyPwz58_w7g3YyU&&Q2II{gIEcoW^h z`J078sjZFKR814Js#@GJ>+LBo$3p{cwwdlM_0|l3()1;fpgo+7)3V6`54pLH2#;LF zb7K-QXqkang!s&@rt=EQw_ zqfc_C6r@$h5fCe^t}ml%3-U7^(LkX$dsdYhd*9!!ha4*grH68}LvV^zR!CYxd01Oh zyNBW4-K__z4NGAu=`&{$f7WIyzv;|PMAul7qX@K&;F#RQ0T&l-xr%6vtu zmaUcTCPE|bF8Z|4Kwr4EJ&sr(vE=$#{ayT<#36n)fHU$Q+)z-0&6Tezkkcn9J3hfB zGzjrAUs8^7qR3bL(hUisnRQpnb>9c+#b#YmLO+4u+yw{ZaS2H>*B}F4>W3XypVgSxB zdG1gfdTJ}y)Resxpa*8k(gu=}gc>JxN2VwGy?Y&MsiFo@0e6x{!GHL01m@M*&~HHg zU3|UNj2!U$j(!~#AT!tVHjfS{1vZf^om85?bs zCh+kc5_c%=@r_Ud(5%^x(j8eG*)fBNan{6zlve}K>f-kBb0uS#gEENeQ=(Lh_Xlf? zMZrOxvi+(gpD@4x>$ToaPkCS?%Z(L+HT^?&$^4E88jHkj+)4CTzrDq&Z*%m&)%d$^ z0w}F5@zj+O;Bcbq(Lab2KMnCx(|(n?!YJ7r!i;?1K~%Ej3eC*5o^wj#wXF>m++}aX zJp@9?X{?|k0dFQ!-{tKvoj`ITZ8Vj;!OVDXBAy|uC(o@YX|4|lNGEYL4J_S&p@4Wg z6BtpTi@Y9p7vD!{W8^*rZ!*WA4ghz1R1{vYyUt5R(vnKbUu{0) z`XvoSd<3nu@2c~=8b9HKtTdnwE7;6=s;@A;EzAb^|t8?##nX zh9H=VLbO>GX3LTsY#SrG_EK-Y`5a)9#`hgwpuC8InUxa}Y8hf-Ro=`R&1OI6pJR$h zp<+scDR>{O7h<+!1O01Dhl-s)SnBN^)m%6Hs^%4^WSioso zP;Q2#L-W)@%W2%I$-_;eLX%g;r#wTxw+6I(ha+ZlBj2BT~!bQYc z*S+AC_G*Y_ne#jh-dbyo=={|qqFuN}{x=L|M8&~1Oiv^g0*s2&vZ|8n_eQ$SZ>;IV zg+nU3qt>QGmxkQPzLPX=lr2_zP^$?ZFCu%dCD?Ofp{Hv9^I$b20Y>bk+(;B;G?_DW z@M(wnS;??hXVB&Nl`pqG^`zSOw}WG$jr#J@a0VxKY+1K!X*1v<%<<5IRD)r6-Bs|VIwQCZL zRAg0_?{t*Oiz*tDjL25rsWNe-WsrN!@~rx127a=6lIv4!bgj)arOf;3Qr+$?`)&8~Pxkfkxl%k8)132w$F^9<`CP zGyjoEL_|Ks!fBs!id{!yTQ0PttiwFyq@-P9A)#he!@I&lzdA#2>Ra4?M#k4&2IJlO z%6^S{h48%gw(&*r(&W;hy4k+=zGjnDm-x?|d@U+I-v?vnm`?5k^igy6 zY113=jq)OVJ$dEzDb78Hg9HX6P7Bu?* z%z_txDt8nCMlc%b$N(^lV)c$ghrEUE9lDOXMg|;Z2<5F4`iVd4TKbQSA0-t)NwpVc z`b&scjPTxxNFRa+dvP0f)iv)wu5SvIRJeRHCIIds_8g>0UI)I%(APL{&%=YjU2GhP|zZT8$yI#EF#{6Z-Lq!Z4;4nt9)8*zbSD_V<0 zyRS^CU+iHiQ2VSYCQk{|FbXDtToTK=ss`*34X!!wk7pEOg(+Mh-Tcy}HPUrQpj1tG z2!XR8)b6n_`unQC*CJI=KQ_;y@RrfZsV@wE{}s^djHXwKz5;Hb@m*_1x1U)?C$!fd z5_7W-RHI?Q$>Nd&Uu1I~93OM#t%cm6E(hpoUggnW#OF`fMog_dX&ap3>XB*HLmH{Sz2 zqNq@fU=g6}`9~u{Fxez6F{nz&cu~qNvP4f!%(tf~3Nub7xdP$`7N<6n_M)U;AlIZ% z3g-(9X(V3q+A3Mspd7OVqim4#U_Mv+?SDsqNAv`#WzVvyb9ut8WSH)$N(bSSY<=Dk zB<<>hz>xNUi^_JJ#Qz?s2`fm6kOc9SYL=96m6CR1VzBIGa-)iN3|M1sh5;E#*T^+n zq)b3#tb{^^_#d#cYIdRd^W5U3Kx$Gld55bBub|anz<3KPYMOr5-|j;*fG3wx55is= zkctGl3E2;H+`R$Zf#epBmtwfSSnJJRPWoGvGp#O@W)?0IH3FMh$2=b0Fpi-y@^1@Q zp;GuH+J74{_gmmWW^}A-Mm8f|0eGNl5f>(l93pTx2G?$Rw-j`>m4Q=*zyI4{MUi(L z=Fe+@`8kgVH-Ekk_9)#zz>dBjl8!=Iw(9JDlCz+^bJ(>kh{HZ2wX}4qTg_(d(>b!= zvT$Gb=sID;c1`nfNiiKaprkW=Ka0%3tCa_>gjQ`Mz%*iBxjV5m9M1@x-fSevz{D(u zfzuo&_V3pDf;YAnl}{wru`-I*TV$`+$6HB6;>Q%w8_O%L`;RF_%mj5xZIibBXkdIp1UDYLMXpk8S*@TkppvK7^HfGYB*BWH&V z>v`*J^b|F(=*?jml;^P18%9uVq^e9VX8RXBU?}gN{_%$_+yI!a{w;ZbaXo)N|_Uj*?iX_iw&EI5}^>aJGgCKiCxtAh~Y9>jQ& zFdMqhy6$^Y(X~z97wH$~;y2{N8#ZL5N)w<>&U{l6MpglK!d|z$$2YBQ0DQ!q9d!v; z*o9-H>hEeYo_ch6<-Y6eEn4{X$iwH{6NKZDAHEIU`8D18tB`TjSw{>xO^kctlP?%K znh$@^@ntBAl}HFR&R|N46hpZlNM(o5!pW*HlD~~UW!;h2LHez9E={j|VqVbv3B}nI zN``kGX|CUDWqNFBP%^FGsGyjwv)fjkA=1gyN=ne1|Ez#Xm?BKRBAXntNbQ_^hDQC5 zFv1@u5V|bWTgx-)(*FZ@2pIZI17QQf2Ou+@PP;pKCoW!O{nOU2Xr&&~gm<#{c0+Bh zmC%d?H=MijS8;ONwb6VO^@-CE6n;rwD+7{CD9dA`D@&tQ6m!3i=5;NItdKIz4L`*u zwDDsl96>i0Xd(U0refsdqT*VAc7qj}+t;6RVF{cUN7QpD{*Q_NM7L^wnP3i?;vs5N z`DJq~jc|>sxSXEa5ro?q$q-tHk8tO~zgG!6D1(#?&l2xrcQp3zy8(!17!Pic`B5Ew zL`*}-m}n$3si^sr>LZ*%PVzziWmUfOX=x&zm6>2tP3m8fv6jmlSjLNMTml<-JI$Z* zu*uy+23}!bNd2N!%f6^&$izEbdjKwHIy)_Z4>U=dHh816OmO&{WA`;E?MCLN3ugr; zY${b)S?$WpDwRlK%Y@l+pXQWi2uo(m?D)}E0o&9S2us7{CaOXY+|t0ltUZL#;f%dh zgPbOl*7rxV34%G4KXOv?s^Z90Y3jk6Dm&whf(R2+K4;?Y)wi?ao*d?~+zkZ|9*0aC zP*MW=)|sTxpncb#=sUS8?0?WM_=*$=pSHYq+H_ zvAGuS-`9LRzc-Dl6191%irw(R4x zBlYqGl{hNaauo5lyJ|?PB@bTy12iW13g5KfM%gT^M>LWfS?MzVT~7_UH+UL2vOOw~j}eWzpt!jZ9S z h3kNl`{8D-2K=x zm>Rj_JwiB7GF2^9Zz@U#xw^VSKhq;$@1tLLYj(c5J)3Md#*Xn21q=2Q-QC@uM9+kB z&!exQVz8V0`1i)J+ZXpqUf<#i`oFcH|A!O)|J;HyF>w6HA(0eS3wz~N)Sg)+dHN9- zBrwHx;6y2ALrKOVcNv0U(yCzut-1h%LqV{0wRlqE^;Fo@X3fj_MI%Z17D_$)J~o5I zywH3L==2UuCfOvmcw3eb0f~SBi!+%qp9kf9b-gn3N#_q?vzzYQom+3SPZ7d;3`LY; z3K}Y{UYBoXY<3%^Wi=a{D!Nsxm|42Nt)jY`rK*?<>Uw)-guZOUv*UZGk#A;04_4SB z$MB6z&hU|;x1{j08370`*W*pRkM0|e@(58m#AHq@C{HF}1qx&tk$>_yDe!59vFBV> zLSOR1Oay7qm_E=$C_1zXE16f!FQY%Onrph`Dpgl4m&FP_{j#OBEfgv(mqQbpD@sQ4 z>@ak(U_6rql{Hnl8#c7%@KkxU;=C2CmX|GctL1ddE0)h(#HuGWR14V<(7jl_7WOe! zO!5~_j_EY&>{EJ59F9_$;;v4niCya(x)k4yY8-l4$3)fZfs01bzL7$-(^05+EjK};x6wyB@k4t!x(;gHB-YHX|6a=Y6LKG>- zuj!tEmLp4wk?F{DBv0z!)Z#?G{eJ7}B}&b^CiITit}xh&~BPyYu?#cS~!w(f5fQ zn|IeL7cpbFbZhH-ds|!e`Jhs!uF`~tCbc;8LDD7|7;#1$5XSef6f3s?ZCkhLlA(&3 z4AJSD9racKIoUF|D*(jjaGMVkpGuMPhyFZr^rsugtQ$W-)X|LYFR&1JU^RyD8jeMX z7i1YNS+V9snnKbHDpP)`^QaE>PN_@CtG-(O<3LVS0B-N?3G7-uELq;K&e+4R#D@5| z39Y$}4$2h@1L4amd=&*#l;2==(`5CD-$x`!pLYjdfuF&hv8CrFc;lkTN#O zAA#I)Blq7|L7u(6+l9(+=l7z%BX{ zwLCo%GzfrxJaq`8!HNzcm??VsqIVM(_QU6r^<7fH_v?)#$=M~mwvA{Rv)SX^YiwVw zRzw~6LxHW~=IXZFq8!pUrQc50TC+Sq@sIL?l3%F~<_n6xXZ?ITIdisK;|c#a)9>pp zRmdF8t#wH2NbL^qj1ko|% zIP4rDIPgb-98JIH{TN%&j{$-()ZKCQunS~Hc8>>HbZaUp_79yXK1s7pY)TFluTi9{ zxS#J4dg%cp8XVwY=~=9}k4N^;+v1GAuz!ShKb;-W-8z=rRQ7LEy!xN}wyr$@@v%t{ zd*5|4`CmuCRRFye^rv6~7@6dtHlVzHc4=FNujl#;?~u8u^EP6-6)c2@Sw1hjQ~s*# zKF{wPf9R~fwQ2)Gh-_`X8Dof~`iL_HgwQYv<)-zW3eU=xNj;j0 z_PTE0H%{ab)GqDhti&w}8<&=JNq(+uIcdvHU=k-SZ#{cv+Wiw(514^{`>b8IXp{Z6 zTo^3o8WqV6mI_kTLn)WU-)P$~xdIt7B1iUMX2ZO1fgyTy z9Hns1{u6zy3Jxp3>A{5H9HToONSHoOyQ=r^fkH3NEKUgY{J8#0QhP{GPkmnRH;LP@ zeua+C0hm*OC~vf*>$@7GU?IqYB#5#s*XW)E4xQe%>>QX@Fh&ov z`y-q$NI{U#oAzhs`d**)#=Wpi)zv?1Yrlm1Y+EAXvU1^fLit);|H!r(=U|Or{YVj* zSm6|IEtBGd68g9Yz0%1V90Z{L@s+Y|tX)DUCtFz_I;Q|S`G34G`=K=Fu$o%pApa$% ziGu_1NpS`~Dc7jP*3P0VV#@^WzC|IdBaa1w0WIGS?gQ9X0XeO|*Rku=CTg9tX|@@8 z+%)jx8brxi3vL}@sb-Nav$LL6 ztklR2WaLc9NnSwv=KeA7gMcr~RaH3x1V}I=?XIb^HB%omegKJnEARiU^kDn{F-`x^ zr3W(;)BhcQ8=Dvy8XB0G96iF{xxzfpy}-IYv9kO-fGYcwL^EjlRhjb~1~Uk+IfCyf z!+(_S7v4Dbj{((%29iMkCU}Glh)@ngg0UTpp@E6n4sxm8DaE7|rL_1Er34ET{R{&W zo%IM!6~(m3EQP|7$chR>OFQj?5)A`GgNoy%9L1D`{D|U>9N_7QEbX6#6SDVpG_{l{ z1qz!PotOwj?eqQc;MhI1Wz_vu;LI(H8}cxf2osXGbg)#=u!I8I`qhO5+B>wR0vi7L zOpt74A!ms=rx~3gP>>xEk&r-oB@VtT&l^^|Yv*UG^Zwik1;O}>@R?8FQQ+>Nr|00H zw{viSI+;eJMfuu&8%G^^7C9WHKK6Z%Fo7_Djofc9TE4BfSX7UwAZ zKWLIKi9Q;srrJ6M`cqSSIoi3tYoh#FyW^akoTq+{a3N2gB8tiPE}7rDxf^Z{It(a%at4+dil9>|Uk4EIst&_6|0)zvXT*&CvbkoV51zo!YX$h?h^q zZ;oI8byvX@y4059qpTL(iojg{Po&{Op2?*>bPkn>#`{Hn)pe@*YRP`6&zPd>YpUi3 zW`x*#BZ7ft821neVCZd3Ju0JH+zbFPoC4O%B%&r;BZq&K@p|Nc+dkI8^?d zD9}Tl687#A*sMxbD{C$Xp4;Fy{rWb4n7={R<{Xd9-6`<00L3zytsH$O;ilnc+|iK^ znMep=nHf3z5wc7{^RG1ta21jWw{okC7=O`f0IWg2F7#V(>6kNI748}WdzH%klDVPy z3bxdp-;ngo_)G5fh-BfX+=`2F$MZRKz`&fG>3}(r#|p<4u8O?B)P5b^H+(M{#9AAB z^+CJR`^g%-Vv?OqveCc=U~~Z9#fYrgQ4399>g_+n@qvuc9C7r#*DTop2Cq+#W@XnMn&-dDFIR6GNw^!V!?ixR6E9pO?5 zhRf=i{)P@G-~?HC+5>nKFb#tvT-tU5(hQo#hHS0z+x65`VB~y{)TvYL$%UE zkJQ>X>n7>zV2&Z^)@Nd;G)gUfon8Zt<*kyfYO_g8d~ENl0JKNTjr>c2!W)BhqhV_{b+nGDsLToGM)sQ%h<~lZ=hl#sZ^F2AOPFQF>T*y-h}ua7l@*g|ZeGP%!}t zLL@vU3gB?*EMTf*x8CZa{)M6LF1@{C?d7|3H^1%5g70fr2j z(~T8nrM`CS%Pzb1))?}Q9`zCG(I3863PS4ADu42D@4aJ&aR}up`>CQk;;Oq|(FFWj zW797N$_^-dK-7taUCdiF9lPQ5V>S_V; z>RHqi6DSX$^0aylN9QSDMiB(;W~~e-lwZ3AqHo@OWWq>|Mh;V4dVl!zbux0X2dOtu z8*T4Lh8Z*8jJz4y{}A?4kP%z4*Aj4t=He#(O+iX(@^BeA`Kyk6ka)oU>u~>@F~P69 zHH41x0A*jbXvSE8Ss%?hOi%E$M-X>lv_>nOH6b=xR87d<6&>~!*^2dW*dy~Nk!d-Sbe(WqSavl?+!zof%YDrSDVM}V!f=o2Cr7Q zY*N2*d4XN^oa$-Ji@^3$MwiU4W4fZ<2NN@=qQ7e1l5TAPoK}!OG1X{iF$RKK217+a z<&v@?C7L2crm99&*@Q|EFmwaE4S5cg!_jFkEv6=<+9g(y<{#`YBi_}T74yh8~`lo@}zjke$8u3O72$aw%FvJ?5 za9qvr?aSg0&>>P+Kwhe#6m_J$*fBxQYVM*rkBAC4#kT<;>!sD#6^pXXoU4$JGg0gZRGM=UZBf z=%Yt!3PzjEkyCcz1FHdug(>D~WvQ2cR8?9KUaMfC+?*h@|Duj-P`TGH*2*amk|yDE zx7_fra9J(*^`)6ybntr?TGK$6I4Dqf&+<53nviBQFb|49xYmJzZ)&C{d%8GP#ztChz;?Z4imz`XOy4;Qu>jYJs{ckmOWN_ z+iv}?)5HTs8Blj*tva@I9`T*iRS|Nun$@IYQ>GP5W+os+=L8jbWq;m^#8ADcsvnRM zpcjtj1y{_8V7OS+8UmiP2;sBuoJkm?>@7!P(N2CtU z7Yk`RIM21M#-AgoXi+jigbJ!GD_{@`_L=4C+Xc*K0$^IWYLVgE_3{*S8!esaBwYc1 zjzA;IH(M0mr<-ECpBLRl41{p^Pfo5#pdL9;OQ8!8>U9u9q58fjKQL!P7;e4@s7o9(Yov+&-sBKAifGn;;n+$EkbC4;_8C-R;}Aa z(tdp4GTQ+Y-60d!K|OOecNoBKZ0JWgeWR%~3=*<@$jQZ6d_^k@o(L12rqmdtd7dEw znF~gGa3~Y{;+v^)c?$iAMUT*LHp_15F_o7X|*2A~^O2BHee{~a6hGcC?iZdx~(d3!gytB6{ z=Xt2@AtHGKi)psgG%L#^h}I3U>OKk_&06HXPH&N8mk9%2_;kc(5@kFF?4RY-RDOKG zCxoo~g0tEAqx(trxb41V#@gDvQ{|@973eG`(-v=ZTh`8eyIp}-f@R?Al#?{#kFndU zWbi?ic#jKUwKp4|)g4Ypk~9k1GXHT;HVPB^20 z50V!t8u5RgSM(6a%@)JIH>LP_`1$xgU)8Mm%HoDajlHwDZbCa?ya;#A&L1CHqxB5u z=n6Du+_vD2&db%OA2|*l`vd5w2$07 z`X~R%5jBYAPCza4wE9WR1{K6BX5I2}T+vC}%05mcZfR zmgpQ}0>vbPq_Zl}A@Yu^3%0V95`t*Fzf&LZ^EfCmcw*4w=-{03iZ2@bm&Mx3t;GQK zDg4fffjb{J1R2&&LF3n(>|ML7z#{r?^ObEdfBjZ{NZ||mo@WRipTer@9Llrq=Tj!R~268Y5~#G)_(y*1RpqJ5f85jbXaj+dN)t70(gh&hvu+6!M;n$&(%-j z_=8Gz`pt2fobXDG3A48*@C4!rQ-S?H?d>$xikfLMFojFOaaRX9dCw9qV+rsm*){iT z$^SUQS;H2^Thys4WKqqi-Jr~a+#_k@V8Y3n=kJ*E`&23@tKCnqg@f^MPT&H|Il-?% z=!+KCwJH2h znJoCh(Z)m6>n4ZxZyD!P(39{}m-wt*hZwHE;qT7O1nkSs#4{_8s)L%XmMa&WJGjI& zl60TqCKO#k^A_a^I%MMkA6s;SIc1j5u1gk$&?cuAPYKmfr^lvLgTDkNE|*ZhJ$Ixf zHXe`P+#)WaLpu(;+}wqwEq55Sm0#8HT~<_ybQR>t?1W-f7zeo_D(+xaUCOomlhA3 zkHvl4g&Xr}K84*uH~O0fGp0l*Rj|c1AuRU$I%6`$=r-j)K$S ze!_f^@g4wqPWU;MD4oi8klwCASrdD@j6W?V<)%lv2Ph`0e#q(fuahl!>F5cwX6PJM z)MemB8$yde7>g$-nIbUjPzCZkG5c$tsQ;p|54YoPHXeV1+x!#V<>!+ALUK;RJ2ne# z$k3a2&O@Q9EM*-GTPeyPqzb3|9vBI5!vGbHRNZUGt=hZ>@4IfR3{UG!Nu;AXz!9?&hAF$&2Bn;giPqs-I9mW!+JMy5GG7 zX@M+;l4NCqImt@)$FsCHEXGh3;V*o4_<-@ncWzDo7LzMDn*CFvI+>|opE?9~eOo!Q zTmQS-!M)W*_YdU9Y!*4c@K}B0kf5D~MMMe>aoV23Axmt5j&$Bs!+^4Gi&{*9p3^J5%! z*0G7menF#ClLofJumQrFd7~ynW`o5Q%DU72)}pc)0(bm?L;tb zE1M$HZEcPv0-@9T*z|p~9+QyELB%ZMh#eGbSl7q}CDKy1b!kFukO8S4d-dnbUW3cz z&po^PWr&;)uDJ0P25aahVz5>7N54M}Mh#+}TG$sGyuxd;U@&+VJwhX+pIRcHKk;4+ zLW}sRDC0qctMgs2UV$=A?pdgEV)BlAA780gS|O4KikS^oq4x2@vBsL_|dgn%bDx+2=!To$c`9BG-*GVyw*mz)OvME;n^P(*prHRy|cZ}rx1yM=0jK7(|k(++jkqSDOMF4Hkm`d2`8$v|Wg zTRcG>)OT*GLO+9Y=hP@dqi_<$#NtnL#%df=j9>~DH~)1gb)V;{5+Fhne3p0pM8s$#Ps6Rn-IfU@6@0{$%D`XZfqmbgaqt1tv9aW4P$ys@~OsurF?ZOZ)0RtQH8vG~7vld7l7iV#eVoYBq0&7}H4_7Hz3yV1mpnaP4N2Ib=&R8xne9!z&kzvuUB}s=h8k2vZRvQ^ zsAs38r2uhJ0>_@2ordVCrsZ&v@rdC21jG&MSl|DGoQ9NS2{{EOpfxhZ1bxe$ee~fX zJkmD|*ae$8($IDFY=&>btO~T3l<1VIomdSOm~P2@tdG|{rmv|p4wB$J$KAGHoi%VV z#1mt7OFp_Sz^i}3jP->H`|tynQ!Glf&Nm*d$A@C>?4<2#GL>0``JP$8TqlsN+_{$z zgQk0oyQ_y@6F}iM_Y?BicSc$}3g)|68D%b5WZqR}d zkgOMZ7^1GnjsiVCXnQMY>g-)!>o;jwX}-ODax>;%FgHhcM)R!b@PE6Z$yk@&em5oU z5_f){Q)P5ISiYl$<2YsuVVy06FwgSL?5GDCRLCDGEbU0przbYg(A9)02I6N?K67eO zYVHJ}im()qLB?j#uCAt=n?JX4YO{t_qiNMNl6NoOz7ZJ4W8csGiZvG#-hzO`Rrqx^3(jQ>R*&B)I5A2SRW6(1Sx zRn*>Dwl~47xRPd|#le>XSJ})yBsMGp&3OZcjgz3j^#!)+I%DH3juA#M831I6$oknv zKtBMukR`f0HfjIF3K`iXiYoJRHdDn;S_}1pin7gQ(`9q#=eWH+@>gv^3P(-4>tD5jAD&*7IqX5v|9PnDk>$;ciJ|Sri+z9MJ(! zu{8oDreUGfqS#K;{lpPtU`b4f2$ML)$uB3<0XBQYOy6xlrZIS;WJ6Gl*(dQs!$OxX`h?fm(=Bkh>b3@<^Vd{!*HF%qI` z)ke489anY_a&L<2USJRYI?bDQtxeunf5q0L%WJVlS-Uz*8Mf|i*VR?bOByoSB-KLZ zo8`Y0FFv#J+071z@R63ZveG`P>nsyfMQrlLHcF^}%JqthEU_8twX2mb-O8z`BPXd<_-S`FHP!BAR(^Ste~)%mKXCxxJm0ZzSe*q=j!S&wCcPgF$#m>1mA`C2_K(D1;-E^!dU;0NajE6(nndSgWIUg<0T3Upo3MIN1KJ1cb?sm-D3R*~v= zvezg4fdQGI;0drh;PJk3>TO{{KvC=VY54tg57_x>A6 z-!kj9t@1)%Cxf%7b&SYvr^-T}^d0Pz(*<*6!KO#SJJvah(kqR3_^w#2AaNez07}RP#fw?t7AQpB)LC=k=l>n7JV^!ae55eP6^WQDZ32=~D{c1uJal_DPIjv|EE; z$G*Z1*X7!B(i(Ybe^Pn33Vcd_*MuJxR!>eF+?tK`&I+<0Ol{519k-U3!WxDtKj;|pU&UetPB>#FZ|$Scs*$^WM|%aADE7G@bD2NkK9Mp zOToQCTmh`xyMaixpeCjG&7_<_+m-A2q2VrXboBLMTTkCyiH!UD`sMQs9SYQ5rRA$P zplrJPzrBh7i(ZR^<3EoN(nl)=h~dfi{yJniYeT}?&nfe0T?*Hrl3brYYMl{AWZT=5YsD5AaBJj?alDhdj1 z;?CI?PAn`rNG<3nS7Wp4ZOR;;Vib&!#Vy9u1*ayB!gb9n(8VQ=NeYCX$@#)#h}t2A zFJhUGZ3KAe6<5td&8D^ML|4qcnm&C-EZ@J|r#>NTD@IO4BIOTrY!&fB5@AdUc$jmZ zBBcaS<%+OU3hgQc#XxbzwPmV{|8~RICWj>JXZaGNMV9BNIE*B^dxu9JJo2N2gpqp> zRM}t2_w52G$o2`N^2Z(<&^0DVNDgq+X;Z@>B=1it$+MolAQ3}FUU*Qu9z{gERcUZc z+JtNaNe+KFKxDV9K21^G{jclv3cwAym|RkH;TYxa?2h5I&Nt`58H$&H+i*>O7c&PN zH9i}Y-@)ZTvo?AlqF|#w=$N7^VcEExxfFIV-EY5%+`%>4Q-6L|pc$#?QZ4! zfudH&t$dRkIllwDD9zIDY0If|FuJ|7!)E1m9K;gYOGEttUhZpC#PA}iUeVJg2;Vi- z@~C0<8?B-1nP++TSt3{{36H;Oi2M$Tf=FsfO{WyvZb421?ALB}OVZ#?HSe$JhNbi3 zt(q3vI3lBhu*wrCgQ1DP=%?Vu3E~#raefOu$S!++Hg)jS_=hgCjq&3QueZv`k$Xw@ ztrA@Xa|2MKT)?Wvzokz&eKtfemt65IjP5U|f^W%&48VGN9xS}i2GeT|{J+O`kq-a@ z_kR0ss9$>k|CDtoIIZKu0s&lxxN&=U1S*Pf_q{@*2i@d6GOGExyrM4*^+hASl@ago zot;$&2^&CbU0hzmWeWde&L$Q;&csM~V}PyCCkap6hTYaV+^BX1EZ(BkA(ry@V|sUZ z`CqjMYa9Cjvy`f;M|3PXanYVFkX#FGNXQpym;XroqaDQf?8mgUfWvRxGqG zgcdOm%aT_IOH(i|0~Mr5(fvZfLV(+yx-d}Nw8}5O0fH_bVLC*Up3x>!K=vnr9;*?a zOzfM%5RzI zWp-mU^Rg41UUscoNAkWx1UMo*yNNT@8ZOf-vQe)IR^$4Q zvas+X<_c$Xt-+L(s($SrWr<%Tr;QO;6>wpdnfKC&1}=I!oN{Tzxe>3_;s}l@uFUUV z-7?=$o$wTQkWX}RX?16qN8@MJvCb^x;;;Vet}XgxjOKOZFH>FxD6BmQM+!3^AdW^D zAx0?l9*_=*7OKAhupZF10W_O1w|7~Es!uq7^@j57*U3OqCPQy%;Rh@GgVHc~@M=uk zJ&n}j0x(gwsAh*H{7aKx7;PJl5iFg$aa=*qObu7)c9k*5sa|hShIT1j%Q3&ig(4Ns zvFLh4HrUk=ono|@;zZkl>;p>NfMHIWZo{I&fzM=rF#(gO4NWbxJ-d=f@BUP*5^y*^q;6`=Fx%jl^ZFH7 zZc!oy)sTp{9+yRUL_NqvJUHGvw$d@|n{47HIb(b!WjkEDX+iJn_iZNL zgg7GQD$DW&m!_9ESX;)3i#a&5zIUgGYi2)GlvT@bKUap&MTl}Wd70Qei?}DVM4oR~1nzK4FndS5*a(W2*a0e~k~t&E0!09V=5SOl^n1pZnL1>J z(D%(GmyM8mfOASFYGz8iJ4pkH7*ZgD?3uGvie?1aVZqH@Z>UfM-G9pl|BK{?k%9R? ze84t|Rx;Y4D5JN%m+Zi=VM*hAXr)4EQ?!WS% z=0PMy*gz{}@r8AqOE&;U7c^he zV{OF_bM8VU*jxq1AgOu>2w1roSL4%xqMxZ5fZ<*CU@QX%fZt=wIJ> zCl3d_R&_EXXDjT2YhangFC#F<%7p|+Q>$cwFxpcdi8~6NUnR6)zV1y-0CdI4`OSp! zy+;PL*LH-JsgbLt4@h%iv5aK!C17s5nq^QKHC53gR(E7h<`wt`5**ge+<&{SNQI6A zx4O3F6IsLr*omp6N8(S;QF5Z`Ny}@{SHX|CyB@17Kf5P+J($qj?6)m<VSl2>!OAF+^hZzfYGp!iCKVH8+_JGAf2&JqGE7k_#kLit@Fgbr7caxP} zF(55SFxTAc_nD=hwdJ~E!KM2|G6w;(sk=knYd1p!gr>=&hM2d|OI+;K;Q_nw+6Urz zb~pM}2SI18$6TTq;p}p(Z@zlRF@#o9OYg)ERs$r4`xQCSCP(6T2L6gf8$QL?^|E>s zXUFWSCv!FFD%)qTL|KJ@Ih1KAV5DRz-(c#T+B{m&obF`3GV!$vV1*FI4iT>Z?)lTR zd3rAl(5cxw#5qw4Px)$c53sg<6ET;DUpoQ-?fIDuayBKF)RQ`MhAzx3#_X%?7rPsp zGRaIx+*@1UBUfF6?kE6HRLX_&*pX&{lBxdLe~+}N9uI> zza$yv|3wkR$jb5`twT(bhfIuKV@|P%DZ^IL!&FXX&>ty69Wtre2}J2e(FbcqBee<&%KhOtkolT7AIVQ-yvR1_*WOwUzM8+p`xG1~ zsG_3E++`S+@XcvbB}!!~mW*Kqlz7Xsw|TQpMjW~JVeU*jF`!9p{8w(VACuo;ehPb~ z`oqv|{g>{*y^7$bGLR~P^X5ze} z{@K$O0fw>2yM!>X`}S`LcT?E8W&u0a9NI+8ss4eQ3aC?B5$=0h&+73V-g(MU!QVK( z683FmuuRHQhSBQ<4Xi+@0W2xXDGjOmVaS;G)gdCMu$adZN>Hz&p|$e*Nywo=xh3Tl zfzI*`KsA4aXH>gB&AL#bF&a{MX3}_46exg`(=XG}gmRtcZm|2TKv<{k;`D%6bd!n@ zgd&53t(Xy^#ib8ne62?bZG1gJ=!cYWMqpQbW@{H)k{MAADyY~=hWQKE;LP1@f0Ger zocHT?>ia&^v_kU%Kc;jqOsY9UhF3U?PD8!EPe+u2;u461#fiqh?zRoGquP0tDnXi9i2$XHAADm6<96r--F5jJsm;VR$mql2)*u6Ww#-6!|2fh&zmi7Fy<{PnC0s_uWiEZYPg z)6_0T6B0}(^4pa@0u88dlY%#;@SySfNK@=un5>gf=a(ZA|L&i)V@BQgvfrR#|H}hk z{4mx)N|P+U?$eSRf|NA-uBP4$j5UAE3tVq9PDe!3rP_o^gXXoko(}CJY&|cg9E-4| zN~$`HZAXV}ZVX3G7L>q?x@^{E4^}m%y_S&a^p#?K9-v;5?gmi%^nSPCA-w=p=y&}8 zarRD8x^2ytXj&_6+qP}nwrv|Lxzg53+qP}nwvC(hP`CbFZJ%nV>gD_1=4@?7j1e*V z=+Qf<-Vpb72g&uOL=%`aY5oxYxE~=(Y}3Ll6^NOOl}-EN;FEP&HLkPRkJBLRv(|o& zFQfMMuadfOYLl6x1pS**0%4LDuV{~ z8?7pCI*XT3gA}Y%V8^F^Rb`#+UoJJ(H|FbwQK)s}5qdFXmI5LItrG>a2WCa}2`hHK z^*RtK-Z?IQ2N!i~e=%fmPo%WHVk=ZXi4Z$n6)MFr`q7b2HSk#^t-3D_FY z(s0@BGSDx%m^Ef^uT9KsJo=8`k@&n(`J$Jdg3NC1KCWE>jj_?B&||$GVE65Hv%r+a z9sEZ|^UPB%4fN~YCAZOBY*fKpuE!R_N^e7xyVHzSLWw|5V+1iZxrn+$bGie;%~oO^ zbEp!x0eg_QI3w9=;ho&@>*^R|z9AWucjo+ooINrM!ta8}WO0CzZMs%SgK4#tJ~OiT zpfKrH(k;3Enue&Icd{r5-OegIO6!jV7(Qh-XyyW8$PMARL(zJmqgVOS+$iZ})bH~Z zX`Z(&3Rq<8roYx)!T(0s)#hXAZ|H@H(q^aeP`SmB?scCYSq>=Y?SLMVS2u8?Uktqe zP?dtHPtBhTqpb_04V@wR8myQ4SVWCnR8`xzYtRxD(zAMKwN6ey(~KNP@tnqcm{Oko zx7zama#O>^`VU>h|4HRfymf|&d2pC}x_y+P9)99{p6HGLuI ze-TPP4a2^NLqKf})18p`_DF^L;uxt(|KJ{{9PjD5(SaBC-2;!i2H`K@h}C~UGSoLP zHjbnyVVh&3r+1yAE1@2fo+ekI2fA~12`DHOR4fck$PQF9baeIgaBwXWG}MghtfK4IxRG;h&CMZfiG+w;+R>(zbI6y*X5iGcwLdCu5mqt$GifvvZ{Fp1;~MYG)y zD-#pRp`8=vgb1g`2KNkEg|u<*RXlN`v9dnTqqYP zH?jyMk06|KN8p1nj?u;|51Bs|v7Kz%Xj4#c1zVwq5h4^YzMp z?sU)YL`IB65K%aWVWTRm-k@b(TDWDc*BM4pxmj9z5TVl+7NjLP2nPv8Ro?5Sy`xoA z%%W;CIUopzO|rPklDR)`Wu{Vs=a~>NjEHA;drUUxsH%v+#&Dlm-I^Uvw%4{$P>49R z9tY6+YXWoRwb_y1+@8R)uB8#wBs#8pj8ketmNC7)n%o3izu0$&+SFAUXG5>Dn6`4( zh6U4D1ax^?_l+ZnoF#{nm&l(c9)m0%&M5p_(9l>wYXNjDD5YMmMCOy%;prR0Ssoo{ zRuC3LVOn|$z{t;Jh1F>B(~c;t2Cn6lXUPDe2n`hoFf~p@G)Q*{)O6fG(!QYO5Be@5 z{2?QP%?TgEY44&)Y)D`4?<42H>)%7*>?L3o7kzn0omT2&KCXciT%4z~Js{i>Fnic} znglBR&iv_^;W57|<#W1?@Ql6?f>p78~r_xEkQFLHzH zY~G$_DUC*9Z9|Fe6&c|iGEgr1p(Wyj7i_@GX*#}rw z`>M=TZmLMtN}JU~veZR>(cMM4_XNuF0MHT7gD~rqz7d49j|0* zvzdV{GV9kHV%;V4_SbnqU(5XNLh=Q)x*2M9S3|8Y@KvE5e-aK}8-AIZw-@dk8GP&@ zbdn_i7g_pohpbBu>gCtBM3EsbS@1M;rt3LRmm#a)jI1Fh^c{tU=)mv1W~0Ph~whzAkX(585u`#1n4>1 zs=<2>*7*bD#T-0B4oEB@uW}TbCYeOZmDB9pl!ld2pOmZpix-W9;Kpyqh^w$I7qCa9*UTPCOQwfwjZ zAXvyG3?S~0JOHQ&0>K}MSR;IMA~8W1M|8{u4Yjlr5zP;$5U8Fi1z}iNgU#WAlfFV| zbd|&{-h3`rdVI6lGlAnd9M1F@SIzx9pqc=vY5=lj$Md4#J6q84FRQpW|7i(W;qMR_ zXNs;^$F=qt7fw!Wk{Kuq>f)`Jz^=kmx?dT9FA1X1F)KY9>dD#;B^M&Y0}B)R0KfED zp||bjqF*+3#r_$vIxWOFFX2XtB(W^LVCbE9q1sN?*)){Yh8{k%{gUq~XwqYKGd zAWIdf6{YG!>`L%)eJOSO7e?M*&VV-Z_>L=gtf`f9CKzNjvL~Zu_)K=aFJ~Hgw}pF{ zpigZ|4pD9@Xg>MnGRh|xFFVfsT~}nZ?E2p;oSFImo_s|?A#MD@2mwWX%E2lwdtSjKOC=u>2G5Tr z^c#CgVIr+^Xtw-o<>fs&Y*|A8d^ z|CRXHjial>^Xxw>@gj_*4BeyzHBf2IJ3;@AQ1WdU_B@=&5grt^BV1={!q+{$%ePaU zfzGWHOF1<#Fi|=FZ{t1ic3Vi~LixTP^7l%EMt^XJ6f8sy zWHN_*Fo(o0K!nWbFX!rmKI4DS`0LB?T=4RvJdV?i$xHxpM$H0h(Y8 zI1Eo8^R4(gM^ugK#M7i~=;W+!y=Yzk$q?4EaT9Z66WdI0qi|Ge_j)6feb0XD7dPx% z_!`};=Xk*^w#~j#GJh=!v3As+*nQ*9OmJ^$^Jsx{!a34qYAts2oGyU;L?Wd-*wtXF ztu_;#-sl>gfAjKi2V^_-`!`W&*8k|8L@lhHO&sY&tqq(_giVa>j7{jIO>E7a&GDI- z|Dm{`6TfZQkB>ZbeUGf`N{^PnJPAcoQ;6(Y%SU|)tj=>9EIgQ6+w~bm_F$OTCpTTZ zeVfWU{HZ`CHz#K%{43j8QVKjjEfc^opnOgu8L2c_k9^8-hgBkj&35}0fVgn}#M}<# zx-@KC_Y+`JLv@ngS-EU>e#)Fr(MaGu1Jtrusv6`nY$gk%1$Gv;N@;pC;dYbAC@Nbn z%vy-p*?p1XM7-<9VS7syu3y0|^uiUA;8e|?)zgir9L<9EhQ8W|9a8p`N+TuT17&78EPf|C&<$KZJ+nAMMaj zc8G1Ek5{8WHS#AyZ7}xpy_fEx;A@=INo|URj`ypbzTi$WqupKn; zEGxOg`Lg0*+~+7ZIa4Pth+}^}NQ!Y2RK|aa8l>dcC}?*)=$ioS}C_BRQp~oljFR&z1-O4texIIFO4Q+erP(-}(nE6_Qq-+TR1T

k#9aUFOQ`^0<)V|&*c{AOT{X{=DEkV2xCQ! z=uoLoZfAYnGUDKB=GJ_H{EKrwP66{gZ5XYiV(# zn@^7{vi%Ch=UU*|@;WDppePxU7}jb&=L>+AAOM7gp(yj^+w(4sM=D836Jv0F+3%p8 zEoa76LH%{ARJYqmW)}Yp#}evn~6GJ$Tsc`K2otI{4A#&fC_6 z`)c_W)gQL25r2kLl`pX)#P?z{~JBh&!#DPaeKAD)+ze6PVaq}YaiUp1n&Bf zM7wq4$b)(QD1bykA$YhDVySJ4+G!J0Z@oMmHY2P+Kg{wSIj(lo&xOK4YreVLs+&$u zujx>NaE?$OLmVLs$OP&EQ@jgo%&}sEAE*(r0O%Ag7A%Wj?Bo!?go=jU9 zG4Zb`$Rjos#{#JKvAmjaL6ty(tgxqCfN{fDVp;yxItDE^Q6n9wZCl zogmaf2!s#(id6tFd2BG6O27_@*f4P$ArgG11!1`G2-z-^5Evv~d^QkWI>bBStVM{= ztndxtEFUOc`fubNC4zQgw&u!TRN=9zc^Oa^EC{9fe(4M0;&7kyiKws4ok1hTe;!aj zypZNBtL^5$u!n+=4DeDvqh7cP*D{{hS3-h_p&xj?f>?6QCNGXYt8U(ZeKBFL{98J) z{CCzo3&a1OPL})h@S)eA$ZZ#bjd5`Cnh*iZ;3I>$D-CcvL76No@o|?X_fJ&kc#11C z$h;Cv-yi8wtYPD~hV5xTD3_Yvz1_bZKFX_s|%|H(~|R}H1hYd5C>^Sf3xF< zE^MgH3!}$Yd)vjU_1DuTUO!XZ8A@m}+a~k<(yGUvEwgLapU^*2i*78}VK>K{@@vXB zV~>++Y|Ybx5MQ^xvM5&4zp|d;2N?IpZ#{ENnY69XS6nmbn_f}I(oOx$g-b z`q_ruo`$k{VV7GRb%tu$gh~R!jhiD+717IejEZV2qUkOtiPzaY_7BE;_i)`)1q2_gvvlfB_MMaRgmf?I%`MX|}{ zYRLpJo_^}zs0kBkj;pnN;C7qGYKcDfm$*k zVu(7BYVgm$XSBkr$l2$F3&MEK=ZFYF9|RJJ+-GibcLjv#!n8Vzw|L*m|Kw01JG^O! z>xfTV4bhKRJ3yQ)cg6I-0deE{d*1Rwt9X;{wNxc6YTUa^h_Y2F+`hxTgQJT5TN3@p zVdMX>C$as5t*Vo_{+~%yOCu#o05XS-kLIO6&+BhAUfP=+WlfjStf%oED=38c;+!s* zAE)|$ziYi7Ug_(lrZX{+zO=LzW&4z5pyp&{6MtA?TOLmSrRKvyT>kmT@kQe)wDN`9 zbE~!N;>GyOU##m?Tq|Rw~ zd#Q))d}4QZ7UQ7hJpO`K>agS9{jMV(*?f-8{)%Y=ebXD##L(#W>U@=}+P#g%`=Qmo zmY0#-^}CdH>qP%d8n1Z`^Q!H>BgT_z>spkM28P~Rh6HOb!Dihgg?CeU?PH2><4}W@ zl24*9Ms{cDu7#%Yy7;>|RO0c;xB!rkFxLYlysCn*y2u58nD}3YIfQ$t8OVEnLZKWG zf;K`y=UOm|C}sTUIAN=(0uMU;2>vBZ;U(c4WHIwMp zh-^?sg&rk@I1CYdCc=Yye+@u6kzjAA2-tJ%V|)V~Orl;*gkH^^0+Ko`QsF*a=C~i| zJa{0+aUfwu2o?>}O2(>BBu^Jvn;Aiym>cEiFN@i+Xot{V6p9vztP);l&l*Km6Nw-v za49$~_hh74IE4H_2`P?+(7cY6(5mI`InD!;bd-j8tD=z$fcM zl>e56Z2z6DjG6hLTUo-UZ6-Z@$h8NQUXh|UG+2T-RYCBiq}ME-O9Ht5WQ_>WI-|VH zcGr&4VID**FSpZ_J9_ctt2=9d-(1et*)N(3Jn3VLrt;;1DrYR|pCrV3K&0q+TxcV< z>1w?4;zE#m<@Dm!+>G)5+r57i=1yB@8CH6{Nl(|&Y?{{UVw~JgbhUKOZvImic{Gfe zdU-aNY9IA3=lGxqUWVT(lq&LZWv{g`$BAwaYMbT~gr z>OI-1t&m^8GhIb_b z1(%hJlRSNaDB>?D_VN6IJ<*Txr36HI&>ZA$p%PX-NfTT|j8kzA(+lZ<@es zX<7XoE{3=7DZDTAX-TazUwz6BN&W6pY9Rg3tXJc z3u?$e86z6?73hfB=*tJ``Ej5HNi||x^j!<>>%-58E4NF(a*=Y8>FRs)4V?#2zeI0; zv6E@+8k{kp)em;YyADYPHK4($(`}NY6! zwlXJHZ(y&DTN_v!SIcXVLKJSxu2@fk+UT~N?M$un!hjPU__O|aUL?EDdIpb{@)MVq z-Dsm~8AbG0Pyh=Z0!W-P$3i8EHJ5=9ci-|2R#chsExepmxXuP&)Q`;@;aZ@bvM3^$ zx4&f*;ShF$u9?Ke1Ze**HpHS3MQzVDtGq~hbzaZ6<;Wk4 zoOw3(ejfQbLCgoB6@a+ZsR4rT^ld@WHDB zEq+L`8Q&_u6{-3jgztb^gGiLi#-Ek&HU>~_#KTq#W0 z?wg$Vz$s!U*Yq2BNUx*f@^O;13@sAY#jK|x6w)xKPCf_1Lpr5@Q;`gwMHk-3#)Qd(r0vWe zW{zlS7U?+NoiIoD8}?IssTPDUeoN}vsK*3})HT}Pp~}1I5o|XH1_2kq7Ki?X>icVd z!Z+h2JM(?nB=vVxiIgI-5UjDcfrXKilT|>;bguN53Yejl^MhRz$kFA%mAGLycel7w z6`dl|og!#0U%YrU@f`EvMOpev0R_ojBBh4|;9m-Sgz$7l;JCagwdAuTVPOz~lO#z&6Z*u< z-w}-Hzld1c`bvOUMe$TV2*vSGUg!uJcw|uH;uCAgXq@B<{`T=Bn>z;!TEvz|KF0Bx zWfsjQjYJZ-1`A~Tt(>tn$4dkp&D9o%JruAkfnaphXkS493IU1Q7l1thmt{T1JeH96 zo)O!~+A!H7*<$>r|Hj*qgvgrr13!38;nwCn#~P(k0?Sl2t(wR$8fJip-Odj^$X`hc z+;FmVHWRf}6zHxjy;S@e>x{T3t7s(F2;08wIK>boGjnX(<+$N$YMx9Z=|fIBja9__ zuAJp#I?TB2bHq-$AD)%%KCfo4H&H~)NGIYdKyRJhKFY!BA@wxF1jFuwf0L;Pci!|n zLD16xIOmnn&E*x)JYm6CpW|QBq9)d`7<4sf8grUGc=4!#6jRn8?@xQ3ZH3Z6Q~mo_ zIbG_A6&u6lX%TL7+l$H9X98;i({z(BKSiJfuIKm`jSHPF(=iC7xy21o{bK}?1`y__ zu-l>czS&@hT%2^tKIU#3C0-)Nd~jy?QlD0t^HuRF7%aGDo?O^o zpY-`A>OzV~rWD5_T z@%PfucA8c;gT&NlnU!AkWfgof7rlIP6*JoOwP}ut?iEDW;iSA3WwcfAO}85)RZ_xI z%|i8vg7XF2nr__(va`Lko2^*g{>FO^umW5awi2iX`EAq1`FlXSg-N?xI*1umZfSxTai7w!HFeNDR4o;$Og0^^&9B92F;t~_1FK#ci zum4T_w&Ti7q>tk#>H)Z4)X`{LYZsRebVG;;)m5-82^K+H=I3UeQie$cDCYmb(3fMN z>-q)uYo1MH)l&ogU^AHV%m>>#tQ+tBX3T)}Vge&^pGYip!jEgqF1v!; z3}x!%pf7l+L05}hjv0&j)U_HUpoEc;{gPU zJ;(PsktLj=y*D+|k?-qP<~Wd!_I_Cbx(=oa8gj?9CsO~beZM; zMPvS41h!&nOMK~DcswX>2B12LSWd;jWvPDAMU{Y&UEO)X7s#aL6&!Ye8t=Ni_gd9e zgG;8bsf^a>uX5FNL_lr1GAQ7sbQQ%W2M*c~;4bSp6^TB*mW>qPHjp{{YOskdKOtmRe zz7bqkQZ1etER$##Aa{U}YW#}T)8FT^6yUE009QJDHAFR5@s66w+(PFP+8oCd2bv9` zCKXlja?8mh$*9#~Z6nwKk*>m|2ChQ1Fmkk^Av6=EVfo9yXt(uOZHjQP4HHPbUQ1%r z^5Fq$>{6cyW^|D3K)82&*qs*7xdZ{K*pm5q(bhsCdq9(mbiAiU zZp}b4_2V=>fgX&}CuoW0No*_iXMvlxb`4zEGLQWhpHe;lqVRsH0D zI)d$3JSmnTRt6g5)2p@H513uCNZo2CXv5k;5V3*mIZK#Weh^n7M2O$`zxn%!;A8P3 zNC?PB^T{~E&s|P9`>@hixZk(IbOIrRgJ?V^6OH2();5qgz~Q*CWt5 znYOL-aVi@9QANvZXUuCboK6u*m(2?=UqwCpmuS+QDaThVvN(oER-&ApnPt|aL^-!@ zn>(r&*QD+Y)vdCZi1n@4`pob%SRZtq&x#%<%s1C5?27C>n1*ysi)AX3rdZZsjs&$P z=pyDdtm6K{BVh(u)Vf>aGy$&vKCN}OW=amY?1Q4GQl&+OMp_fJHW=ZARHaExCQ64$ z2$Kna+{-|$9H8|eo{S$gRynzj2=fnWXZOtzV$QfF3@c6wnomMDG&T9rLRPaPQ8;x} zT~Hcff0i*})#|8ai0|!okqR;kD9_om7fNVkE3p8zohGibx@rdw6uv>Ve^h|zv1M7K3fjGqQyjd*%rOf7b0=_Lg7{^NDIIVs0;PhoO#;6v zzwR2d=Qo6)LSu3>4Tn3DC(kgIbj6t@n|otIHA7hNW(o?O!OL{TBVD*BPeK7cHHN6@ zLb;thX-yV^umrf>y2x^dR}k|q`sWXln(Sr8Np9N{fLg0)fTPuieHfbit{u);fQ7o3 zh)bFt=yAE$xz?Gb&f_Dkqs*SwOYlekNh>2MDeA$m_%Fcg+5Cb$ zc>8)qS&;mzh}ZKP9UVd~RizMR@(_2Gr>=6F*gd&Dp{pwJ0{}8721xuI@(6HStihKX ztw|PAOWNNVnJg3qLAwFcfIs@l(2hz#DkK9{y_qv4%KKjz5&>7PROsdfxv+j9flo*W z5cj&}Y3f!hiCO}iRU2o^2vpHlIE~8te;5~^r$KniS7!A<9_642c1UvuP4{`}MSGn; zs@Z6DTOHlCIK!Vl<@g8h{79U>2!-g?GifJQ)=8MC4R|W+m9}ag^gFF3-Gk>3siqr)(;i z5=(Ra$uuG#SKl|ovk2`y+&4NH?qw2_MIgdUItDA*=klK_P=JuYJ*?ssj_o8kGSWSO zx&<*?h9A@$dgo6FYFKH?NQQ^rVuO97lXv2A&vw!S(ij=p2*98hhxYxY4JaAV7NV$w zcL|wvR$Lm&MRrw!+MDB%kObe z$PR*QsI{22zKGEKI{;c<7{8Nx#_iSed)9tYsReTmZQ8Fo!2QCex90|CTyNbKjQRP= zEe9gmWA&4E=7gB`22M7N@V)TO_j9wu;?CDK zf-iEVBU{5NPhBS(*C0K~<~(#ML4t_Q`ZyeX|Cr8UVFqtwTW5~grF0ueVzF-tg6gMP zL;|(okyjQ~`NoyrUf2NE!+DMB`05?F{S&?`^|aiv@E7`K2rQcLA>oEwZX^XtjOQt1 zrZ%UL`tnezjbPoOMon}o!MN`3*x#F%?Rw4IE@6FsVPS3V0QWL^{4=2cN>#3YeRFP& zP_IXgCf!Hk6Ap!;uj=3G_kRloW&8)x=chM-*Vk9pmq(V;H;0$E2LOQY1mgI&hyMq< z^MBhMu&^@y|klIRWU0n>sY?Pu>(1ul8Slae#+GUNEF2kL9c`XU}@2L3jAgj*@ z#24?Rk%Z#N3P?1rv4&PT?Xrus`HhV(CmFSkNoU`CfA6;-S56sysJh_=9j`dPAK$ya zqy6jZ^Fe?D@{5PpT*g&pw7L!INtJO}y{4i}(&6#e$;w|CKGcn;@2CfzfU+?Ls6sx( zxjHs<-6yxI=&-eheiuj8M#BG)X9P~{*YB6BZ$^BvJqjV}a`e6Svp7sU22+lPkPs43|wU8khgmOaK^8VER6#74b#4gl0)LEWKR-84F1lmMJV!U@FyEu(pI{`I9b3ldD_2m5Zt* zRZ_UXXbE~KTA8P+WL4_2;Asim7``TL^Ow7%a)H&7tTFN~PdPFDuIQr#fHD^9uOI~s zimZsDLSjq=5;vM6(0W?6LNyFw^+gHr!mnPnATT&d3}@9A-IpF&o98a`C~~=n&K0o@ z!Cw}1m{M1;x*YDuJA1v`(5s9Ge4$f#n2gBlYH%4W6`m_fr^pr&$Z*ftzK+5hzv*-( zJP!kesxDMCS}rcccSly@az>BGe_@kxWn;6LE#Q!a@e+5&RP0zDJ`X{7a$#4_TWD`k zp{Nv}-#17X@G`Mx^$&F&pMuBgCh%}_G5!)^s->(wy$LG`x9Es|c+5 zlWxu0IRR!;oum`(GiDdB2%F4nHhhsOfjXmd0YVx_Nja((_nJxnXd*r4Nt3Sp`!=X zSi_JF@^+Ro0CfRa9lU}WnPRN7T?{fSsCb&D#YnKnVka0dACNeH)cmLt3?3g3FEbt{ zk$~Hz>}IO^)?X6%yTiwP1j-HH-qlTP5EHfIPhYz$mJ_$5qo`8ghp?&#a_Ls4^vs|- z-&X*AoNz8U*M-win3wV95K*w9=242cP)7XdV_&cUmwB zf*w<>M!Qg$yAlw6ZIT5``51RlklVlxD*HG3ET0S4lEmGdUbAu7RS`Mj=9iJuoRDFY zX*V-P6Z&G`!t{2#jd5>AS43G1j)|1ygi9757l{q22rf3TCeDC5Xi85Sn`Uq)MU9?r zl0lT5guv*)`e~{96-R~!SM%E)Ds3)J%P;l8W|Zc2x*E4?ZVKMvjSvINj=VG}7L>n= zMYw60>=60q3bM@Y#;qqC$%`;j7@47Fd*Lf^Uj4}2pbtA>%;E+R63SMhRD5MBGhk0O zP@xd70CSOrqvVJFy|Ia-S8{NAJdwRq5Jfqi=D`Z|WjlGiNEi>Ez$sZ-=y;{_c#&Mn z>#9q>c=NAXwd<19z0A1x%^LKOrg)$dfK;E*8n45ufYJaMd|*QmUUI!e949xNr zc7M+_wvEhCy5*s9>C+ax;KPQ|58drM%zA8H<$BI?SD~}V_(Dtf!kU42kEFBK%>5 zMXy6*T4_YEa&AZGo&}fyh226L_pO)~3rnBBzOp!`KBFLYpAoATgW3|eknOx{0W5kmSITUGd_1DB* zorCOBON`am0JKsAATPUGfbc-?*e^cksky>_P*9KBfQ(jUvzKl|xuNunma~s}Q|JwB ziW5%PeB1_UM|)Y*AvDQX?#(VG$*qPn_9&>I|7=5I z=y}VZU69tZ5)qVXWs_Jj;9giWjQO2#bs#ksnWf&t@%0iWb6VrFJD_vVVzIJ5%Wox$ znCZLRwc|@e8< zTrAr_Q;Et}n>r4aQ!ZwQPec<_>Z7}riFj=@No?dg9@b8^{Nno}uD;1OsTC8eu#IYq zo(|0U?j!j1=I4+1wlT$ejTKJ%xUeUI5os}{xMjHlGA5Pe*vfAwGk@T5xdA=xjqwJL2=6A;7OORey15a%O&Ex1kh)mC9$2z@$>&Fn z#qd>#RaZk<_2w3MkBG@bK?$*VhvtK>AVwGBYoBBUEcw~N(qEYoEqCbaai5ww_`i%i z0v{@kyYUTq<*2_AN!j692jg*93CtZDYz;45SheV$fTt>bwQTc5k48|mRK_x0 zZ}`UKz;PcRVPWrXc~R$F+XlVkNkn4YGG50&xom?7uKNZYcW>(r)-XWbiZ`pY;A zs&~%n!Ky1z=c zjs(<#9E-wul!8H6`AKiae$rLIQH*0wi@o$NXJME4BI!Y>LhB7Mk4%k8GQM(Fm4TFg zFKloGd8qRs4({Z~Xy@FzkmM{b%Rix@%#%aY^@7Po{{Bv>EVb-oFPNEf)9$YM1b4GEmHaQ&FO$!WEd@&(|1FhB+6Jk=r_%k`8U z7#eYWYDc77e!G(I409C*euK;JRrsfs^1I9k=z6Q>OX23#zrJ|HzKsQ3izV(aFPCJ@^>p~z&LWePt1|F+E ze(`e7nssMSVNt|;Pq@S@jkZaUWyd5G(&&Z3Vgu(xZ0u3OsL?>rLGRQD zCezirQQ&j!vBm1Xo}1ckcj$aj46ifkoeDyg2*loRGTQAf*}^g_I0Kvf;Snb? zPAWM@HM%wYb2%IyYL{lUn@>?1gd-kSe+Ua63KT1^+;DGG=sZ z#2j&ATA5fI1gc!m17!zpwd&3z+bt!!n6lu50TQL@outBP^|S01Y99~%s6i)IMc+Pu z-;&6Q0#rg;aC}{C7in@0MpOMBihBsq^-B1$5f`;#LOgURwTL3c7!~8+wSMYw4xb?V zbIXti#4WI?Vy&QwKa<|NRI?~X{I;R3^rR?5BUPl&tc7Ed@*>`O1RRq+o@VX^7O5xt z&Oy+&)w-5p;q=0QfT^Hp*x`-t)Y-wGwS45YOu_Ya_sX*t${SM#v%BeR-(%c1p}Q&U zh7WL#Zo$PZEwyYNKIfgOm%4!M`;Ls#Y1pdT{53~;d*^w7XqH#1mdY#f81Od2J?pa) zY-F1%Cek_;0yMmJW1a>tSF^3F%q=)~ZWP=+QH=dNow%-yNDeC~3$Xx(Rq@d#*;HXDw1)PM6!~TcV~O zxKbIV{4H4g9dY zpxrlg^xuzEu>o%`usRSTBdK~^KGWY}VYDSD%dn!wBBD=_5*H5-Qg%!_gu$kj%O>DY z6975aqHxOvtW)$BitT)j+=-9q1#jN@ZQnrrf~|GGP?$YvyZAGPf^!u42aj(fT5Ped z4coZHz*0e$2mHzzhVr-EG;2XYU0GJ%+6WF=F{As(-l}>{n~R$VklWV1xTxGh!il0! zmaJm(O2KNC{OQ(!s}sXAG_8eoBjDixJ!c}$pn;nwpJX*TJ!WLYXo04(>q)HfH25=; z#B`gk*HhF$K36|7U=a`sS4lAy@=TY~s^~{2tLT zNs(!Lf+DN|ghm3I`jXMZ@c46^dgvoB82CU$N4OTVAJS)PVxvzyd43J+2cpRN(^#(2 zdn_M}uEyi{aXjBB)ZTxV{AhHv+J_}=$<^I`_=D{YcM@H6ep#jKJcu#BLq!j_TlWdw z+)>MW_uN(U5S{lYj^x~`bs;ldN=e)#qn<=i_Z&o|{87RVGC3Im| zUYe(2w0|nTte*~gZR<7=pUb0BIR$pl*A?mcr3=cn;XZZj!nT>2L{~?eNEIwgxpYdF z=RU9ba}kUyVCHKu;M1PV<{l7fn*ymmgYLldiabQCRKR72dZ+D-jv$Yg;?B-I%*!iC zE5!YcFQpc36v0-$=ZhG-bBer%-)B=fdnr`~^sD@){kx_2rz1^m6kCjK$)t#=U|M?j zMqfMX&|Z2$M;*NBLnmPb&4^63k)-5ouizDiGGBjE-bo(foTLlK z>mn#NK_psUSzu-$T&k~vT&OXi-}-D@{7@u6C?YxyB^3qbN2d9+hNnU*R2uWZP`V}} zpkRWh?N;I_y|nS`>%~mv=dUm6AgV3tg>hm9K}F9utEh;tA!5rq{7-}_$?N4q6ntY! z@`G%Dh~QL&((oel7TKGs*7>G^AuQwgR!fwHRfv5PAfS3*Spd#3M3mK4j8JQ!Ms~PA z!AD=v=4x?{uuj+0Jt&y04>A+dk`Uw4n4M~97ftb_l7g?JnWHP(Yen={RzgAzZ9SW2 z3wT?8*HdXh)F5}33Ld_;yC{f|t9*874-fuw-!MU2Jt=I^g4}h2Zgs;?Hi8b&r*LR~ z+=))FhgZFH{Qz-PbUnx4E=quInTcd(Ljxg{hWBuZWc8^-0dgbWZ$^W!`!E)(A;v4e z_QFo}v83U-{XGOnj_gLOL0xQaq2TUr`3|frxLsb-v|cA3rA0tFN{h5U^}oQ0J+Y2_BOOvLgZ>M=%>Ey2wEvoS#>oDkL#jX6 zb!-Cb6svb<@zl-istOb|F(4^`@;#X5zrEl;F3$h2@oNU=fAH5s)FG9T)t0J?N@y)-d>H}uo5lMDDNZNpgxMi!cUAUO$__U_hQ{m2YD8&(MJ#?{N zKDkCqA~JSy_RbOO?C8g9(b}d+XOEqbxv`Ne?XP${^Ol#DwjC<^UXy8Wj@M!;-Q7vE*87%+?IQSA6)Y8($NX7BRV2XCi zawr;=IwT?;O1H{aEx20(v4p>2v4o^cc8bUpo60j$xLLBYq@;_{Dkx2HZ z)?PAZn9Cd4>(C~6PWs-wgBe#H7ke;lQ(;KKm_}xpoKRDhRee;|gRQ}s;kn5QSftbF zYB(yyJ%3%|s{G~}**+r4(AUyh_i6gZ;P$(TCXf|^3f-usG7GEWdXJ(<^~QTz zOO+N6j>~JHRWN;XFJVvaH6cy6oe~$L&^Fd}b&TO%QL^ zgU4V7R4Ij``qP7td4^(kE50U?PmlY8>*9pd99t#RvrHfso`9U|uev76S!x4^W-w}N zZ`-^M35*YbTp`L?C$yRxI`=XNro31ZD1Y>H0e72vxI${T_tsR9Rq1us?n<_J2KBP1 z;{~0xL1yDS9|CXM1e;>Ki$KY0gbgj*^&nSUUmjp)7W}u7@9vtSNi7ctNcUG%{3h2F z3(b(1&^ke`zThJQk)4rY<7K=L7d4l`GdeQFg#rCay~3Q&ZbRch z7jZIHsrMx0{3q>nj9TZG%{Gs#QM0EC6gqjw5t7nEmz;Z6PYwj5#UGc-ZaCVd z=5wb0Ot4obi{<+7qOnJ28&E-U5+Jx%& zT!GNtwe1+F60P^Eg4o?bwNLN?vvZnAp-tZGv+3{c8|d$~?%&+Bw%XyjYyBKxc_Pfo z1f+h$%OwXlsJ=UnSD0E41^Kf7h2iNm_pVtOH#go0N`;(I+tkUCtD3AHr>S|rAcN?h zK?X%C*(!t)8(_FF#UN$R3A0Z@2ptPTsyqGMW)*ne8BGz(ECImBkS=VL>@R|mqLJ3e z?2OCnGW!=VjDttH6P6eitxw|l1ZBHh;;gIkEdY&9${Cnh&S?lofPy$qpMVF0njy-0 zo=@;ST))!?h^aS%^Q5WT9cjbvL*&+9=W_;9G}qHsRH3RdQ_n15HgO{(_xPGQYlsaJ zOxG74$BvKEsWtqdcB3M0Ap#5-6NloG1#wb{%emn2hh~t1QPm{xPmn>GQc=H;&oM}M z#E{&)n~-DOwtFeTAYZJJS=z0}F7)Jp&)3IbBrNX;IL96W z;ZEV82u=&0!EI`9#A+KP8hi_Y79cYA-eB-$gr^^g7e5jqm97{EY*%cXlSQA2;=fQ_ zJhm{UUko$x*#++){Fz0D{j(DI?Ex;=K^%~HfW(J_@R;>)&D9m<5GUz(6_^{6l2m)G z#iu*om)wwI;ieJwLMdQ;q(Kb~I(D6q6HYH=T|y(f z;-F{o5Q;VCMbhn7Dyqc&T44;>dRuUEuV#DEJ?J}dX|Jn$&{pu5&B2S>5Xa|fyr?5e z@FmDe!HtY1wzidG=-s*ISw&RI-kHPI;lFObypBR9^=`^RR4op!;uLwM&hi@N z4}6TkEc=c}(`;<6(6xO_2u zovzR`+T;K`>=KwL^+50=t5x1!vwi`Uo*4NSpjfm-cZLgfCore2r_z`2nIYj(&iP62 zmLmg-N8Rb5qmN$gMFzLOt=>4EnXdIq3nsP%z>Qfw_4eE5m=E&CYFTT)d%9CkdbGFVw(q zB+Jc3i21?(7(%FP!XNc_4QlH-QNd$iB|YQkD0ytAqLC=>CLAw`40)_R{U-rK8|j;TEwNoM z#SUo~=lkd8wM1?4lq;_}IY4)Jk7)k(qVJob^>sp9-tld` zYiYqYb#Bw*N3O7nF(IqjXJ=3WkRt3GX6~(JE&CUkr0<5eua59O2R-2{THD2+@oN;` znY8(<7D>n|k4kr|Xq*4oikMb3^1@T3N=VOi14QlWIjbP(x zqhF96!Vs!CO_blu7ZbO7bM(6Ay7KCztD6;!9rA&2+!EIOlS9H$k~9CQqTUbqNC{Np zLaGt-10{d*NyaZub-@B3VQ@o6>K(v>1tm2Q3+AFQ{J!hj~5 zXL?H5tppP8)-K8AZ864-8EyHmOp3^~rrca>^_tEtyMc*@Gw#-Oo#_(vFK{T|(CuRV zAHyBype}e*Hz$Udy*UwDw>ym%gJ>{Z{V{VDLg5^!Ak0<5qFICT+EZ@sI8=5A{2ZN_ z>j;sjVM$1NHuA}UPWtq}4xNn>>LG6tIncB3fjz2E{EK~EB|v%qe$i+IX4jT6U_>jU zWQ^US_C`}o@VX4wIJ)NrL&N`$pdDiKn9=!h*TqrOva5Z$IbZv7`ap}3!fb$`Wzu^X zoOb!944ax?GC3*wU7G>^t^elx8#q=~AJ2{#Pg|cYFS~N(tcrQkxwu*T-LmCT$e@dD zcwn6LfuAR)h_y}VT{?5T2;8kiIh%O%!A!kZ>K)AMPEV*c?FbZ@Jv1aq@Pt=;b56)~ zjj7agP|AdPp@jTag5AwL*dZz{H&n&&b$hrWzvsObPBK{yskK$mq8|e*%?m~Z$8apCDZr;4~!c*2x#D}Ae5P8c?5ag(>`8oqAeb^u+htCw69QK0TZ z-U@QR2c#_+S*omNOQR`AP(8cN@05oV@j$(=0297p=KtNeHPhphg4(Yt431`ZI9LZg zNN2Z+-^?X)0l}Zw+cR3J{U))kunMD&a*ya;&6!m{J1wN0^GSaGR8tDDy7W|A(~%B; z!4cl-P;(GuND`<>c4@*ctdT*N!&V?_K0j9V0mc|IYg*L+GdCHY zF8@%S#S;0n^+P^JpdWYrg!|at#?APqn*XoC?;q9|G2MDnLTF+bJWxM1-eh$Y2h<$R z46k=PG=$uE7At9YBRxk(7d3GE17#?GDtnuHb9yH=g#JxF)Eu`fFpEN9@u$&0|A|MpR*!t&)z{h~0!4a{bdkgX=bqmH ziU|xl^A^M6T~v%b9nI|auvM)97Zqq(68^mMaIn!D$FOJ<#1e#&05?^7Em93Fmtl+z~=aMMTi#h*zkm64S+?5iozKTt@z zx;h$8fgwj$zpHMt2~p;QGV<%k09gn&Sa8gm@XB+_+KvYw8g|(mYMOO?!PDc%G((P< zYW;d2B#b5V3x0l}VKYIeFv_>VE)uEcdP9A&Jr-`e4(0ip`j1@NxM>;ghIKiL0nU2@ zTqVT}O_A1AGG7^Kz-vy&xr;ZaSPUu@Nc z6?jtW>Zs{H1CcRRvkNu_olN{?O5;m~U)|l5vvo0mVK)SDFpGxJPM=W1AeTa4On9Q? zB_IW?*En+*w;m_6%mwrlGMbwv{~%+(JaeNkHAAzfEiM zdHgNO;R=?ty1GUzXX2fi3v{M!{_}L)GMfrXnxQO1swcj@CdRa@myWA{7QnhOn-i1) zDESdkl_Vv$Y0Xh@8%+<=9O%ZI4zw~8Tw%UFgj`X5HN0Z_bUizKz}xzmEq!wox)3?L zB~d1Z(T^_t>U9B^q3T=k&7_EttzJikmx9ty!mQue_~n}lTL$XD4+96w(U1PcQrmon z4ic}wnFId?K-@|KOnYy1(6%hl)BoxNrs>_TSUwRiu~R8YA+eD@!*y5(KAnmN@3pm^ zKUKYxZ#gEuzwKXbnUVkxiWQicsgpdFIKtr3u9_>lF9(mJ=jXfAmG-sMBF-y}mDoP~%DD_J=5t%pl zJUMaX^is)3U7wp2DpEue7aLsrVthA3K%<ADf_=ik)qiK72jFf4dTs*jN ze$&@h3cjG0dtyIs{R|+P^FFXf75wTYG`RF7&hZQ`8UyJ0{=JI@jpB@{~KI0p?;3dr{g4d zKe(xC5kmq<2EaBBZ0)~o@E@Yz|1GY`&dBjUbh)uwkQ&Hqo4E*N!BOQg4P3_N4i&B= zzBOtCzM><#CVQ{6Ktu>>0!hgszWTt1jsgN8?lqrsRchMlQ7eTn_PScy-eB;*zCV%* zb+4^Gukr+U)7jaN*SD{Jkr2%6Vg#cw*5&EvBQ2touX#`Tr;!G!#ma;W$F&a`X$Vj9*&rO)PNH#|| zCs%0aw#bLJO#{}^u{49!JcFa;JR)dVjH9b&!FBo}vMLfD0kL=N+tl+@w1ZPiVrYLa zQ08t-FcU~-rpjf$to*hsd`3)||+ zjEoHC3L_#%Uu888>&=EjRHxAC^p4us*_gN%N4ZJ1N0+DK74FsS{5eH!O!koyPyH2U4}M*{#Y0@RRD zg90rq)Hrcnjs`1wz|GK6gU3yfhC|$gW)uy3$0SZP5<)R7qa|bTZ^0Y!z1KbDh_go-OVnwm-=(!6Qf3^=4``PqrJ=?e>Ko&#%tG(zl^`@ z?-ei_e7gznHrFUu9t&|iEDq~kt_oof|G3}$N&Kl_G43?nEVdCViOD#y6|3z0XIL1_ z_t;n*zP@3S2Br3FZV;@Ru4F*4Hm9F>O8Jy60=h8Auqo@fCdzu~5okqawFZ}3MTE3z zqWG&kqc)G5y$U=eiQkH#P^9zls)KNgTyoVyWB7qM2S`$~1yHTz64hckfjGh>2vTS1 zl>vS%*dPvNl4L$-cd+)oREHlrcr-r#iuT%G7~Yy4*0={>rLq^q*+nh2c*Nge6-v4bqO9)X(}I z)sT3pA5LV%aro4PM2GRC*M(1_#V^sUYo^sGe#$j{o8YtO`L3A{*UtyI@@saaI%JDt9C(si^D-ObE`JsT+4Q^d!q%ELi}ka%Glj|7MTs6&xPe)jeL4Ey zSeA?Hzsf5(1EZ<{x|Ekpr0|Q%e;XTL-9-x-Vpv;rlNfPQP1|In!78VynB95K-hqQ^i))($oLG zTlr0$S@es96#Q81M=#6+DLv0Kr8flOc)$wlMdS6N4Z(J&Hq#YSac~e3akNtv*49>5 z#tFJl|GLO}plj75+x_dNoq9GpFHF>nw0ORYg@lEshP0)knx399Zgv)4ZRgOWK(TVg zN=-^kOZ0!GBMDKM1kg#3Ko&ebXh>)HDQUN6{+lxR91)hh@YM&0#|)Vbjmd#kYs!xs zGQ0rCxAkYf{P{|3p~%Z9WKaCh;CadMBI`yW^54J~&ZRTOQj0`qa}E!!2z0vo8LfJK zP40^kb=bp*kqON)jUVDmPc?iAf z9N;-Ql;^!I$hXY`j$pWg+o!-zC5K4I*?1Q5X!92m+7R`B{&=LJGX%5tFFH)PcMN%j8qFE0hxNdhQ5MTdDz!$C*|ftRtCIyDcXX|SoveKPHZldq!MY4 z#60D|AYIhpd1n%D>9ga17UpM%qX?K-f8E3Q1`r~AS^?0@+dtO??uTKl?vvp<#p^LmHt zz4(%*fL_i+n$9)5qW`YPAlm2YVf&Pr&l(gO4vEG$I4~sS zi?w;N;MvB!4Iqv&ZuSH3*R^a?I^@rm9I||lbsK=z`3$MR){xCFSc?x2g{4{UC-Ig2 zISa^){5{6FWLO%4vvdR`4T)pzAR@zP4LS!LH^#|vE!e6DGP9M(hcr}M>$hlj8zviV zZi6*SU}U$i>yqV=7Hlfi@Q)tu{e@7tG4IF;$)T!?4BZoe4EGZJM?M#c!(T=TNFgRC zpdsVSiK283pY3u53l?+#d$b29MvBi<$q z^)>4gS$A90(8mX}Ba?`R67>|8;)VUx^;b%$n3gb{(8Ev&QXx%7X`!{kl+856<8GwN zUN_Oj0zm1ocOjC9GhJXL0wX~;vvke4ka5&|thha=hv7DA+%U4QIa8ZN=MZUU%thQa za=GP(LH<}E^V zSS&#qDAkK@x1vgWWPmf~Z&W$S%r&Bm$e=ojI4%|GJq^Hx&sLx7QJw7FL=9;YH(s28 zYN1_J!DnyVem9mpalYhq%Aa!f5fED@wqyaD8CXidehgMtP~q@B$p-*=2RDQHHTYCQyY@cRIrF8_YDRy7ih#OIsT5}*W64}u**CtdT=wE zAhElDTAIAjDxKzYQ~1jC*W}23?Cn!25L8bG<*1&ze&p zvf=^6N?lOM(N0s1G#HIg2CEWo9e0+5L_Ex6eyM+I5=+)MF_5%w{IQAJ`gJM3zbui4 zJ%E3s zo5>ov#^v+j3Q`TdU((jFKxp{lx1UD%?+{CKcyn{#j6J#Ek)L*{PEJ6u?6)7?;udJw zLYx<$QY#Yk31TRv=;^BqDvc+Fh5jY&vgJW?e$JFo%VRhhtT{aL;}2kaRqFg%ps(BN zv$VG)=YF#h^s>j~xELWqq8nM+T$aI2^*a)>V{?8N$!Zlc9zdMj_dpQ(tX{P`To)*m z$)S!fD?CI>QpR9`(LC@W5oG&mxf0>Bc-eKWi=ZyM-x}J)F)lyXwOkne`~z24rCfCx z0x%p}iG(^L@2UM|m>k$WxyLGaMgG76IEuE=M0#ADD`yDbfR6Gr%;JFL)VyepNTLVxk} zNLDO}n3ZO)m@xm)f9CEjCZ<@2OFlg(osK|VU0-L(SNH+$&}Bv+5@79tRDlgTt<&_O zNavTWBP1_Sc*0n>>_<4v^V$f1WaET$=|!%#N_c$_@`0P>Z{D}k$lfWI=ij=f>)-T5 zvBi~SpO&w`T8`<~>9GxkuS$h_TnBgR{gf%!x$^mIK8(3}#j7Gq=a2ndl8PN#y2ENz ztd|y*U4QLi)P+ont(GsK{Cr-U1|T`HT+wtP8YeY=Fcg8~x{bUp=fT~Gu6}wUdf2C0 ze#3W4fG+ zw}7Bv-wa_``qnqyYLg%d6uu&GuiR{xZ(vQ~%+^vJ5Jel;^GW7R%eMQ%l>qs|1_9g- zl`m-e8k8{sk&N5}rUGqbm^u7nxIp7nSeVDGUr<>V!?C}zr8O3Trr;&?TZAoY?FhSa z?sokwy6|_Sk#a5`P~21dAr~Jk>azs-kPg7$&ZMIz1v(rk<3yK8+zqg67cL)`D!Pkt zJgb@XYE4e_nK`sRU)zXC9Ty0wDq$cbE{X32S~)W5H+GyW5<-_q9u=@_)hLk{WzH3= zsmGTX_Xe0bbpFp5p+OonO2Xb1mQyWcj-c~Ns_rvP7@wf&>W6gnZz@o_3mkzSH3HHL zAS|#Q&>Z&BWCNrQpg7=VLgr>B1t_V7@#bV$3cq;De}b;*kPIjcnUD=a3d9Zgdwvrk!(?74Zlefd7XpBRJnelr3fwYQNHZ1&hkX?Ir`{(zhz&LbJ^^_YmmIROE+p$tyq zGuAhTSGq{;t1#GPB{mny;^5Ssg*!NcU9GJdID&8d(wgIc0%goOJ12@VUJrAl^d*)! z7Vgr<{*)GWrB46?5h9s1D`>&T|3O1|w5g^uccq`8fb6C%`vzQBlj5 zNo04UBwAb=JW?Xbu!?T4o49?mLp}UB~ecA=I_sipy z>dO|RT3SMpDx{9o&xz-uzV)Doo_a&)sQa7D43h(-CMgw{nV$0fKqZ}JAkWj_N8u}w z>Fo+n%Ku~}LkE1V78=Vk2Oe4*^+MSu^$M3ZF%4QH>0#gcy)$EJ!r(`P6#&kO2}WPl zfL}h*Xnh2lhU$IhvJjAopbZTFtK#HZc(LXJom@Nf8msZPU1Ea-M5bJVCUjPU?>mRY zytB$j)m%mW2xdV(9+?tUiptb1{x>L;wUOq%F~-IAp*x#u4}~=n&Q;#%bPIpSkigHE z!F)Uf*AoTrfvYXS67%dZ+}F7Wrb0p%w!^-$Hh%gD?Emxk-dQ{wjU)5bl%aZ`bCbSW zYmyw5Nu`TS3l?FLguN$8CDg4kZfmGYv;<$bcHY$hkny{&nhb(v~&oYGQrh_kA-@r9US zCIh#`kWtF-N0LSQGeTxp0zux#Fwrtn%33O3oxr&*jZa!<6xlmU#KzRXSE>5onhWkO zm+i#sO4!~%|6yM``}?{e6R4Dv`=+)yKqkq|lG(^4Rt37b$OPRM9KMXoLIUUi&id)M z`GkL_!WCGsTw!PH!yY<0ZwZiGGO=W4t{D>GNqzk%#l*M~Q(Vzge=itqG_z)Rg1=jr z{`jV_%!selx*nxOG9k4xpC%SI{f*dtn_vO;Oowi~ZG5^D7|P>B(m;-mzqsgSFmhv``Iw-`^jTf8t{@(xgT z7u1OTmT+L{aP!B1NPalb|j~PklLHT#|GPZ zpXmWr#nnDtXm)`~f!@Hqp`XR318j&c0{UCieMv}QPL3d9;+UC*W`{^Gw}hELEYO&O zPJ2aMke9E)R1nl{sIGT{&zfKbbL9OzEcQ_Idr`hy9eV4NlP^W$~9aruZ zpUQJF*sOboy?uP0anx&Txb8?=sm40qg2+2wT5OzxEp*eNu$wn!FzVXn$;2v@E{$BG zIT9010+7xMPJNyi7%VQ5_0d;BNsqlY##Ci{;;f-*;Nl>|9Woz|oG5}-Fvb4OT!yEb?vXPPWGgikG+Co^pGq*f6b3_6zqX@=I(%Z8{h&vHX)~1 ztOvADmz4i}B3WQG3k;SfczhA3q%d?kB{by)u}6YAj4z{OpH+x+dh7!S^$sp$XO&hU zARPlfUGPg^A{lMIl)Nx6#rX^*q}_Q3*<5#cgHx2%ThK7V%LEW7|c)J> zGQTB`J`x45BtEemfz4cYk6TblrlygZ^9gQ@UHqrSa3)*=Wohvf_ zv(<~dzFkYZcKEZDD3D>R;%r^VmEPaCbLpmL2wro7SISb+u~u4`>d4M=X#@H^Xnq?F zyKNO*bmORBEo*l6>3Bb6J*nLKpmDjnA4qcP8UgB-&rl(VWY3uQbM9pPIw=AGi~j)n zwLS^hLDQnZ56BVKMj)rUZA5nAc+-$Vt4&#GAMMIo`N}Yq08}n}m?2GK(qd52>etNV zTWJY&5R5^P;-PFCmz^4^`p{(+j6+XG<;E$2$A_PIR4Py{?bV>hSZzLf^fCz~tYUo! zj+ve(fd*SKgT8(PW%-HDwDat^NSZe~(!c3mIM(Jb94q!`lwJok&7QFqC($DmChK%D zifN-y5J7ETZ?xTNs6HdqRRIZd*{Xc9m~P~PXrVcC|~e|3soJB0WK7R$j2oHYB5cV1hoa)*-XXwO(y zUgX8-Qg;ZHN>fr4KDol8_nGy6qs*nD4^x#F7w;5Ug{i#6Fj;9WSMpXj)HyGu^8tA6 zhBnc83*deHJE)h3x(6zSTB(`+F+x@ap9@Ep9hFZmm7SO=-`Wazw7|VWP%+nNp>-qd z<3efG#S>fqrZbkzlf|az5fxV#N0Ss9zVVKkv$vDgCi5zc_K3WA{aU^P%F>#*mi~Tt z6baZp>1lr;+?YJoC%MgwAR3EhZ6MBFq`3*^&RPP@VTSWkk+@Q5j0bBoO=gy&f`87r zuFpeBp%bZ+!$yz`gYaREk!RiD=fX6&KeP;_>K@8o^v}7sw5MmdP0>3R;GYcI?ra8< zm)&#apcl#7XUxuU+c8{Xc^|EZWx+PzEiv5g6`JphpavB_q|AP=9|Y!`&NT;T7;1ii zJiPL{fY(4ULwu%t#~9~fFMk$HZEA`C^hp66dh-fb!}LI0ZU)|=+|3nM zqT<vK+8V#xUWLkSat7_#u$z?$~#ERkLAr=ZOk5HchOL56XiKOe~ek*L!99G6q&B z|5Nlx!BVtHfgXbF3Frv9^?9`aF6NdFk2{U(mOw<7d{rGyQBg;~X7A0LnMZ%v2ojz4 zU2ueQWTW2B7EbzO+V&t*#wKToJXn(F`4Y_YL*RqvmabYXtq%gY6O@G$Cmu!oTFK}6 zcZ7dFLKlzkl}r5M_wo8f6Y@G+2`JHKrJ!YDh>e)s(*0}li}eT57F7V%9{IwX3VvjIMk;N44?~#J z>u-c#`_#hk5vy9TV%5~DxhX6uDNs$Xm|4DX!OXZw^ZkW)4AXV_Z)D?tgaG|-*i43c z`kxQ4-@ZuypI)y~0MHnKcr{4p|FQw+f7n3&w`?XeocyFDpf|18vaPA9t1NJp z6$a0F*=4e=TX(doa#K6|8MEuU**Q==pU&i@=A76y=kNRd?6b#5JUN$$6e;xVgWv0T ze%0<~4-LIYa-I8pw^1A`vn+akF~<%u581n8A|a647YSMvREP{U$CWlE>J}qwoxsVn z8EYNu%#$MRE1*!^rTP3uW>1*n8RzF5M_Z@18%I-80+$l$P;{mg@l^6J^Fvbn<Kh{t! zucMk)N3ESAXo0L8=`>M|(L%0?RlYb>LA=DRY*uOEQ$?*?E5ViUomEFIkd#n0J%5U% zdZ<#jURkKP)KJxOs@AGwvRJNECvFof4|1IVTPY3ky*yTFnH&=@ky5Qv#R@*?mzGY) zT0Hc1{dg;JES9}gx)v!~E_w0e8^{_W_F)UHhKAb1I<{uOQgP(!p;EJrkee_4khA5` zDU**{RXX-E!-*YPc1~eG5q?+tXUAA}vO;ai)Do^K0jf~1fL#`&it&ow6tXQLDwnXr zZVBF$ye>H`2cb%2Qn*NwlnEeR1F{OlH4?v+wGuccgF;4)=5zmZjc|6C>QTcX?lZ2jm9fHc& z(%EMpOoMHVg7vws$7>(Qr{Px&5UBQHd7SPsup8=QproxPF6{nnKv_veYs(uWb#?V- zb&^MKwdTxGjxo1+QDg8B#1Hjt=uqBx%VYG_a($bct>o7B=!>KG>Au=uHkOH?oQ~NS zPOlI)lI?RfxE5SrACnACIB1Dh_d!3E=(DTDgJ0*RnY_{PZ8GF@*9*B@0DKx3omu*B zQsOWLg;aIUjjggi9E90SGp+UV-BfqWXo-vvBJ~LsPnIvhB|T@I-1+8plS7W`0+z?; zkYs-?vS2=Y`bsVMwA0q_FyP!1EEK$Ib<-U#R=ifH`*FV7(tje+yZN!cLdblqMLU=USUeUY3#;6l%hHsy(0c&Zu z`Y5>x*P9qj%I|$h$~;N<6ghe6H{07ZS6zsRT^tt~%7M_ZGvQ;nIv|XRmZEIoLoCqY zv~$OP>l%!bVrzf@o?Y5Z+9kZPu)55AIB`4hlXcHbZ?Lh47R2p9-e-S!%+nsZ4||6+ z6fC!j^{KYZC#+Q1Dehlb*!bi?$`sy{nEF||G+?Bx7&f?_u(A9*Wa=Q`v`b~8En388 zK?d+=p9y+Oz2E-cC&ai^z;=H#&!kK?oggf%>^1;O4MC>i(b@wIjo6;>lMgnj%7f4C zkPPD`lGo{G9<+C$)!;6N*xV_^N~i^e5BnOC>f9d^S5NHqZ@lGp)iBX5>7Ro?#2zm@ zdp}2)TVvjxh{$+z=6PboF2-d!y1n&LreLi%n%|QjGkI}4_`RH8_n|e25!2IqZ;!Bl zj9ty)AR3a}Gohkl(VB^Ane@w^Uj2WsXyEwrx3t~_^V$94&y3V>MLp2QV2s|0=?x5b z-@9@wcs=UdL-8v5{7f}G9VPnmGn0p24i*d(6DZr8fE`WH-vD!P$E;b%-?ZTT3a#bu zfN}H=IqLJ~MBm7{-1$A(B;3H@&p!koV)9{y)f|YkH%vZn{D(=P>6+MA?=-FTHhOSu zwMlTt3X=`KAmBY0PEiIk9f!Hk!{~%YQFf<22N1^19hCiYf4<^<=)Ib_-146_jMLtoP+vFXv+azSW3;H^$zbsHM`Ta`Y zGo7At`sZ1%*y|Q;t2+yiCa0>Xv{8A(MqQkh{Qh3j2lpdx<86a7CK)fmLcHBg!oKaq z7GvM=uEn&{vaK6Pcf6Edw^&cxNR=a;HjKsiCVF;BA-NHchE`52Hvd)osD9P&XtVSW zPBa!#(Npu&N)l48tD6;#F?H+5`&r=`iNYT;gqwbMJf|K8DF>6iz2%6baxUD;QwLiB z<@`DTn$;O!J9CN=*VFTru>VGAG5Zot?@N@eA3^7Jkp(V_Ws(BX_u-}gPr27)qblk&SO8vQkwYh8PD zYcCp`v+@<;1Vi!#Rj7y6KD&y#j8iT0X00Gy*%U4Pn5sFd6P&oL#laCP%B<|VxK3VCTV7?QDC2OjD(o)dfni}>J$Thq&D%c?EJm&b>^*G|00MvT zkBiy&K8o4L;Qve5+_YnP&84fADYurpy0f#p%bU7J&?s1-%RX0cyr|YoD>!6cTx6g_ zVWOY9il0}Eq93^!>Yeq4+p;YA8xNxn{`T;Ln zsxJ9OHaOZ%tdb0RIbl}RFT=m-_;Ld4jT9p`y#DbX=G(VgTTqUf!E%H){9i-3^i>V5seN z02frfvDfei5YVvg*4O#*w9Nm5W7(c(-HCdfSwunPBU~PAT;8G(`+b(g*wD@nQK@b_ z*PQ1#MK#G!qHLZWowYf;g2NS#*KT7l=LD||cwY#^@(-2q)1kxeGK z@m11o5k{(Ui6|8$t3MX3EV1h~LfmEx`)_P+=%N4o>l~Q<(XoboXo;IY2KYxdtO}di zF26VTWB!>!&&S&8?zcT-T)}V88uQJP9Xy~3J7J2_aPq#6&@Z?9Ex7S zSk_ci*r>|F)fAI%^tqvx_2->4aJRyK>9#gEimplRstCxh!1eEV5rBTzSKXOU3zMwh z6_t`+hN6BQV@mo{16DNFebj;|QO7?+Qv4=-8VV+AC@Ll{Fa3Idz*j6Lt9OR)-VwO} zET@*QTDLg%P=1$jeSVBnafgW}Fw&qgO|SrCb!B-3kn2vtTd;J8rSLR_v!s8mz^vzt z0edfYbekCj;FpW;L*gxN2I_Bz8Nl$dA#Ao)e&_%WIwFZvXT0L*jS5if%qOs$8&s>E{@O zbDm@?(~!?Qdet|& z^~m-Zp$6*{6d^{21I2ON^5R`tdf~`UhfuO;*I!7T<)nQxi-*u@o;l2LII~MH^Ww-i zylE-8$I+gkb^57A~pVJl+ILDM-Ffd!gaC{oR>NaA{C= z(q7~vWOGz1nxe<1$FxFWChem_Z$che+y-N!8iB%&Z}4xHh5m8yf`A1S?O`L)!VOcK zEd~2P(F0R2`>W%3&K`(KTl&`K&{7%bo~$K$L~WY2H=eA6omd*$%4)*I=wlE$(;4ai z*fN{ivVWmg*Z;@{%}^P(dAIiJ#^#cz^AluoQ+dd1=b!X%|14>k{r@(^{D;;2|1l-~ z59#IqpV5xgUdt)!D76z<3P1-AK;a0=_um%(4?*ewc0yugX8#}ks-`O5GRo>0eYOqi z`N9Xac2_Ij@pY6$C5JGN4dVs`2-Ojw*%VFlTS{79(%NbYJ}Rf>+dxeL@;LE;pqMI^ z2qMF>rG#`yJ2-Zv*pXRg8$%|Y$J?H=t=bWqjXC_i&JR6)?|yske1J$OArK%z>P<{e zNUD?NPc<1X4Vx(FIg%Gru~yRkX~T3T=!{4~qzGv!_3a6uL~f4rPLbv6NKf0du(T*s zxed-}gc1Aw-2ps^aG^=0U)FLZCYl0@)S7YmLLvbn#Lx&pno&H0xsVCJMm;qJj})WTR@8$xCRuF=?+2qZsBn)r^7d=f}2E zsxDquMoCWMN!w~>z*?I?EGe=z>{=)EP-=^5MlFa3b3!C&8xbS~+KJZ@c$8@ODEH(T zkZ=j8A?=B0LE(cU2N4hv)rFsTOAIfqL&jI;CAkp=mKvwOrRY@#^t>s0Yvu)TWa?F> zVe*I!h~F_6d(MI9GjqIIfpu~Vl(03QTwGaM+*wrG)6XVduVBtN_}FWsiDD|QG%Fbf zxm~3ZY9|x*Lsz+4y_r~e4=o7m-0!YA%cj|$(_chKt+7%K%8HJs-8mgS#A|gv(8}8) z7@vtn;HU2W?7TpG#OqG#!)QX0%{LmxBLl|bxN=6pj?STQdpT>1`Z8AGRb#$P9@5)~ zW?KH+ponxy-lii;c6i}}3r=rX!*xQ%sWL%Klxs9$(egYtS7Qg=Tyf3q61{eEJFv;* zewp^r4i4c!8C$!w_~|2;FDuQy~`(JN(pL+K;reI=Hwo>JqJ z#3iCw8v~m=e8_>Y!)L0;C@14c`3j(p5d#TT$~)nF>aNIV%uIh&Ju2cHRg=KnJ>Ao* zcXa)`b2*$wwY`A-nLN+9_1`_M!8e$Xommf5Rq@rX(>LaDthjt@8)Ekx(WPIRL0|rH zo`B9BaAO!GN$)KuG|mkj!8Tkwp0m-vvm!n6gZpPjmM^8e(jIp^IdG~|ndOLT@5n?g2X#)3~lGU(oba#bYxYGcTzhVs_b|VLzTu*943%Vrk zP$SvixH4D;!Wnf}bT6J&Ildq-jZwZd*9|ThPi&he7W5YvwvR4|hW??mCVOX*0ZRNa zPt1PRIlld8a?T9FB+UizFL6Q78=jmjir-lnUChudiobyHE=b?#X8VJ<=B~i^M0B7d zoj+fO$1gizD{?{9pMAy#cHSBc%w$LLA~xX5(uN%S;Q{*){e(Ik?D$aX58wR-cZ}Kc z6j;R_vo^|nf*G&t?gyLI$;6_??@5oFrW^TJW_tt+D}3`@QF}P~u{Fiw%Aa<%G%+*B zj6ppNJ9vOYUmv@U{7ccihQfx!)4%IR^Hxb27tSDGAXMGiK&3?*1$sI?Wd5cp&UCRx zuYRYS!#eZLwlV!7$mxA|$vpaS@*U`Ye{qkvnT9l*`zGT{W*yR$F7OBs@F~y+CV*KC zdzwUS#n#NI*r_YQ#3A2!qhM#X$T7`nCTfI|F*&!_z2Y-^h1w5?HGDJ-MrO?&C$7Fq zMOHyuPbVO}nX^2=GO@5TM?@qNqS8Q^lN9VD_?wGLOGj0;k7^xXT_j0zk63%T)N{IO zduM4qFYp znAn*9N4!Z+8ngnkJKh+3NNhQdZNbIzzZ22W;*c61zoa$Ci7#G5L4X<^4~HZXfFUEa zivbi!LUNoJl8^v!fC&j0JgF>tuUez3t$n2{@9jp#j6ngOXw8RJ%K7zp_V}UL@8A!F#*j0!z@x=u%f?wC3RNQo2?;-t7yM#65p zmp0x2f2{i9Ya6!}WI z^Okkh9Z#0QW~^^9Dg4zWSugyH98{20Pq|wBb0oB(=+5WEF_`0sc!t1YRMD8U9!n#v zQmj5s+Za0`428&BIJh+4l2s_0V=w*%qQ`tN#Cz;4`gi1+QH}Al7+pknB(2DdQ)8x` zSr=9V*-_A{68zB+CXlkE|KlqQE2=+qn=Uc^;)?Yzrf!*;3~n=d0J{s2ReKtRJbW8??jbtUO`5(sY^*MEk?Dx7kWYgS6YVZxE~-$T05_)A7kt z{$h3ujzhzh$9J_U(KWc-xSWhQ*hI=l|I+9&7T5_@N}r^LvqcKLauau>`&g1z&v&ftPw z0r5&90~x1b7PML7bdsJn^WZmg>wZuBOkN?RVj2hrPh2l{&*ye$q&tFVSe9;_o&L+# zu2@w~tQn|sjQK3AK{69e?gHzD1IkuSXMovKY6ZK$G{V1o^4tZcXxL0^zA#a;fmtoc zcNaZKHM18@E$H`|#Ek)4(+&DPu$N*#s1v0Ju0_Q|vqSs<$0J;)_R z*~tGwqt9VVk*RsJ3gsbqwnCq%=+jjn^_s={96lHtfg2Nrer=ok=AQFNVuw=tT|m|z zDBX;sWUM*x1$b4S@GI13`br!3FFK>NM-(stzz+1vY42A0(RYwlG>=whlQXIwrx-SA zmTdFmI5$1I-UB7+W@%SbQn44~b+f@qg>JmKh!5F}S8(5vJsZaR(btykz&mL zDpxTrV&BrX>%_>^8MPW^3=%S$y6e>h5@otZ3}$WtySY_4_&z<>JxJs5U;9tWpidD) zhlVO0p8EFm+~FhfOtu1~+9#cp#kSv4D2xTv9Oz2xA2tGZIVCA4ylijm@mXYqWqgzD)cU+0=j)h3 z>cw04PRUf^A!mkVpuv@y*0%0f5EJ*S=aS6}{XxI*3v)KZIE^w7<#gXY2^W;BL14no zwcNA7(+<_(;qF*a!AjW|k5)vhDMBc*&&?zK`IixX?X^^?z}3Pqn>m_nPUJ#x^DuCG zKOtF5ZeKpR`9&YbFUIs}?7Gu1-W?Lr;j99q{UwFT&Hg|Bkmim7C2jEvj@S;EYYIOD z&TbLjp)+Nup&eLM#`<|$bFE8Q!3*{|mh~ZUEnS0zR&=HxnNTw@Ejm#`Bh4HW?$I(F z2NbSaI7%E{QImg@ybPrWqP_Zo+JbQ={>kNlhl)BBt>|T~sRlEbsrF<;#Ik>a$7>F) zD_*j|J$LgbvrFu#smsC$jGX%~sp2ygdJ*HZT&YhFq6CH|$(l*~1%=i|OOK z^)l-+gij2xOb>l(s(Cnd5sMyd^RZ8ReQ&~Fd$094=!8reE9|oJU_}faH@Y$JnHexx z+BLGV-1$#wY1uVkp4|l6oM;7Zud!eN2Mu|f9fIq&QxK*3NbGYeZ%=Ah-nl4UH8Gj&kQ*mew@_xaHH1Z^#) zUJlqPGc4>AV&Ca=58VCS*?m8~-T=uS61F0rGmCx&^Iiv4UGM}(&7p|9+2Y1i1U^-_Jh?(d8M_&ks=V9B z?4b}oXboaEo|+c=^~09EfhA^^@z-2lfA*{yVpzQ@g{6rnphCPt9c@m_NB%()^6u7> zYNjr!c8eK#vlibTkZahwY_JYZo~v%`v|0ptt0l;h&Fg;t{WI^^StJ4C^MAA zc-0kur}yvQ?aFLPwE%gg-|RQN!e_tE%hx)I!NN=vUZvwd7|5 z-VY2*U<%Z%a*CHDBPQ|7bastrx0B}Oau4Tq>U2%6OJ60_ygdZHUIrjr5y(PssBUmk z%8Mn)KcLbAKL5&(9XuTP&q%|`^*PX1?KXB^^<3h|a?E=)Us4>U0jv?k-?ZlSD_8xM zZJD}?QLTY)aoQsadL2MP>j=lJh}RPny{Jva?J*+$Q{ zV>~$NEy{(JVQ3`AnQGNiFm-j7?`h~K;DOiG6a4OmcOJw2pXDhF{XcZw|5Ew>$1f3m z1Z5O){Rn;bo!&tZ0OW6=$p5@J69fJKkZk{juBDSRv{Z7op_3(Gq^JL(*g85n6Z{Zs znf?pVmW`3+->U8|omI#6;btE`y?~be1xjch_!h;oI|Oo9?jc98up)5DVB@XXe8IU0 zpYE^fP1rbC1lT|9_Io`@gpcz@gwMJZ$b{bLc|xekU6aFdi#VJl|IY@ zsP>(Wd{8#f6w!Qr=;|hcKGash=-D(kc4BwJU=b=psJv7W0W?9XFd(X66J_}jd$do8 zM&rzBdA;ly`lvs-;hyyDwn?Lm+Kh;0&oVk7Zc!I$NvU2%3&t$1z0h z_pkTkO3KXbhps^h!%6MKk=&#g(%py?g)W;ow{2(mx1dOPA z06P5ur(J;%BMQpDA)wZ+gj1XXD?~QzQNy@n$oU6>@%)5>w7~_<7(x^Rqz}|E%4E2n zh{=s0F0%+A;8B2?igdXsngc5KVzr=n5xjAL>8IG~D9ShdvZebr04S4z3g3DB)&@93 zg!ZG6R06{OxPSQlADm+d0BD@VQ6LzV0Zv1w%@YDjl)yqwO67nZu+HX@RJlb};UvlS zW+%}}a1SK{c>jp6)xuU|5{UKBAxH`!&Eez>cA{bE<{?*)*+y{7tmRHO0Wtk{VAMcU z#)?XbCsJUnf|93f!@i0p3CII5>Zg3+9k#H}jg7a5j1LqbM}UB$U8oP) zDby~N1z>a@&np~TJ4sh@hN1w4E)D#i!-NR>3;O#&RzaR#9drs3a2HKqSX>c-ARLJt z{r6cyl$=FiH`#u!CL9k%uPQ*)2@tVha9n4x;!Vs6oDBejI|&x}ReUv~c!YK?{3zL9 zXL*2LP=f?40QNlC7oZP?`WrwJsyv=furqA1l)@d2;68bZ0H^}}p$Aw#Ed=)9x)W?s z!CT;d7vnMcs(NL`LVk6wHlRR;V8meHWui=emk`?>VHiSykY1Wz!X0Z0pxkuy1Hicu z^1k^SAXx=PcmA>XhC(I#EcPM_(>!>Yn6&uF;{yeZfZcVwiRb&r{I{o0PQI{n5pJdz zR;FR zs;wkDwZ(1r+T9(OM-$vVF1YUZD?QwNXC8LgSpGwXSYfuZCb*}d$zYQ= zw)wTbV*~S=oAM`{$Fu$!^ zzHKQW9zT+cH*aUWhGY8?EGCf{b96z4PfA~hH?N%p*`R6@4kJ)o9{5-s-9VWO7;>i6 zmd~Tbb!BVVh$wTY`GV5J7=ucgl@Qa|%fTAWE$`PNYCI$P3pxV#G{RecU<4VOLnQ9N z7WLN}NJ3_i3nuGYY(MyBcFKE=Zt?v>df+s1nkN2U`8VeDQt#w!)Qy$ySLOgztG@BV zTBLkJ|70gt5PiH<$sste-_Zf%HV-Z36E;+sC}re-tO;VSE|;Gkw4@kV;KrWm^EhAA zr(sX(fyYrk9QC(qAt`Wi=3X;8=yJ%ZADa}f96qK#+GQcMmP(sL?YRs~JPhaC0&r5X zS3IXTCrg6Xrjc9vTVCY|gk3Oh-^015kkg>miTWz9eSg$=MoUW<$p(eURdW6= ztFvq<;*gmr#4CHb52kH0`(=cbHp6*ehx?{grXZtbQ$Z6Jmr-3B%sxkWAPbRc0{Q3E zS@@`!SfUx9c@3oIsy@;BP^7+yl&|{w#DnYe*V4S*6#p-SAyLNK+uxf3?!LJ&z~vGs zGJC|v`DMe#!oHS%tz*g&V+%y#WXK}58G21k+0)M`+lhKp&AcXROhoWi%Ab-^_$2Pz z!+>Wo_Zg3fgbl)_%)%5L2=N(^aiRvAl#D;qbUQYTvm~}QW_lg-2VWc1W$PMM zVc_H*XsIkgmyMK8%pJmzBl?{%f9z@*|CEp9L+aNVfOECBC|=85V{O zS4n@~k0*8dwXy0YD_72N7Tj&sjF9gVKZ zAWtXabS}wE_7$+F<7k@@Wth&Vp;9kf%xlk9Nh~ghEf$gQ^PP55=>RkAc2qU zOWQA_XqNqv=<2B(`06igP~UFbYz?c{;hgq7DFuxe1>A>27j|=9-6-C!>>s~uPffbS zXm5*6U)-UVb5GyJ&gsdUPany#YcYV`q+%$*yh74GgzRpz?=UKQRAomn@w#81A?*##rt^Gt~8daCPy4=|-^JQsF@WTlp>l_3s6 zeXXKSest&FBCpznNT7|ezMJc~i3vT%l+tO#Z7+!1oK8icOCbH#6g{^)d^U@RGcO5j zlWwEo1JC@*z+8rxZkg9~F?KQ5Yb|=O;w5GvX-?H!g4dkAB(X%QdK|I%j;@H^_(P4QpI&}Ug{B8&NO0B5y0MeBoLkpq-dlyy!UoF1+Ig=MY%gR`v?nTZ9FV_5Sdk{s zM$=43A(U^xk1LlNHETEdipEveSp%JEq>O!J3kpL*7w&S9Ha;PKG4dKGMB3%!6? zsOKg;#TjkeJ#}6FzD&ByZG3|`^bpkQ9=l#mUzz%SZETvxf7}VaHfD)7WvoIML^Pv+ z#?8$Y)z{@FnIMj8@3+;~)f$#3Gj7ih)_vQrT%s|&osy=Nh91}RnZL@O{^qUNPQFld zUX%@MdtYXOzqaji{7$9ZPD;6{x2vg@P$ zQ61?yaPeNFhT7g!$_jKV1JR|u|Kf?%Qj~qs$kz5$Kd<}TT+>p1X@}3Yvv|q2SYy>K zoN|?O#1w`3M)5-!3~MIVh}BYeU8|@(QSRtEL)Y<%brkk;V?TE&kVR~$SYT6&`;%rT%eJMY0!N(*JNiV|;7GCG@;M z@;m`AGdN<@WC4DO4ic{!0@oI4N=?bh+>{@k2U}0VNWVqub`VL!y)%dbL9<=7V zb`E}v6LQ6(2IIW(`kB8ec71y*GT!h(OJh*GF5JQ0%{&o1-7WO$d3`I^<{FNi=PkYe zSt`1ra)mP{gDL*BFZ!wvPnI|K3>u!99iyM&*_>c@v?0$r1vOj6nB3p7nu*6)rL3Lj zAp;TJ&>G$_lg~Unb}y=(c4C76U7dwa|pJ&V?1pM-Q0@OUep@n^I4u;q~G6ZX#IN zsFk7;-K9iMbdJ%hrZO>Ob8fTmT;Nw=4B~&ELUIV%1-byNNd43V$Dt>9Y@^oH-0)A^1hdh+}XD za3W;nQZ4b*R>s4LJ>8K4BBnJiV~usF?qZp0qU(ar>*L*rHAA|11N<2@~; z3M9qF!&I3AZ{Qdm#Xaf$V3;jLQGS`koLEqBXC{X3XEu}Y9fsp45S9?nQd$&-qWuuT zLLQ{>Pxqb}tIHsAV3gNrW&~RH`C5F6yEd-$)*4I|dLHDU(xS`*Q)F7_0v`~^TfrXJ<&W}pPY%5?P_`1oO`@jn~lt67K9YdF+NaS zbFU>BX`_K8aeb?eKna3cN)!;k1NMGiG1s`XVWx@gq^50A;+2_#3IcGv2DYZ%V7}YQ zw`Nuy8b$zc3}nu@1lnf@T2KpH;i2~z z^w$kMFZsN&7!$rV+`lo0p# z>w8I0_v_4rT21kJ>`XlE^bEV#OLhB8XKFPNs$9i+!{P^&hNrv!rt4}Kp_3LMX@T7E!`s!8ud96-JF@xl#yM7kl^scYCM0GJ9T3Dsw)!u3C<7$l!!oe6@4%LuZFa2hD8Na|;iK&j$<5>2lEV z^H^t7hEHeCjN}~N6t#P#`>0n()ohxwrTq48S~?1c8r8#sJBQaoZ%tk*KMK8MyYZI8 znZu5|Wu(t!v%|{D@%y{{5B2E@z6p`nvQFxn@t$#&Hd?+EzZAXknnS;do(iV$gAD#( zMOOp)SEI}&p4$pt63jC;`LAy&{@6S{uQzXVa&inW9fu{SMN?MlTTP)FRhs8ki|N7* z;}WGyVPO(~gLpzLPm>#(ZDWto4A2)}Ig?d|Wj&f+ymh`>G-)OdO;oDCH3au7 zpnms*baLl>>m)7T(;d1zy18hm`uSwj=1xLEbq23hOE^RnGxlSZ6ufbmXyH;O{~Cj* zIE`hi@$8Z>c zcA53BjZ*b|)=DSlGkZ$SEQc?PuAEN(M8hy`jy9#q^IKve1NmP3b3DdZ>kPHb^D*X` z#U|wY;p;PYgl~y<_vO4~{&3Gz{L-~^O{KuKS%DM#uCsjk9!ih<;o(3{bEpwQho-Bd zd5dp~E^q%t#iG|zWopL~{rq)t&x#}CnoU?x ztE*j;rf1=B(ehPJ*_UEk799|6N}yAjrd%#Jud|Z2Uvu)&(DO4sd_cY7RU?iLuxyRL z{5P!JDG&e}c4cuXw+_h(=F+M-%xQJ3xFGwuR?Fv8iCE9aOODz|tgb_IBsd!yyfr?S zIyzXyXUAS%{xQNlv8s7l6)ey^7~tMTIj3HA`9e;ycGMqvwlM}*D#Dp&B+vJ=fmk_T zk?mM7(t{DLsP5<}JWE*0IpB#?w=3O7CzP!*h3wvf&v=N^p+RxLA3RL8Z8qrF%lk85 zxBHf)%pIlR`SQ?nJc#Dp@o)DmV8;nJNB+4nWW(_=6gn)1B8NZyF7qvX=LolIiNFVm zErgKKN~tGDpq)vbWx@uJbRNhdr?$m67oQz1+sg;u-zGXbx&tGy!EiL!8!8XQP=X4@ z@_eH>h(e8zebQn@R-=Q&sh;uI*X6T<|9e8NARWyF|`xib*hf!`#M6t@adZv*y35uSk3SRb^^)RaRVk~H4*Q_JYIW7 zaVXTp$&);EM<8|Y0CSvE#ooSN1|~+hkpKABb=(@ZfWHwBc$xh{`w~a&FQUjapP?vP zxsFu?Pds)moIUK-jCKTecp9pS^>a_ICVYro-exIhQ%J7ZI%F0)MemXd(G3K`Y#FM6 z(Q~{4 z{UJB5X`V~QuMez?d$8A%==*rzb4JDTFby}~>@e*M9`n5%}e%8%Wp>9PBv)Qi& zUJdrg#T7E05iXevMcE^#9!De~4^2jx?oOma2KGgu?oLF=50yn6eGFzm@?eV0ug};g zGs%p+H0Plm6(R2*N*tk0Cmze4rqYr`qVsinzMjOgVRx(@MVI=1JYwa0_3==2d9KU6YPpw9 z=W<$sauzFT%|*Mk3U4bP&uyav<~Q~bKZ-{&VtGEI@T4J)vEcZwuVGH6s?=N?`@ zIC|*#Or(D^TYdg`ptWWlRed29&+u~-g)3b0Sos8UAh_xjvnaR%6u?2maS{9_Dh`nc zZi~ocGLW&$XW_DuN5~(V@qZx^;KTy-5_41gG%vc|2G;jRZu#g9M%d z^+kaMT5wHqj-R6;NCSba0tMz~xIc)t+|V}K!|z`C$0g}Ofoy^W%J}cZ0a=K? zAeWJYH3+wBP;CmYt1AQ9#~Bm7-bILlF3bZ$Hu_x%cSJZfHc4h< zV7?V@Pt2cX3H$7mDUa1hgvv*;>{hBE%i6Wwoh%9%GDFyh@s{TFW66~S!Vhjom?3*I z;d-*)_EL3K&DN?5#rq*GAZ-(jN6ZE?$(uNzq&nfXi8%$*V+^*W4H}{Mgrs7~=qgHw z_Xg#DuD_%6@q7^~$b|1d`&%vdH5s+^v6%6KTLT}b0IVxcqi&Uy=j!n!rz zxb4lM(f-l5HnvyUwS;K!Co{@Z^{4BiRd|EYV}!Wt1koD<_TI0H+`bt#?jPPu4>!zh zMx6elXXo?#+`YudZ;$xi9BBIjlmjwzp<*}cjtgo)@hV1egE{s^B(ry|hc(LzwZ?6k zmb|N@Ww+{Gg+kQ(gQ0s9<{VEin(`6MdOk~P2||rc13flrx}ED{&~O;Bi)@9v%h_3y zyoDk~M^LEL%i<{H__rUlN75|7X2t?I4(45~4ABKWrfS_8zZps)>;Xs}{G$W132b%_ z6OgC-uhO6-ucJI$3@>)3!ai)5LoL9EJebVQZ44`|=t#70(0;L9Kqc9oY)3xu8*tG= zz;nQU(CqiYPzE|(&clU#D>yK{4zPX8xKjO<_I&^8j&4}Tgi`&T)STV=$usstqGEhp z?Mu->3Y3@##kjjDn_0gGZpA=GSk2TB^5p>Lz3)9v%Q`$997rAI@T@(d-goyGL(;6#?Xh!!Xq&I_TK zWjy_dHh%82C+q=>72CGe2Gs`fdc9<|LXw!UrA7WQGuGy#%2BLE8n)o@)P;INR;5=_TMzT~P zL^Av`+(a0;J-BGjGM}IO`@3AkbCh5QyuLFTvgbWa*f%hyd&}5=>XyvR|IjV}izv#- z@lQXXjy#WDFg?uXJr%cZ*stDMEuuoG--EO8NgenINCP76>Y0 zOm=V0Hg&@2)G!;msvu0SGYu-&gm^7_97FR&0Ax{oO&s`sShYO_+>~m0R0$ zL?RUGI>!!&`$UJ#w7S1w5=@QrDJ&6m)R;&FD)M>Et^&wZ9G{s> zmJpu0UO`tCG;JYr^zNp~Rbu#3P;EW`w@|VEkHq_5LiO(=u8#bKZ4f;|=R4I?D&DW& zMhkd|G9rP!*)YjFz+v6+q8CCVxDOwjAjgxwr3+6}=IqK-*{o!|dVDkYSUl0Pkbza| z7-AT92^lCTLB}4s)1%)S2`o92z6>F8c}H$VsXbHY_m6+k#1PnRgC{HzPk7x*e6x7U zWn;n0e*+lz^w~Yxh75$!1M?1TwjiGrX7AYByfvPpTV0pRdyPuykarkL4Mz8_GRDN5 zLP{hZvnbnWAusH0uTK`rh<`w(!z;(!mJY0(lv>n)=$<6_)i~=c ziG>q31`&+4E{izM@7ix0-y<@^0$J}?&F3DAkc-sPef;#BFE+(VK#$+Bfh^N3y0^J? zvcjWrC8ZpbAO@2Ert1N_Ds4AzJZ~7h#0M*)ScwLQR^u?q^6y(H&o5{~38d|q>X<TsQhu@UJ=sq}(*RZq^TcT)scxbe z7u99&q1%3)Vab?UQ>BWR()RJt^m~6ezTEUliwxvQtd_~JFKT@7Pb7rf*uQ&oB!+!~ zYj9+JH#z~ZeX6VL7sb&I7j52!cWb%7&UwF^AM2WY(p*S9|5K@O#Qqw79a$)?62D8Z zSn16)|c@y(XLW+-t9uD)P=7 z<~sV212^E-<+IgW{j+)hf)DZ%y@tLY5#zf7Jt`aJIC>HBbHd>L(FIS1fevf&T&ihv zToWy#P!J}h+7-yi0>qSP2DDfaTY!r`9T&9Eq*Mg21n8c}=1HCMMyS%bY8)joVawm& zpg^Pn_z3KU2zjk2M=TJeRRJ?8--lblrGBPG6K@#JfnIH>o1 z`7(YWOSXtXWi?$lQ*^9Nb1pCUchxU*M+M8Yb>him^-*aI6|}6B0JEMTcg3WYB1yB7 zNCz6E)g_yp_I&43Lu=$zp`Njsd2M=hD*-xao+UBSF9^@(XtZDF!s``kt`w@P_LWI! z=OxUaHxkc~OF3V}XsrC;uK4sxI$B*(upmJX+C>PN+;QL#I*xOrm1t|DK>?$uF6HK; zLk=f^EaYS0j1A2nzzv+o{Qp}@{-Xoy|E8q6qKPS;qMhB35$IggabE|4w{(eOkQ!0rmbdsDlD^Nn{kGa%^NnX&WPw zmpgbquXzV`f?~l4+0BmFk$ra{xd=#|3bTzWq#MK#%IpIL_#Hb5Az~K4IjM4O=jXRK3S>;oJxXN5Ou<@4pzW)k8a zDm{K)(@b&L)${PF#o`2XVi}gqPNepg{26D=_cxR|W+IR%Jc||>pFof(VU|ikrgJyP-2GNae{W)(MERNGyNgi5y=gFqzA`RgO%*TWQQzP0FHOPwf&(T5NU@=TT!qL ziM2x~96+lFRa&vk42`6RSX$ARcRe@!vFjjh`=?q#TMV&m2b`^cuRDNG_h+RBbl9_* z8ZueOc+o>Y@9}QLuDSzg>BAlE32+BDFu=nbNpS~?G2lbrVBn1iT8EI|kYxAIs|VxO zAy4-~SVw0uKou~6b?B>Igxb_{J@saPaGIB?n-C$)8+`9wP?U7OsPq>5D?74JCu-%|-4XwL_UmHO3 z4!*wtNVOTr+!1?6$=y)$4jjJ(-d|x78uoY;tnx%`Adm3q1)gN%UY+h_gW7&~@LaRj zuAkX@b)WQZXK6rh@;Y7!r#-uzkKpe{z_XYJ4Ox>xYQcL8w1 zh3x6!hUVB|!i;cYdgIxl*!GMw{Ug}HOLk#0qbKZnY5R*>0o8V~v}3hMUVH+4Q<^1j z9&M*A3=d0>Yzzm^tYp!(j%$xD4bPjGJB6&>+m5mfiLWiD5wIT>?`i9FoLH{W*6;ru zN!R&MS!@xz-bhbr7>2R_?NqbYMxA;ej5+8DduFboewx8vGn;R6Z9@ zm6e%yYoldtD>$k!RPtT&mb%#ZO1BHw(G+X5wseAQE$M<~2 zpMoFU%Bp&;OVKl@MSka2x@V&M&VP+qq5J)S{B-qEH22lk;t}&cwSDfr?f#wq1rA3o h%Ko1ltdp~WqqDoCi76B_3mY3VBNQpAh@2?Y{{i5O0CoTX literal 0 HcmV?d00001 diff --git a/spec/spec-collated.tex b/spec/spec-collated.tex new file mode 100644 index 0000000..30f96df --- /dev/null +++ b/spec/spec-collated.tex @@ -0,0 +1,1325 @@ +\documentclass[]{article} +\usepackage{lmodern} +\usepackage{amssymb,amsmath} +\usepackage{ifxetex,ifluatex} +\usepackage{fixltx2e} % provides \textsubscript +\ifnum 0\ifxetex 1\fi\ifluatex 1\fi=0 % if pdftex + \usepackage[T1]{fontenc} + \usepackage[utf8]{inputenc} +\else % if luatex or xelatex + \ifxetex + \usepackage{mathspec} + \else + \usepackage{fontspec} + \fi + \defaultfontfeatures{Ligatures=TeX,Scale=MatchLowercase} +\fi +% use upquote if available, for straight quotes in verbatim environments +\IfFileExists{upquote.sty}{\usepackage{upquote}}{} +% use microtype if available +\IfFileExists{microtype.sty}{% +\usepackage[]{microtype} +\UseMicrotypeSet[protrusion]{basicmath} % disable protrusion for tt fonts +}{} +\PassOptionsToPackage{hyphens}{url} % url is loaded by hyperref +\usepackage[unicode=true]{hyperref} +\hypersetup{ + pdfborder={0 0 0}, + breaklinks=true} +\urlstyle{same} % don't use monospace font for urls +\usepackage{longtable,booktabs} +% Fix footnotes in tables (requires footnote package) +\IfFileExists{footnote.sty}{\usepackage{footnote}\makesavenoteenv{long table}}{} +\usepackage{graphicx,grffile} +\makeatletter +\def\maxwidth{\ifdim\Gin@nat@width>\linewidth\linewidth\else\Gin@nat@width\fi} +\def\maxheight{\ifdim\Gin@nat@height>\textheight\textheight\else\Gin@nat@height\fi} +\makeatother +% Scale images if necessary, so that they will not overflow the page +% margins by default, and it is still possible to overwrite the defaults +% using explicit options in \includegraphics[width, height, ...]{} +\setkeys{Gin}{width=\maxwidth,height=\maxheight,keepaspectratio} +\IfFileExists{parskip.sty}{% +\usepackage{parskip} +}{% else +\setlength{\parindent}{0pt} +\setlength{\parskip}{6pt plus 2pt minus 1pt} +} +\setlength{\emergencystretch}{3em} % prevent overfull lines +\providecommand{\tightlist}{% + \setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}} +\setcounter{secnumdepth}{0} +% Redefines (sub)paragraphs to behave more like sections +\ifx\paragraph\undefined\else +\let\oldparagraph\paragraph +\renewcommand{\paragraph}[1]{\oldparagraph{#1}\mbox{}} +\fi +\ifx\subparagraph\undefined\else +\let\oldsubparagraph\subparagraph +\renewcommand{\subparagraph}[1]{\oldsubparagraph{#1}\mbox{}} +\fi + +% set default figure placement to htbp +\makeatletter +\def\fps@figure{htbp} +\makeatother + +\usepackage{harpoon}% +\pagenumbering{gobble} +\usepackage{fancyhdr} + +\title{Year 12 Specialist} +\author{Andrew Lorimer} +\date{2019} + +\begin{document} + +\pagestyle{fancy} +\fancyhead[LO,LE]{Year 12 Specialist} +\fancyhead[CO,CE]{Andrew Lorimmer} +\maketitle + +\section{Complex \& Imaginary Numbers}\label{complex-imaginary-numbers} + +\subsection{Imaginary numbers}\label{imaginary-numbers} + +\[i^2 = -1 \quad \therefore i = \sqrt {-1}\] + +\subsubsection{Simplifying negative +surds}\label{simplifying-negative-surds} + +\begin{equation}\begin{split}\sqrt{-2} & = \sqrt{-1 \times 2} \\ & = \sqrt{2}i\end{split}\end{equation} + +\subsection{Complex numbers}\label{complex-numbers} + +\[\mathbb{C} = \{a+bi : a, b \in \mathbb{R} \}\] + +General form: \(z=a+bi\)\\ +\(\operatorname{Re}(z) = a, \quad \operatorname{Im}(z) = b\) + +\subsubsection{Addition}\label{addition} + +If \(z_1 = a+bi\) and \(z_2=c+di\), then + +\[z_1+z_2 = (a+c)+(b+d)i\] + +\subsubsection{Subtraction}\label{subtraction} + +If \(z_1=a+bi\) and \(z_2=c+di\), then + +\[z_1 - z_2=(a−c)+(b−d)i\] + +\subsubsection{Multiplication by a real +constant}\label{multiplication-by-a-real-constant} + +If \(z=a+bi\) and \(k \in \mathbb{R}\), then + +\[kz=ka+kbi\] + +\subsubsection{\texorpdfstring{Powers of +\(i\)}{Powers of i}}\label{powers-of-i} + +\begin{itemize} +\tightlist +\item + \(i^{4n} = 1\) +\item + \(i^{4n+1} = i\) +\item + \(i^{4n+2} = -1\) +\item + \(i^{4n+3} = -i\) +\end{itemize} + +For \(i^n\), find remainder \(r\) when \(n \div 4\). Then \(i^n = i^r\). + +\subsubsection{Multiplying complex +expressions}\label{multiplying-complex-expressions} + +If \(z_1 = a+bi\) and \(z_2=c+di\), then + +\[z_1 \times z_2 = (ac-bd)+(ad+bc)i\] + +\subsubsection{Conjugates}\label{conjugates} + +\[\overline{z} = a \mp bi\] + +\subparagraph{Properties}\label{properties} + +\begin{itemize} +\tightlist +\item + \(\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}\) +\item + \(\overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}\) +\item + \(\overline{kz} = k \overline{z}, \text{ for } k \in \mathbb{R}\) +\item + \(z \overline{z} = = (a+bi)(a-bi) = a^2+b^2 = |z|^2\) +\item + \(z + \overline{z} = 2 \operatorname{Re}(z)\) +\end{itemize} + +\subsubsection{Modulus}\label{modulus} + +Distance from origin. + +\[|{z}|=\sqrt{a^2+b^2} \quad \therefore z \overline{z} = |z|^2\] + +Properties + +\begin{itemize} +\tightlist +\item + \(|z_1 z_2| = |z_1| |z_2|\) +\item + \(|{z_1 \over z_2}| = {|z_1| \over |z_2|}\) +\item + \(|z_1 + z_2| \le |z_1 + |z_2|\) +\end{itemize} + +\subsubsection{Multiplicative inverse}\label{multiplicative-inverse} + +\begin{equation}\begin{split}z^{-1} & = {1 \over z} \\ & = {{a-bi} \over {a^2+B^2}} \\ & = {\overline{z} \over {|z|^2}}\end{split}\end{equation} + +\subsubsection{Dividing complex numbers}\label{dividing-complex-numbers} + +\[{{z_1} \over {z_2}} = {{z_1\ {z_2}^{-1}}} = {{z_1 \overline{z_2}} \over {{|z_2|}^2}} \quad \text{(multiplicative inverse)}\] + +In practice, rationalise denominator: + +\[{z_1 \over z_2} = {{(a+bi)(c-di)} \over {c^2+d^2}}\] + +\subsection{Argand planes}\label{argand-planes} + +\begin{itemize} +\tightlist +\item + Geometric representation of \(\mathbb{C}\) +\item + horizontal \(= \operatorname{Re}(z)\); vertical + \(= \operatorname{Im}(z)\) +\item + Multiplication by \(i\) results in an anticlockwise rotation of + \(\pi \over 2\) +\end{itemize} + +\vfil \break + +\subsection{Complex polynomials}\label{complex-polynomials} + +\textbf{Include \(\pm\) for all solutions, including imaginary} + +\subsubsection{Sum of two squares +(quadratics)}\label{sum-of-two-squares-quadratics} + +\[z^2+a^2=z^2-(ai)^2=(z+ai)(z-ai)\] + +Complete the square to get to this point. + +\paragraph{Dividing complex +polynomials}\label{dividing-complex-polynomials} + +\(P(z) \div D(z)\) gives quotient \(Q(z)\) and remainder \(R(z)\): + +\[P(z) = D(z)Q(z) + R(z)\] + +\paragraph{Remainder theorem}\label{remainder-theorem} + +Let \(\alpha \in \mathbb{C}\). Remainder of \(P(z) \div (z - \alpha)\) +is \(P(\alpha)\) + +\paragraph{Factor theorem}\label{factor-theorem} + +If \(a+bi\) is a solution to \(P(z)=0\), then: + +\begin{itemize} +\tightlist +\item + \(P(a+bi)=0\) +\item + \(z-(a+bi)\) is a factor of \(P(z)\) +\end{itemize} + +\paragraph{Sum of two cubes}\label{sum-of-two-cubes} + +\[a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)\] + +\subsection{Conjugate root theorem}\label{conjugate-root-theorem} + +If \(a+bi\) is a solution to \(P(z)=0\), then the conjugate +\(\overline{z}=a-bi\) is also a solution. + +\subsection{Polar form}\label{polar-form} + +\begin{equation}\begin{split}z & =r \operatorname{cis} \theta \\ & = r(\operatorname{cos}\theta+i \operatorname{sin}\theta) \\ & = a + bi \end{split}\end{equation} + +\begin{itemize} +\tightlist +\item + \(r=|z|=\sqrt{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2}\) +\item + \(\theta=\operatorname{arg}(z)\) (on CAS: \texttt{arg(a+bi)}) +\item + \textbf{principal argument} is + \(\operatorname{Arg}(z) \in (-\pi, \pi]\) (note capital + \(\operatorname{Arg}\)) +\end{itemize} + +Each complex number has multiple polar representations:\\ +\(z=r \operatorname{cis} \theta = r \operatorname{cis} (\theta+2 n\pi\)) +with \(n \in \mathbb{Z}\) revolutions + +\subsubsection{Conjugate in polar form}\label{conjugate-in-polar-form} + +\[(r \operatorname{cis} \theta)^{-1} = r\operatorname{cis} (- \theta)\] + +Reflection of \(z\) across horizontal axis. + +\subsubsection{Multiplication and division in polar +form}\label{multiplication-and-division-in-polar-form} + +\[z_1z_2=r_1r_2\operatorname{cis}(\theta_1+\theta_2)\] + +\[{z_1 \over z_2} = {r_1 \over r_2} \operatorname{cis}(\theta_1-\theta_2)\] + +\subsection{de Moivres' Theorem}\label{de-moivres-theorem} + +\[(r\operatorname{cis}\theta)^n=r^n\operatorname{cis}(n\theta) \text{ where } n \in \mathbb{Z}\] + +\subsection{Roots of complex numbers}\label{roots-of-complex-numbers} + +\(n\)th roots of \(z = r \operatorname{cis} \theta\) are + +\[z={r^{1 \over n}} \operatorname{cis}({{\theta + 2 k \pi} \over n})\] + +Same modulus for all solutions. Arguments are separated by +\({2 \pi} \over n\) + +The solutions of \(z^n=a \text{ where } a \in \mathbb{C}\) lie on circle + +\[x^2 + y^2 = (|a|^{1 \over n})^2\] + +\subsection{Sketching complex graphs}\label{sketching-complex-graphs} + +\subsubsection{Straight line}\label{straight-line} + +\begin{itemize} +\tightlist +\item + \(\operatorname{Re}(z) = c\) or \(\operatorname{Im}(z) = c\) + (perpendicular bisector) +\item + \(\operatorname{Arg}(z) = \theta\) +\item + \(|z+a|=|z+bi|\) where \(m={a \over b}\) +\item + \(|z+a|=|z+b| \longrightarrow 2(a-b)x=b^2-a^2\) +\end{itemize} + +\subsubsection{Circle}\label{circle} + +\(|z-z_1|^2 = c^2 |z_2+2|^2\) or \(|z-(a + bi)| = c\) + +\subsubsection{Locus}\label{locus} + +\(\operatorname{Arg}(z) < \theta\) + +\section{Vectors}\label{vectors} + +\begin{itemize} +\tightlist +\item + \textbf{vector:} a directed line segment\\ +\item + arrow indicates direction +\item + length indicates magnitude +\item + column notation: \(\begin{bmatrix} x \\ y \end{bmatrix}\) +\item + vectors with equal magnitude and direction are equivalent +\end{itemize} + +\begin{figure} +\centering +\includegraphics[width=0.20000\textwidth]{graphics/vectors-intro.png} +\caption{}\label{id} +\end{figure} + +\subsection{Vector addition}\label{vector-addition} + +\(\boldsymbol{u} + \boldsymbol{v}\) can be represented by drawing each +vector head to tail then joining the lines.\\ +Addition is commutative (parallelogram) + +\subsection{Scalar multiplication}\label{scalar-multiplication} + +For \(k \in \mathbb{R}^+\), \(k\boldsymbol{u}\) has the same direction +as \(\boldsymbol{u}\) but length is multiplied by a factor of \(k\). + +When multiplied by \(k < 0\), direction is reversed and length is +multplied by \(k\). + +\subsection{Vector subtraction}\label{vector-subtraction} + +To find \(\boldsymbol{u} - \boldsymbol{v}\), add \(\boldsymbol{-v}\) to +\(\boldsymbol{u}\) + +\subsection{Parallel vectors}\label{parallel-vectors} + +Same or opposite direction + +\[\boldsymbol{u} || \boldsymbol{v} \iff \boldsymbol{u} = k \boldsymbol{v} \text{ where } k \in \mathbb{R} \setminus \{0\}\] + +\subsection{Position vectors}\label{position-vectors} + +Vectors may describe a position relative to \(O\). + +For a point \(A\), the position vector is \overrightharp{OA} + +\vfill\eject + +\subsection{Linear combinations of non-parallel +vectors}\label{linear-combinations-of-non-parallel-vectors} + +If two non-zero vectors \(\boldsymbol{a}\) and \(\boldsymbol{b}\) are +not parallel, then: + +\[m\boldsymbol{a} + n\boldsymbol{b} = p \boldsymbol{a} + q \boldsymbol{b}\quad \therefore \quad m = p, \> n = q\] + +\includegraphics[width=0.20000\textwidth]{graphics/parallelogram-vectors.jpg} +\includegraphics[width=0.10000\textwidth]{graphics/vector-subtraction.jpg} + +\subsection{Column vector notation}\label{column-vector-notation} + +A vector between points \(A(x_1,y_1), \> B(x_2,y_2)\) can be represented +as \(\begin{bmatrix}x_2-x_1\\ y_2-y_1 \end{bmatrix}\) + +\subsection{Component notation}\label{component-notation} + +A vector \(\boldsymbol{u} = \begin{bmatrix}x\\ y \end{bmatrix}\) can be +written as \(\boldsymbol{u} = x\boldsymbol{i} + y\boldsymbol{j}\).\\ +\(\boldsymbol{u}\) is the sum of two components \(x\boldsymbol{i}\) and +\(y\boldsymbol{j}\)\\ +Magnitude of vector +\(\boldsymbol{u} = x\boldsymbol{i} + y\boldsymbol{j}\) is denoted by +\(|u|=\sqrt{x^2+y^2}\) + +Basic algebra applies:\\ +\((x\boldsymbol{i} + y\boldsymbol{j}) + (m\boldsymbol{i} + n\boldsymbol{j}) = (x + m)\boldsymbol{i} + (y+n)\boldsymbol{j}\)\\ +Two vectors equal if and only if their components are equal. + +\subsection{\texorpdfstring{Unit vector +\(|\hat{\boldsymbol{a}}|=1\)}{Unit vector \textbar{}\textbackslash{}hat\{\textbackslash{}boldsymbol\{a\}\}\textbar{}=1}}\label{unit-vector-hatboldsymbola1} + +\begin{equation}\begin{split}\hat{\boldsymbol{a}} & = {1 \over {|\boldsymbol{a}|}}\boldsymbol{a} \\ & = \boldsymbol{a} \cdot {|\boldsymbol{a}|}\end{split}\end{equation} + +\subsection{\texorpdfstring{Scalar/dot product +\(\boldsymbol{a} \cdot \boldsymbol{b}\)}{Scalar/dot product \textbackslash{}boldsymbol\{a\} \textbackslash{}cdot \textbackslash{}boldsymbol\{b\}}}\label{scalardot-product-boldsymbola-cdot-boldsymbolb} + +\[\boldsymbol{a} \cdot \boldsymbol{b} = a_1 b_1 + a_2 b_2\] + +\textbf{on CAS:} \texttt{dotP({[}a\ b\ c{]},\ {[}d\ e\ f{]})} + +\subsection{Scalar product properties}\label{scalar-product-properties} + +\begin{enumerate} +\def\labelenumi{\arabic{enumi}.} +\tightlist +\item + \(k(\boldsymbol{a\cdot b})=(k\boldsymbol{a})\cdot \boldsymbol{b}=\boldsymbol{a}\cdot (k{b})\) +\item + \(\boldsymbol{a \cdot 0}=0\) +\item + \(\boldsymbol{a \cdot (b + c)}=\boldsymbol{a \cdot b + a \cdot c}\) +\item + \(\boldsymbol{i \cdot i} = \boldsymbol{j \cdot j} = \boldsymbol{k \cdot k}= 1\) +\item + If \(\boldsymbol{a} \cdot \boldsymbol{b} = 0\), \(\boldsymbol{a}\) and + \(\boldsymbol{b}\) are perpendicular +\item + \(\boldsymbol{a \cdot a} = |\boldsymbol{a}|^2 = a^2\) +\end{enumerate} + +For parallel vectors \(\boldsymbol{a}\) and \(\boldsymbol{b}\):\\ +\[\boldsymbol{a \cdot b}=\begin{cases} +|\boldsymbol{a}||\boldsymbol{b}| \hspace{2.8em} \text{if same direction}\\ +-|\boldsymbol{a}||\boldsymbol{b}| \hspace{2em} \text{if opposite directions} +\end{cases}\] + +\subsection{Geometric scalar products}\label{geometric-scalar-products} + +\[\boldsymbol{a} \cdot \boldsymbol{b} = |\boldsymbol{a}| |\boldsymbol{b}| \cos \theta\] + +where \(0 \le \theta \le \pi\) + +\subsection{Perpendicular vectors}\label{perpendicular-vectors} + +If \(\boldsymbol{a} \cdot \boldsymbol{b} = 0\), then +\(\boldsymbol{a} \perp \boldsymbol{b}\) (since \(\cos 90 = 0\)) + +\subsection{Finding angle between +vectors}\label{finding-angle-between-vectors} + +\textbf{positive direction} + +\[\cos \theta = {{\boldsymbol{a} \cdot \boldsymbol{b}} \over {|\boldsymbol{a}| |\boldsymbol{b}|}} = {{a_1 b_1 + a_2 b_2} \over {|\boldsymbol{a}| |\boldsymbol{b}|}}\] + +\textbf{on CAS:} \texttt{angle({[}a\ b\ c{]},\ {[}a\ b\ c{]})} (Action +-\textgreater{} Vector -\textgreater{} Angle) + +\subsection{Angle between vector and +axis}\label{angle-between-vector-and-axis} + +Direction of a vector can be given by the angles it makes with +\(\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}\) directions. + +For +\(\boldsymbol{a} = a_1 \boldsymbol{i} + a_2 \boldsymbol{j} + a_3 \boldsymbol{k}\) +which makes angles \(\alpha, \beta, \gamma\) with positive direction of +\(x, y, z\) axes: +\[\cos \alpha = {a_1 \over |\boldsymbol{a}|}, \quad \cos \beta = {a_2 \over |\boldsymbol{a}|}, \quad \cos \gamma = {a_3 \over |\boldsymbol{a}|}\] + +\textbf{on CAS:} \texttt{angle({[}a\ b\ c{]},\ {[}1\ 0\ 0{]})} for angle +between \(a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}\) and +\(x\)-axis + +\subsection{Vector projections}\label{vector-projections} + +Vector resolute of \(\boldsymbol{a}\) in direction of \(\boldsymbol{b}\) +is magnitude of \(\boldsymbol{a}\) in direction of \(\boldsymbol{b}\): + +\[\boldsymbol{u}={{\boldsymbol{a}\cdot\boldsymbol{b}}\over |\boldsymbol{b}|^2}\boldsymbol{b}=\left({\boldsymbol{a}\cdot{\boldsymbol{b} \over |\boldsymbol{b}|}}\right)\left({\boldsymbol{b} \over |\boldsymbol{b}|}\right)=(\boldsymbol{a} \cdot \hat{\boldsymbol{b}})\hat{\boldsymbol{b}}\] + +\subsection{\texorpdfstring{Scalar resolute of \(\boldsymbol{a}\) on +\(\boldsymbol{b}\)}{Scalar resolute of \textbackslash{}boldsymbol\{a\} on \textbackslash{}boldsymbol\{b\}}}\label{scalar-resolute-of-boldsymbola-on-boldsymbolb} + +\[r_s = |\boldsymbol{u}| = \boldsymbol{a} \cdot \hat{\boldsymbol{b}}\] + +\subsection{\texorpdfstring{Vector resolute of +\(\boldsymbol{a} \perp \boldsymbol{b}\)}{Vector resolute of \textbackslash{}boldsymbol\{a\} \textbackslash{}perp \textbackslash{}boldsymbol\{b\}}}\label{vector-resolute-of-boldsymbola-perp-boldsymbolb} + +\[\boldsymbol{w} = \boldsymbol{a} - \boldsymbol{u} \> \text{ where } \boldsymbol{u} \text{ is projection } \boldsymbol{a} \text{ on } \boldsymbol{b}\] + +\subsection{Vector proofs}\label{vector-proofs} + +\subsubsection{Concurrent lines}\label{concurrent-lines} + +\(\ge\) 3 lines intersect at a single point + +\subsubsection{Collinear points}\label{collinear-points} + +\(\ge\) 3 points lie on the same line\\ +\(\implies \vec{OC} = \lambda \vec{OA} + \mu \vec{OB}\) where +\(\lambda + \mu = 1\). If \(C\) is between \(\vec{AB}\), then +\(0 < \mu < 1\)\\ +Points \(A, B, C\) are collinear iff +\(\vec{AC}=m\vec{AB} \text{ where } m \ne 0\) + +\subsubsection{Useful vector properties}\label{useful-vector-properties} + +\begin{itemize} +\tightlist +\item + If \(\boldsymbol{a}\) and \(\boldsymbol{b}\) are parallel, then + \(\boldsymbol{b}=k\boldsymbol{a}\) for some + \(k \in \mathbb{R} \setminus \{0\}\) +\item + If \(\boldsymbol{a}\) and \(\boldsymbol{b}\) are parallel with at + least one point in common, then they lie on the same straight line +\item + Two vectors \(\boldsymbol{a}\) and \(\boldsymbol{b}\) are + perpendicular if \(\boldsymbol{a} \cdot \boldsymbol{b}=0\) +\item + \(\boldsymbol{a} \cdot \boldsymbol{a} = |\boldsymbol{a}|^2\) +\end{itemize} + +\subsection{Linear dependence}\label{linear-dependence} + +Vectors \(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\) are linearly +dependent if they are non-parallel and: + +\[k\boldsymbol{a}+l\boldsymbol{b}+m\boldsymbol{c} = 0\] +\[\therefore \boldsymbol{c} = m\boldsymbol{a} + n\boldsymbol{b} \quad \text{(simultaneous)}\] + +\(\boldsymbol{a}, \boldsymbol{b},\) and \(\boldsymbol{c}\) are linearly +independent if no vector in the set is expressible as a linear +combination of other vectors in set, or if they are parallel. + +Vector \(\boldsymbol{w}\) is a linear combination of vectors +\(\boldsymbol{v_1}, \boldsymbol{v_2}, \boldsymbol{v_3}\) + +\subsection{Three-dimensional vectors}\label{three-dimensional-vectors} + +Right-hand rule for axes: \(z\) is up or out of page. + +i\includegraphics{graphics/vectors-3d.png} + +\subsection{Parametric vectors}\label{parametric-vectors} + +Parametric equation of line through point \((x_0, y_0, z_0)\) and +parallel to \(a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}\) is: + +\begin{equation}\begin{cases}x = x_o + a \cdot t \\ y = y_0 + b \cdot t \\ z = z_0 + c \cdot t\end{cases}\end{equation} + +\section{Circular functions}\label{circular-functions} + +Period of \(a\sin(bx)\) is \({2\pi} \over b\) + +Period of \(a\tan(nx)\) is \(\pi \over n\)\\ +Asymptotes at \(x={2k+1)\pi \over 2n} \> \vert \> k \in \mathbb{Z}\) + +\subsection{Reciprocal functions}\label{reciprocal-functions} + +\subsubsection{Cosecant}\label{cosecant} + +\begin{figure} +\centering +\includegraphics{graphics/csc.png} +\caption{} +\end{figure} + +\[\operatorname{cosec} \theta = {1 \over \sin \theta} \> \vert \> \sin \theta \ne 0\] + +\begin{itemize} +\tightlist +\item + \textbf{Domain} \(= \mathbb{R} \setminus {n\pi : n \in \mathbb{Z}}\) +\item + \textbf{Range} \(= \mathbb{R} \setminus (-1, 1)\) +\item + \textbf{Turning points} at + \(\theta = {{(2n + 1)\pi} \over 2} \> \vert \> n \in \mathbb{Z}\) +\item + \textbf{Asymptotes} at \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\) +\end{itemize} + +\subsubsection{Secant}\label{secant} + +\begin{figure} +\centering +\includegraphics{graphics/sec.png} +\caption{} +\end{figure} + +\[\operatorname{sec} \theta = {1 \over \cos \theta} \> \vert \> \cos \theta \ne 0\] + +\begin{itemize} +\tightlist +\item + \textbf{Domain} + \(= \mathbb{R} \setminus \{{{(2n + 1) \pi} \over 2 } : n \in \mathbb{Z}\}\) +\item + \textbf{Range} \(= \mathbb{R} \setminus (-1, 1)\) +\item + \textbf{Turning points} at + \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\) +\item + \textbf{Asymptotes} at + \(\theta = {{(2n + 1) \pi} \over 2} \> \vert \> n \in \mathbb{Z}\) +\end{itemize} + +\subsubsection{Cotangent}\label{cotangent} + +\begin{figure} +\centering +\includegraphics{graphics/cot.png} +\caption{} +\end{figure} + +\[\operatorname{cot} \theta = {{\cos \theta} \over {\sin \theta}} \> \vert \> \sin \theta \ne 0\] + +\begin{itemize} +\tightlist +\item + \textbf{Domain} \(= \mathbb{R} \setminus \{n \pi: n \in \mathbb{Z}\}\) +\item + \textbf{Range} \(= \mathbb{R}\) +\item + \textbf{Asymptotes} at \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\) +\end{itemize} + +\subsubsection{Symmetry properties}\label{symmetry-properties} + +\begin{equation}\begin{split} + \operatorname{sec} (\pi \pm x) & = -\operatorname{sec} x \\ + \operatorname{sec} (-x) & = \operatorname{sec} x \\ + \operatorname{cosec} (\pi \pm x) & = \mp \operatorname{cosec} x \\ + \operatorname{cosec} (-x) & = - \operatorname{cosec} x \\ + \operatorname{cot} (\pi \pm x) & = \pm \operatorname{cot} x \\ + \operatorname{cot} (-x) & = - \operatorname{cot} x +\end{split}\end{equation} + +\subsubsection{Complementary properties}\label{complementary-properties} + +\begin{equation}\begin{split} + \operatorname{sec} \left({\pi \over 2} - x\right) & = \operatorname{cosec} x \\ + \operatorname{cosec} \left({\pi \over 2} - x\right) & = \operatorname{sec} x \\ + \operatorname{cot} \left({\pi \over 2} - x\right) & = \tan x \\ + \tan \left({\pi \over 2} - x\right) & = \operatorname{cot} x +\end{split}\end{equation} + +\subsubsection{Pythagorean identities}\label{pythagorean-identities} + +\begin{equation}\begin{split} + 1 + \operatorname{cot}^2 x & = \operatorname{cosec}^2 x, \quad \text{where } \sin x \ne 0 \\ + 1 + \tan^2 x & = \operatorname{sec}^2 x, \quad \text{where } \cos x \ne 0 +\end{split}\end{equation} + +\subsection{Compound angle formulas}\label{compound-angle-formulas} + +\[\cos(x \pm y) = \cos x + \cos y \mp \sin x \sin y\] +\[\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y\] +\[\tan(x \pm y) = {{\tan x \pm \tan y} \over {1 \mp \tan x \tan y}}\] + +\subsection{Double angle formulas}\label{double-angle-formulas} + +\begin{equation}\begin{split} + \cos 2x &= \cos^2 x - \sin^2 x \\ + & = 1 - 2\sin^2 x \\ + & = 2 \cos^2 x -1 +\end{split}\end{equation} + +\[\sin 2x = 2 \sin x \cos x\] + +\[\tan 2x = {{2 \tan x} \over {1 - \tan^2 x}}\] + +\subsection{Inverse circular +functions}\label{inverse-circular-functions} + +Inverse functions: \(f(f^{-1}(x)) = x, \quad f(f^{-1}(x)) = x\)\\ +Must be 1:1 to find inverse (reflection in \(y=x\) + +Domain is restricted to make functions 1:1. + +\subsubsection{\texorpdfstring{\(\arcsin\)}{\textbackslash{}arcsin}}\label{arcsin} + +\[\sin^{-1}: [-1, 1] \rightarrow \mathbb{R}, \quad \sin^{-1} x = y, \quad \text{where } \sin y = x \text{ and } y \in [{-\pi \over 2}, {\pi \over 2}]\] + +\subsubsection{\texorpdfstring{\(\arcos\)}{\textbackslash{}arcos}}\label{arcos} + +\[\cos^{-1} \rightarrow \mathbb{R}, \quad \cos^{-1} x = y, \quad \text{where } \cos y = x \text{ and } y \in [0, \pi]\] + +\subsubsection{\texorpdfstring{\(\arctan\)}{\textbackslash{}arctan}}\label{arctan} + +\[\tan^{-1}: \mathbb{R} \rightarrow \mathbb{R}, \quad \tan^{-1} x = y, \quad \text{where } \tan y = x \text{ and } y \in \left(-{\pi \over 2}, {\pi \over 2}\right)\] +\# Differential calculus + +\subsection{Limits}\label{limits} + +\[\lim_{x \rightarrow a}f(x)\] + +\(L^-\) - limit from below + +\(L^+\) - limit from above + +\(\lim_{x \to a} f(x)\) - limit of a point + +\begin{itemize} +\tightlist +\item + Limit exists if \(L^-=L^+\) +\item + If limit exists, point does not. +\end{itemize} + +Limits can be solved using normal techniques (if div 0, factorise) + +\subsection{Limit theorems}\label{limit-theorems} + +\begin{enumerate} +\def\labelenumi{\arabic{enumi}.} +\tightlist +\item + For constant function \(f(x)=k\), \(\lim_{x \rightarrow a} f(x) = k\) +\item + \(\lim_{x \rightarrow a} (f(x) \pm g(x)) = F \pm G\) +\item + \(\lim_{x \rightarrow a} (f(x) \times g(x)) = F \times G\) +\item + \({\lim_{x \rightarrow a} {f(x) \over g(x)}} = {F \over G}, G \ne 0\) +\end{enumerate} + +Corollary: \(\lim_{x \rightarrow a} c \times f(x)=cF\) where \(c=\) +constant + +\subsection{\texorpdfstring{Solving limits for +\(x\rightarrow\infty\)}{Solving limits for x\textbackslash{}rightarrow\textbackslash{}infty}}\label{solving-limits-for-xrightarrowinfty} + +Factorise so that all values of \(x\) are in denominators. + +e.g. + +\[\lim_{x \rightarrow \infty}{{2x+3} \over {x-2}}={{2+{3 \over x}} \over {1-{2 \over x}}}={2 \over 1} = 2\] + +\subsection{Continuous functions}\label{continuous-functions} + +A function is continuous if \(L^-=L^+=f(x)\) for all values of \(x\). + +\subsection{Gradients of secants and +tangents}\label{gradients-of-secants-and-tangents} + +Secant (chord) - line joining two points on curve + +Tangent - line that intersects curve at one point + +given \(P(x,y) \quad Q(x+\delta x, y + \delta y)\): gradient of chord +joining \(P\) and \(Q\) is +\({m_{PQ}}={\operatorname{rise} \over \operatorname{run}} = {\delta y \over \delta x}\) + +As \(Q \rightarrow P, \delta x \rightarrow 0\). Chord becomes tangent +(two infinitesimal points are equal). + +Can also be used with functions, where \(h=\delta x\). + +\subsection{First principles +derivative}\label{first-principles-derivative} + +\[f^\prime(x) = \lim_{\delta x \rightarrow 0}{\delta y \over \delta x}={dy \over dx}\] + +\[m_{\tan}=\lim_{h \rightarrow 0}f^\prime(x)\] + +\[m_{\vec{PQ}}=f^\prime(x)\] + +first principles derivative: +\[{m_{\text{tangent at }P} =\lim_{h \rightarrow 0}}{{f(x+h)-f(x)}\over h}\] + +\subsection{Gradient at a point}\label{gradient-at-a-point} + +Given point \(P(a, b)\) and function \(f(x)\), the gradient is +\(f^\prime(a)\) + +\subsection{\texorpdfstring{Derivatives of +\(x^n\)}{Derivatives of x\^{}n}}\label{derivatives-of-xn} + +\[{d(ax^n) \over dx}=anx^{n-1}\] + +If \(x=\) constant, derivative is \(0\) + +If \(y=ax^n\), derivative is \(a\times nx^{n-1}\) + +If +\(f(x)={1 \over x}=x^{-1}, \quad f^\prime(x)=-1x^{-2}={-1 \over x^2}\) + +If +\(f(x)=^5\sqrt{x}=x^{1 \over 5}, \quad f^\prime(x)={1 \over 5}x^{-4/5}={1 \over 5 \times ^5\sqrt{x^4}}\) + +If \(f(x)=(x-b)^2, \quad f^\prime(x)=2(x-b)\) + +\[f^\prime(x)=\lim_{h \rightarrow 0}{{f(x+h)-f(x)} \over h}\] + +\subsection{\texorpdfstring{Derivatives of +\(u \pm v\)}{Derivatives of u \textbackslash{}pm v}}\label{derivatives-of-u-pm-v} + +\[{dy \over dx}={du \over dx} \pm {dv \over dx}\] where \(u\) and \(v\) +are functions of \(x\) + +\subsection{Euler's number as a limit}\label{eulers-number-as-a-limit} + +\[\lim_{h \rightarrow 0} {{e^h-1} \over h}=1\] + +\subsection{\texorpdfstring{Chain rule for +\((f\circ g)\)}{Chain rule for (f\textbackslash{}circ g)}}\label{chain-rule-for-fcirc-g} + +If \(f(x) = h(g(x)) = (h \circ g)(x)\): + +\[f^\prime(x) = h^\prime(g(x)) \cdot g^\prime(x)\] + +If \(y=h(u)\) and \(u=g(x)\): + +\[{dy \over dx} = {dy \over du} \cdot {du \over dx}\] +\[{d((ax+b)^n) \over dx} = {d(ax+b) \over dx} \cdot n \cdot (ax+b)^{n-1}\] + +Used with only one expression. + +e.g. \(y=(x^2+5)^7\) - Cannot reasonably expand\\ +Let \(u-x^2+5\) (inner expression)\\ +\({du \over dx} = 2x\)\\ +\(y=u^7\)\\ +\({dy \over du} = 7u^6\) + +\subsection{\texorpdfstring{Product rule for +\(y=uv\)}{Product rule for y=uv}}\label{product-rule-for-yuv} + +\[{dy \over dx} = u{dv \over dx} + v{du \over dx}\] + +\subsection{\texorpdfstring{Quotient rule for +\(y={u \over v}\)}{Quotient rule for y=\{u \textbackslash{}over v\}}}\label{quotient-rule-for-yu-over-v} + +\[{dy \over dx} = {{v{du \over dx} - u{dv \over dx}} \over v^2}\] + +\[f^\prime(x)={{v(x)u^\prime(x)-u(x)v^\prime(x)} \over [v(x)]^2}\] + +\subsection{Logarithms}\label{logarithms} + +\[\log_b (x) = n \quad \operatorname{where} \hspace{0.5em} b^n=x\] + +Wikipedia: + +\begin{quote} +the logarithm of a given number \(x\) is the exponent to which another +fixed number, the base \(b\), must be raised, to produce that number +\(x\) +\end{quote} + +\subsubsection{Logarithmic identities}\label{logarithmic-identities} + +\(\log_b (xy)=\log_b x + \log_b y\)\\ +\(\log_b x^n = n \log_b x\)\\ +\(\log_b y^{x^n} = x^n \log_b y\) + +\subsubsection{Index identities}\label{index-identities} + +\(b^{m+n}=b^m \cdot b^n\)\\ +\((b^m)^n=b^{m \cdot n}\)\\ +\((b \cdot c)^n = b^n \cdot c^n\)\\ +\({a^m \div a^n} = {a^{m-n}}\) + +\subsubsection{\texorpdfstring{\(e\) as a +logarithm}{e as a logarithm}}\label{e-as-a-logarithm} + +\[\operatorname{if} y=e^x, \quad \operatorname{then} x=\log_e y\] +\[\ln x = \log_e x\] + +\subsubsection{Differentiating +logarithms}\label{differentiating-logarithms} + +\[{d(\log_e x)\over dx} = x^{-1} = {1 \over x}\] + +\subsection{Derivative rules}\label{derivative-rules} + +\begin{longtable}[]{@{}ll@{}} +\toprule +\(f(x)\) & \(f^\prime(x)\)\tabularnewline +\midrule +\endhead +\(\sin x\) & \(\cos x\)\tabularnewline +\(\sin ax\) & \(a\cos ax\)\tabularnewline +\(\cos x\) & \(-\sin x\)\tabularnewline +\(\cos ax\) & \(-a \sin ax\)\tabularnewline +\(\tan f(x)\) & \(f^2(x) \sec^2f(x)\)\tabularnewline +\(e^x\) & \(e^x\)\tabularnewline +\(e^{ax}\) & \(ae^{ax}\)\tabularnewline +\(ax^{nx}\) & \(an \cdot e^{nx}\)\tabularnewline +\(\log_e x\) & \(1 \over x\)\tabularnewline +\(\log_e {ax}\) & \(1 \over x\)\tabularnewline +\(\log_e f(x)\) & \(f^\prime (x) \over f(x)\)\tabularnewline +\(\sin(f(x))\) & \(f^\prime(x) \cdot \cos(f(x))\)\tabularnewline +\(\sin^{-1} x\) & \(1 \over {\sqrt{1-x^2}}\)\tabularnewline +\(\cos^{-1} x\) & \(-1 \over {sqrt{1-x^2}}\)\tabularnewline +\(\tan^{-1} x\) & \(1 \over {1 + x^2}\)\tabularnewline +\bottomrule +\end{longtable} + +\subsection{Reciprocal derivatives}\label{reciprocal-derivatives} + +\[{1 \over {dy \over dx}} = {dx \over dy}\] + +\subsection{\texorpdfstring{Differentiating +\(x=f(y)\)}{Differentiating x=f(y)}}\label{differentiating-xfy} + +Find \(dx \over dy\). Then +\({dx \over dy} = {1 \over {dy \over dx}} \implies {dy \over dx} = {1 \over {dx \over dy}}\). + +\[{dy \over dx} = {1 \over {dx \over dy}}\] + +\subsection{Second derivative}\label{second-derivative} + +\[f(x) \longrightarrow f^\prime (x) \longrightarrow f^{\prime\prime}(x)\] + +\[\therefore y \longrightarrow {dy \over dx} \longrightarrow {d({dy \over dx}) \over dx} \longrightarrow {d^2 y \over dx^2}\] + +Order of polynomial \(n\)th derivative decrements each time the +derivative is taken + +\subsubsection{Points of Inflection}\label{points-of-inflection} + +\emph{Stationary point} - point of zero gradient (i.e. +\(f^\prime(x)=0\))\\ +\emph{Point of inflection} - point of maximum \(|\)gradient\(|\) (i.e. +\(f^{\prime\prime} = 0\)) + +\begin{itemize} +\tightlist +\item + if \(f^\prime (a) = 0\) and \(f^{\prime\prime}(a) > 0\), then point + \((a, f(a))\) is a local min (curve is concave up) +\item + if \(f^\prime (a) = 0\) and \(f^{\prime\prime} (a) < 0\), then point + \((a, f(a))\) is local max (curve is concave down) +\item + if \(f^{\prime\prime}(a) = 0\), then point \((a, f(a))\) is a point of + inflection +\item + if also \(f^\prime(a)=0\), then it is a stationary point of inflection +\end{itemize} + +\begin{figure} +\centering +\includegraphics{graphics/second-derivatives.png} +\caption{} +\end{figure} + +\subsection{Implicit Differentiation}\label{implicit-differentiation} + +\textbf{On CAS:} Action \(\rightarrow\) Calculation \(\rightarrow\) +\texttt{impDiff(y\^{}2+ax=5,\ x,\ y)}. Returns \(y^\prime= \dots\). + +Used for differentiating circles etc. + +If \(p\) and \(q\) are expressions in \(x\) and \(y\) such that \(p=q\), +for all \(x\) nd \(y\), then: + +\[{dp \over dx} = {dq \over dx} \quad \text{and} \quad {dp \over dy} = {dq \over dy}\] + +\subsection{Integration}\label{integration} + +\[\int f(x) \cdot dx = F(x) + c \quad \text{where } F^\prime(x) = f(x)\] + +\[\int x^n \cdot dx = {x^{n+1} \over n+1} + c\] + +\begin{itemize} +\tightlist +\item + area enclosed by curves +\item + \(+c\) should be shown on each step without \(\int\) +\end{itemize} + +\subsubsection{Integral laws}\label{integral-laws} + +\(\int f(x) + g(x) dx = \int f(x) dx + \int g(x) dx\)\\ +\(\int k f(x) dx = k \int f(x) dx\) + +\begin{longtable}[]{@{}ll@{}} +\toprule +\begin{minipage}[b]{0.42\columnwidth}\raggedright\strut +\(f(x)\)\strut +\end{minipage} & \begin{minipage}[b]{0.38\columnwidth}\raggedright\strut +\(\int f(x) \cdot dx\)\strut +\end{minipage}\tabularnewline +\midrule +\endhead +\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut +\(k\) (constant)\strut +\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut +\(kx + c\)\strut +\end{minipage}\tabularnewline +\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut +\(x^n\)\strut +\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut +\({x^{n+1} \over {n+1}} + c\)\strut +\end{minipage}\tabularnewline +\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut +\(a x^{-n}\)\strut +\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut +\(a \cdot \log_e x + c\)\strut +\end{minipage}\tabularnewline +\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut +\({1 \over {ax+b}}\)\strut +\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut +\({1 \over a} \log_e (ax+b) + c\)\strut +\end{minipage}\tabularnewline +\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut +\((ax+b)^n\)\strut +\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut +\({1 \over {a(n+1)}}(ax+b)^{n-1} + c\)\strut +\end{minipage}\tabularnewline +\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut +\(e^{kx}\)\strut +\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut +\({1 \over k} e^{kx} + c\)\strut +\end{minipage}\tabularnewline +\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut +\(e^k\)\strut +\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut +\(e^kx + c\)\strut +\end{minipage}\tabularnewline +\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut +\(\sin kx\)\strut +\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut +\(-{1 \over k} \cos (kx) + c\)\strut +\end{minipage}\tabularnewline +\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut +\(\cos kx\)\strut +\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut +\({1 \over k} \sin (kx) + c\)\strut +\end{minipage}\tabularnewline +\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut +\(\sec^2 kx\)\strut +\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut +\({1 \over k} \tan(kx) + c\)\strut +\end{minipage}\tabularnewline +\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut +\(1 \over \sqrt{a^2-x^2}\)\strut +\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut +\(\sin^{-1} {x \over a} + c \>\vert\> a>0\)\strut +\end{minipage}\tabularnewline +\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut +\(-1 \over \sqrt{a^2-x^2}\)\strut +\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut +\(\cos^{-1} {x \over a} + c \>\vert\> a>0\)\strut +\end{minipage}\tabularnewline +\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut +\(a \over {a^2-x^2}\)\strut +\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut +\(\tan^{-1} {x \over a} + c\)\strut +\end{minipage}\tabularnewline +\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut +\({f^\prime (x)} \over {f(x)}\)\strut +\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut +\(\log_e f(x) + c\)\strut +\end{minipage}\tabularnewline +\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut +\(g^\prime(x)\cdot f^\prime(g(x)\)\strut +\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut +\(f(g(x))\) (chain rule)\strut +\end{minipage}\tabularnewline +\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut +\(f(x) \cdot g(x)\)\strut +\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut +\(\int [f^\prime(x) \cdot g(x)] dx + \int [g^\prime(x) f(x)] dx\)\strut +\end{minipage}\tabularnewline +\bottomrule +\end{longtable} + +Note \(\sin^{-1} {x \over a} + \cos^{-1} {x \over a}\) is constant for +all \(x \in (-a, a)\). + +\subsubsection{Definite integrals}\label{definite-integrals} + +\[\int_a^b f(x) \cdot dx = [F(x)]_a^b=F(b)-F(a)\] + +\begin{itemize} +\tightlist +\item + Signed area enclosed by: + \(\> y=f(x), \quad y=0, \quad x=a, \quad x=b\). +\item + \emph{Integrand} is \(f\). +\item + \(F(x)\) may be any integral, i.e. \(c\) is inconsequential +\end{itemize} + +\paragraph{Properties}\label{properties-2} + +\[\int^b_a f(x) \> dx = \int^c_a f(x) \> dx + \int^b_c f(x) \> dx\] + +\[\int^a_a f(x) \> dx = 0\] + +\[\int^b_a k \cdot f(x) \> dx = k \int^b_a f(x) \> dx\] + +\[\int^b_a f(x) \pm g(x) \> dx = \int^b_a f(x) \> dx \pm \int^b_a g(x) \> dx\] + +\[\int^b_a f(x) \> dx = - \int^a_b f(x) \> dx\] + +\subsubsection{Integration by +substitution}\label{integration-by-substitution} + +\[\int f(u) {du \over dx} \cdot dx = \int f(u) \cdot du\] + +Note \(f(u)\) must be one-to-one \(\implies\) one \(x\) value for each +\(y\) value + +e.g.~for \(y=\int(2x+1)\sqrt{x+4} \cdot dx\):\\ +let \(u=x+4\)\\ +\(\implies {du \over dx} = 1\)\\ +\(\implies x = u - 4\)\\ +then \(y=\int (2(u-4)+1)u^{1 \over 2} \cdot du\)\\ +Solve as a normal integral + +\paragraph{Definite integrals by +substitution}\label{definite-integrals-by-substitution} + +For \(\int^b_a f(x) {du \over dx} \cdot dx\), evaluate new \(a\) and +\(b\) for \(f(u) \cdot du\). + +\subsubsection{Trigonometric +integration}\label{trigonometric-integration} + +\[\sin^m x \cos^n x \cdot dx\] + +\textbf{\(m\) is odd:}\\ +\(m=2k+1\) where \(k \in \mathbb{Z}\)\\ +\(\implies \sin^{2k+1} x = (\sin^2 z)^k \sin x = (1 - \cos^2 x)^k \sin x\)\\ +Substitute \(u=\cos x\) + +\textbf{\(n\) is odd:}\\ +\(n=2k+1\) where \(k \in \mathbb{Z}\)\\ +\(\implies \cos^{2k+1} x = (\cos^2 x)^k \cos x = (1-\sin^2 x)^k \cos x\)\\ +Subbstitute \(u=\sin x\) + +\textbf{\(m\) and \(n\) are even:}\\ +Use identities: + +\begin{itemize} +\tightlist +\item + \(\sin^2x={1 \over 2}(1-\cos 2x)\) +\item + \(\cos^2x={1 \over 2}(1+\cos 2x)\) +\item + \(\sin 2x = 2 \sin x \cos x\) +\end{itemize} + +\subsection{Partial fractions}\label{partial-fractions} + +On CAS: Action \(\rightarrow\) Transformation \(\rightarrow\) +\texttt{expand/combine}\\ +or Interactive \(\rightarrow\) Transformation \(\rightarrow\) +\texttt{expand} \(\rightarrow\) Partial + +\subsection{Graphing integrals on CAS}\label{graphing-integrals-on-cas} + +In main: Interactive \(\rightarrow\) Calculation \(\rightarrow\) +\(\int\) (\(\rightarrow\) Definite)\\ +Restrictions: \texttt{Define\ f(x)=...} \(\rightarrow\) +\texttt{f(x)\textbar{}x\textgreater{}1} (e.g.) + +\subsection{Applications of +antidifferentiation}\label{applications-of-antidifferentiation} + +\begin{itemize} +\tightlist +\item + \(x\)-intercepts of \(y=f(x)\) identify \(x\)-coordinates of + stationary points on \(y=F(x)\) +\item + nature of stationary points is determined by sign of \(y=f(x)\) on + either side of its \(x\)-intercepts +\item + if \(f(x)\) is a polynomial of degree \(n\), then \(F(x)\) has degree + \(n+1\) +\end{itemize} + +To find stationary points of a function, substitute \(x\) value of given +point into derivative. Solve for \({dy \over dx}=0\). Integrate to find +original function. + +\subsection{Solids of revolution}\label{solids-of-revolution} + +Approximate as sum of infinitesimally-thick cylinders + +\subsubsection{\texorpdfstring{Rotation about +\(x\)-axis}{Rotation about x-axis}}\label{rotation-about-x-axis} + +\begin{align*} + V &= \int^{x=b}_{x-a} \pi y^2 \> dx \\ + &= \pi \int^b_a (f(x))^2 \> dx +\end{align*} + +\subsubsection{\texorpdfstring{Rotation about +\(y\)-axis}{Rotation about y-axis}}\label{rotation-about-y-axis} + +\begin{align*} + V &= \int^{y=b}_{y=a} \pi x^2 \> dy \\ + &= \pi \int^b_a (f(y))^2 \> dy +\end{align*} + +\subsubsection{\texorpdfstring{Regions not bound by +\(y=0\)}{Regions not bound by y=0}}\label{regions-not-bound-by-y0} + +\[V = \pi \int^b_a f(x)^2 - g(x)^2 \> dx\]\\ +where \(f(x) > g(x)\) + +\subsection{Length of a curve}\label{length-of-a-curve} + +\[L = \int^b_a \sqrt{1 + ({dy \over dx})^2} \> dx \quad \text{(Cartesian)}\] + +\[L = \int^b_a \sqrt{{dx \over dt} + ({dy \over dt})^2} \> dt \quad \text{(parametric)}\] + +Evaluate on CAS. Or use Interactive \(\rightarrow\) Calculation +\(\rightarrow\) Line \(\rightarrow\) \texttt{arcLen}. + +\subsection{Rates}\label{rates} + +\subsubsection{Related rates}\label{related-rates} + +\[{da \over db} \quad \text{(change in } a \text{ with respect to } b)\] + +\subsubsection{Gradient at a point on parametric +curve}\label{gradient-at-a-point-on-parametric-curve} + +\[{dy \over dx} = {{dy \over dt} \div {dx \over dt}} \> \vert \> {dx \over dt} \ne 0\] + +\[{d^2 \over dx^2} = {d(y^\prime) \over dx} = {{dy^\prime \over dt} \div {dx \over dt}} \> \vert \> y^\prime = {dy \over dx}\] + +\subsection{Rational functions}\label{rational-functions} + +\[f(x) = {P(x) \over Q(x)} \quad \text{where } P, Q \text{ are polynomial functions}\] + +\subsubsection{Addition of ordinates}\label{addition-of-ordinates} + +\begin{itemize} +\tightlist +\item + when two graphs have the same ordinate, \(y\)-coordinate is double the + ordinate +\item + when two graphs have opposite ordinates, \(y\)-coordinate is 0 i.e. + (\(x\)-intercept) +\item + when one of the ordinates is 0, the resulting ordinate is equal to the + other ordinate +\end{itemize} + +\subsection{Fundamental theorem of +calculus}\label{fundamental-theorem-of-calculus} + +If \(f\) is continuous on \([a, b]\), then + +\[\int^b_a f(x) \> dx = F(b) - F(a)\] + +where \(F\) is any antiderivative of \(f\) + +\subsection{Differential equations}\label{differential-equations} + +One or more derivatives + +\textbf{Order} - highest power inside derivative\\ +\textbf{Degree} - highest power of highest derivative\\ +e.g. \({\left(dy^2 \over d^2 x\right)}^3\): order 2, degree 3 + +\subsubsection{Verifying solutions}\label{verifying-solutions} + +Start with \(y=\dots\), and differentiate. Substitute into original +equation. + +\subsubsection{Function of the dependent +variable}\label{function-of-the-dependent-variable} + +If \({dy \over dx}=g(y)\), then +\({dx \over dy} = 1 \div {dy \over dx} = {1 \over g(y)}\). Integrate +both sides to solve equation. Only add \(c\) on one side. Express +\(e^c\) as \(A\). + +\subsubsection{Mixing problems}\label{mixing-problems} + +\[\left({dm \over dt}\right)_\Sigma = \left({dm \over dt}\right)_{\text{in}} - \left({dm \over dt}\right)_{\text{out}}\] + +\subsubsection{Separation of variables}\label{separation-of-variables} + +If \({dy \over dx}=f(x)g(y)\), then: + +\[\int f(x) \> dx = \int {1 \over g(y)} \> dy\] + +\subsubsection{Using definite integrals to solve +DEs}\label{using-definite-integrals-to-solve-des} + +Used for situations where solutions to \({dy \over dx} = f(x)\) is not +required. + +In some cases, it may not be possible to obtain an exact solution. + +Approximate solutions can be found by numerically evaluating a definite +integral. + +\subsubsection{Using Euler's method to solve a differential +equation}\label{using-eulers-method-to-solve-a-differential-equation} + +\[{{f(x+h) - f(x)} \over h } \approx f^\prime (x) \quad \text{for small } h\] + +\[\implies f(x+h) \approx f(x) + hf^\prime(x)\] + +\end{document} -- 2.47.1