From 97cc94dd9d1067c24a3f6fbac83cfe81bca340cb Mon Sep 17 00:00:00 2001 From: Andrew Lorimer Date: Mon, 2 Sep 2019 11:11:33 +1000 Subject: [PATCH] [spec] minor formatting improvements --- spec/dynamics.tex | 8 ++++++-- 1 file changed, 6 insertions(+), 2 deletions(-) diff --git a/spec/dynamics.tex b/spec/dynamics.tex index b6a1af8..7856ca9 100644 --- a/spec/dynamics.tex +++ b/spec/dynamics.tex @@ -22,13 +22,17 @@ To find angle of an \(a\boldsymbol{i} + b\boldsymbol{j}\) vector, use \(\theta = The resolved part of a force \(P\) at angle \(\theta\) is has magnitude \(P \cos \theta\) -To convert force \(||\vec{OA}\) to angle-magnitude form, find component \(\perp\vec{OA}\) then \(|\boldsymbol{r}|=\sqrt{\left(||\vec{OA}\right)^2 + \left(\perp\vec{OA}\right)^2},\quad \theta = \tan^{-1}\dfrac{\perp\vec{OA}}{||\vec{OA}}\) +To convert force \(||\vec{OA}\) to angle-magnitude form, find component \(\perp\vec{OA}\) then: +\begin{align*} + |\boldsymbol{r}| &= \sqrt{\left(||\vec{OA}\right)^2 + \left(\perp\vec{OA}\right)^2} \\ + \theta &= \tan^{-1}\dfrac{\perp\vec{OA}}{||\vec{OA}} +\end{align*} \subsection*{Newton's laws} \begin{tcolorbox} \begin{enumerate}[leftmargin=1mm] - \item Velocity is constant without a net external force + \item Velocity is constant without \(\Sigma F\) \item \(\frac{d}{dt} \rho \propto \Sigma F \implies \boldsymbol{F}=m\boldsymbol{a}\) \item Equal and opposite forces \end{enumerate} -- 2.47.1