From 9de4a0c785d0bec4dcaebd628467d5cbc67d4c85 Mon Sep 17 00:00:00 2001 From: Andrew Lorimer Date: Wed, 27 Feb 2019 17:23:42 +1100 Subject: [PATCH 1/1] sketching complex graphs --- spec/complex.md | 8 +++++++- 1 file changed, 7 insertions(+), 1 deletion(-) diff --git a/spec/complex.md b/spec/complex.md index 959c241..c5ad6be 100755 --- a/spec/complex.md +++ b/spec/complex.md @@ -158,4 +158,10 @@ $(r\operatorname{cis}\theta)^n=r^n\operatorname{cis}(n\theta)$ where $n \in \mat $n$th roots of $r \operatorname{cis} \theta$ are: $z={r^{1 \over n}} \cdot (\cos ({{\theta + 2k \pi} \over n}) + i \sin ({{\theta + 2 k \pi} \over n}))$ -Same modulus for all solutions. Arguments are separated by ${2 \pi} \over n$ \ No newline at end of file +Same modulus for all solutions. Arguments are separated by ${2 \pi} \over n$ + +## Sketching complex graphs + +- **Straight line:** $\operatorname{Re}(z) = c$ or $\operatorname{Im}(z) = c$ (perpendicular bisector) or $\operatorname{Arg}(z) = \theta$ +- **Circle:** $|z-z_1|^2 = c^2 |z_2+2|^2$ or $|z-(a + bi)| = c$ +- **Locus:** $\operatorname{Arg}(z) \lt \theta$ -- 2.43.2