From b1c3adb7c13d1e180a87f3e2f11418863a9d92db Mon Sep 17 00:00:00 2001 From: Andrew Lorimer Date: Mon, 15 Oct 2018 16:49:34 +1100 Subject: [PATCH] vectors - 20a&b --- spec/vectors.md | 64 +++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 64 insertions(+) diff --git a/spec/vectors.md b/spec/vectors.md index 4c73237..5c6df9c 100644 --- a/spec/vectors.md +++ b/spec/vectors.md @@ -1,11 +1,75 @@ +--- +header-includes: + - \documentclass{standalone} + - \usepackage{cleveref} + - \usepackage{harpoon} + - \usepackage{accent} \newcommand{\vect}[1]{\accentset{\rightharpoonup}{#1}} +--- + # Vectors - **vector:** a directed line segment - arrow indicates direction - length indicates magnitude - notated as $\vec{a}, \widetilde{A}, \overrightharp{a}$ +- column notation: $\begin{bmatrix} + x \\ y + \end{bmatrix}$ +- vectors with equal magnitude and direction are equivalent ![](graphics/vectors-intro.png) ## Vector addition + +$\vec{u} + \vec{v}$ can be represented by drawing each vector head to tail then joining the lines. +Addition is commutative (parallelogram) + +## Scalar multiplication + +For $k \in \mathbb{R}^+$, $k\vec{u}$ has the same direction as $\vec{u}$ but length is multiplied by a factor of $k$. + +When multiplied by $k < 0$, direction is reversed and length is multplied by $k$. + +## Vector subtraction + +To find $\vec{u} - \vec{v}$, add $\vec{-v}$ to $\vec{u}$ + +## Parallel vectors + +Parallel vectors have same direction or opposite direction. + +**Two non-zero vectors $\vec{u}$ and $\vec{v}$ are parallel if there is some $k \in \mathbb{R} \setminus \{0\}$ such at $\vec{u} = k \vec{v}$** + +## Position vectors + +Vectors may describe a position relative to $O$. + +For a point $A$, the position vector is $\vec{OA}$ + +## Linear combinations of non-parallel vectors + +If two non-zero vectors $\vec{a}$ and $\vec{b}$ are not parallel, then: + +$$m\vec{a} + n\vec{b} = p \vec{a} + q \vec{b}\quad\text{implies}\quad m = p, \> n = q$$ + +## Column vector notation + +A vector between points $A(x_1,y_1), \> B(x_2,y_2)$ can be represented as $\begin{bmatrix}x_2-x_1\\ y_2-y_1 \end{bmatrix}$ + +## Component notation + +A vector $\vec{u} = \begin{bmatrix}x\\ y \end{bmatrix}$ can be written as $\vec{u} = x\vec{i} + y\vec{j}$. +$\vec{u}$ is the sum of two components $x\vec{i}$ and $y\vec{j}$ +Magnitude of vector $\vec{u} = x\vec{i} + y\vec{j}$ is denoted by $|u|=\sqrt{x^2+y^2}$ + +Basic algebra applies: +$(x\vec{i} + y\vec{j}) + (m\vec{i} + n\vec{j}) = (x + m)\vec{i} + (y+n)\vec{j}$ +Two vectors equal if and only if their components are equal. + +## Unit vectors + +A vector of length 1. $\vec{i}$ and $\vec{j}$ are unit vectors. + +A unit vector in direction of $\vec{a}$ is denoted by $\hat{\vec{a}}$ + -- 2.49.0