From be2546199cdcce32656eca763c33808120e9bb39 Mon Sep 17 00:00:00 2001 From: Andrew Lorimer Date: Tue, 9 Apr 2019 14:24:03 +1000 Subject: [PATCH] [methods] start inverse functions --- methods/inverse-functions.md | 30 ++++++++++++++++++++++++++++++ 1 file changed, 30 insertions(+) create mode 100644 methods/inverse-functions.md diff --git a/methods/inverse-functions.md b/methods/inverse-functions.md new file mode 100644 index 0000000..6710e9c --- /dev/null +++ b/methods/inverse-functions.md @@ -0,0 +1,30 @@ +# Inverse functions + +## Functions + +- vertical line test +- each $x$ value produces only one $y$ value + +## One to one functions + +- $f(x)$ is *one to one* if $f(a) \ne f(b)$ if $a, b \in \operatorname{dom}(f)$ and $a \ne b$ +- i.e. unique $y$ for each $x$ ($\sin x$ is not 1:1, $x^3$ is) +- horizontal line test +- if not one to one, it is many to one + +## Inverse functions $f^{-1}$ + +- if $f(g(x)) = x$, then $g$ is the inverse of $f$ +- reflection across $y-x$ +- $\operatorname{ran} \> f = \operatorname{dom} \> f^{-1}, \quad \operatorname{dom} \> f = \operatorname{ran} \> f^{-1}$ +- inverse $\ne$ inverse *function* (i.e. inverse must pass vertical line test) +- - $\implies f^{-1}(x)$ exists $\iff f(x)$ is one to one +- $f^{-1}(x)=f(x)$ intersections may lie on line $y=x$ + +Requirements for showing working for $f^{-1}$: + +- start with *"let $y=f(x)$"* +- must state *"take inverse"* for line where $y$ and $x$ are swapped +- do all working in terms of $y=\dots$ +- for square root, state $\pm$ solutions then show restricted +- for inverse *function*, state in function notation -- 2.47.1