From f50ad8f777c8bbc09bceb535205cc4bf0609d204 Mon Sep 17 00:00:00 2001 From: Andrew Lorimer Date: Wed, 1 Aug 2018 12:56:00 +1000 Subject: [PATCH] wave interference, minor adjustments to locus notes --- physics/waves.md | 10 +++++++++- spec/graphing.md | 45 +++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 54 insertions(+), 1 deletion(-) diff --git a/physics/waves.md b/physics/waves.md index 8f94d82..f082d0f 100644 --- a/physics/waves.md +++ b/physics/waves.md @@ -108,7 +108,7 @@ $\Delta v$ depends on $\lambda$, so wavelengths become "split" ![](/mnt/andrew/graphics/refraction.png) Refractive index of a medium depends $\Delta v$ from $c$ -$n={c \over v}\quad$ (refractive index of a medium) +$n={c \over v}\quad$ (refractive index of poop medium) $n_1v_1=n_2v_2$ (equivalence between media) ### Snell's law @@ -124,3 +124,11 @@ $n_1 sin \theta_c = n_2 \sin 90^\circ$ $\therefore \theta_c = {n_2 \over n_1}$ ### Dispersion + +### Double Slit + +- parallel slits of thickness comparable to $\lambda$ +- multiple wave fronts combine to form constructive / destructive interference +- fringes - points of constructive interference +- bright spot in centre of slits +- solve path difference using pythag diff --git a/spec/graphing.md b/spec/graphing.md index 6cd013e..39b748d 100644 --- a/spec/graphing.md +++ b/spec/graphing.md @@ -94,6 +94,8 @@ $${(x-h)^2 \over a^2} - {(y-k)^2 \over b^2} = 1$$ Asymptotes at $y=\pm {b \over a}(x-h)+k$ To make hyperbola up/down rather than left/right, swap $x$ and $y$ +$y^2-x^2=1$ produces hyperbola shifted 90 $^\circ$ (top and bottom of asymptotes) + ## Parametric equations Parametric curve: @@ -101,3 +103,46 @@ Parametric curve: $$x=f(t), \quad y=g(t)$$ $t$ is the parameter + +## Polar coordinates + +$$x = r\cos\theta, \quad y = r\sin\theta$$ + +### Spirals +$$r={\theta \over n\pi}$$ +- solve intercepts for multiples of $\pi \over 2$ +- or draw table of values for $r$ and $\theta$ for each $n\pi \over 2$ + +### Circles +$$r=a$$ + +### Lines + +Horizontal: $r={n \over \sin \theta}$ +Vertical: $r={n \over \cos \theta}$ + +### Solving polar graphs + +solve in terms of $r$ + +e.g. $x=4$ +$r\cos\theta = 4$ +$r={4 \over \cos\theta}$ + +e.g. $y=x^2$ +$r\sin\theta = r^2 \cos^2 \theta$ +$\sin \theta = r \cos^2 \theta$ +$r = {\sin \theta \over \cos^2\theta} = \tan\theta \sec\theta$ + +e.g. $r=6\cos \theta\quad$ *(multiple by $r$)* +$r^2=6r\cos\theta$ +$x^2+y^2=6x$ +complete the square + +## Other graphs + +### Cardioids + +$$ + +### Roses -- 2.47.1