From f6326f1c24bebb2a4042ee0dc9d9ac489f56bc8e Mon Sep 17 00:00:00 2001 From: Andrew Lorimer Date: Tue, 28 May 2019 14:44:26 +1000 Subject: [PATCH] [spec] minor editors; add inverse sin&cos graphs --- spec/spec-collated.pdf | Bin 452801 -> 464037 bytes spec/spec-collated.tex | 1720 ++++++++++++++++++++-------------------- 2 files changed, 872 insertions(+), 848 deletions(-) diff --git a/spec/spec-collated.pdf b/spec/spec-collated.pdf index 6db681c27b7f3febdd4796c27e81035d35425d8e..6e6dc208768da9be5b522be916a5644b69d5ccf9 100644 GIT binary patch delta 91419 zcmV)gK%~FH(Ho_y9I!hN1UEP_AeXTT0VjX$J=t;`M{@7@ihcyF?cTZ%*&AVsD=}6f zc^9M{Yll`3!@&?7Eij-4fF$bcomtg&byxRXAVakMK+Kh0m6eruW)(?u-H_(R*%#lP z{qZZ)*v=}Zn(y8;QgzDm#!wEg&39ML_vin8VfguKvAt+H=jW99*H`Z@T4v5y%k_Wa zW_|x~(Nd-rKYzBl+OB@_Am7|=*SD+f#Sh=+jwtLJyO?`~GV0ybKn!)iG_zq@(A zxx0lG-}^=7lp{^cRL3;;Pyc1Jym`D@c{nQa#mkNYHTt#xgAg?y3{WFFfV{cuX}`F+ z!8hXk{_f`S;ewv8?>6^;@L#QAzV4zG0^Z&(uGgEz_WhW4ns$ooMhnrIdD?$5K+`G_ zi8taDLplmus2S^&(H_%RkGCGvyEi?eKRqtCtDahvW{+zP#K-ZtlK$b}Jd|!!XEir& zTYw6*5gn!dp0F{gVCM{P+6?Hk%5?aS2ZAnYGcl!h%%p)gbTQMPDl<{iNgB8JfJGHd zGF}xh3K`>6tm_{{k_tw=Gg^PdwXes67+`*z4MN9A`!VL}(+U{KfEd6ExeOF)nKo0H zQ2{(RAk~24Muy*aZ|lU;Oun=UOmwHk5R+m<3RKcwoQTb|gc8}IZaPUqLBvF(EbFwj z69T$?e2qJFUYAi2ai(@k4VVgGcn8BPl*5JCrp=&|&MT%fo#Bx>ug8D03DB;!*(x%c z0Uf}Bi>e@USy9$I5zmqGh#$y=`;eRMOK!aj>qP}^&}53UIq^Gq$5@RxLJjeq5e%?3 z9Xm}fC@f5%WN4h*_(}h~{&{^5_O!A}p*yJ~9sX8hI&BWo!4*yCjY6&&9M@J2jP9t6 z^ZmJ|Wh9eNfDap+gz0}VE^A~l1=~Lj9xY?6%8XQX@OyxLS;I#O`XT62XH*5!0p8~+ zoN8eRP~8gLQ_6cE>*eZpvEE#HzZxAyt!UE%Q&`@+o)2$VciYvi`yF^!5Y^;Af3te1 zQO|aOaatLzsdCCXmfZGUm_Zr~2$2-(^V%j*8<_$eR%={u}Awv5K4^}6n8 zr*w~_Q{nv$Ot9u-2`u7p3SNN$W-Yezb-&kdD;P2kfgYX7SqNAr%Bb_3`#|Khm?PuLXgv^P(nyjBrIWdCbBNR(f*C=&rq}>e z5oilKP5F@CV{%i`5n+ZjA9z2KL6{F>M$FviKzxwGkk5Ry$Lfh2o7nB2z?ck1QVXh{07UpM_@X2xvOkEJNdBox>1|5CgT|Qo#W` z*0g^DLW`L4rF!ttWbXIX;;2K!Q%1jq2a?&<;Myq>oStnuZ zi3H-#?mY(UgPqUk!kw4QG~8N<1xmRAaVmf0-6%v|a5ZP73rc~Twe5Eg%}zzRf~AW~ z-PA_oB--yxUC(ly#X=Nny2H2jFK>EFuvz7Wo}pVg9c5bBU_MMOmwG^$y)*wcr%LDk z`X6G5=h3}GiVx5$lBh_~T>)J!T{{Tgg*l{T;FmGEVGM1F(8mkpi}lYaaE=Bv>>YnS zU*EpFSufWQ^~jf`h-oi(ftF##&?g5=v9G5oC!ICX0U0uoKlq8?JZ_e#)%s=K*Mnq| zk|n1b^xrCa$ww@h&@Mf=e3>l-Tkx*MJd(-n{`BTcm-dCg02Gnld-LO3UqzJ<)R{=K zNuWMs$Ezt$=|3gVCXf(e#}MNu&MY*$k7eYKV( z*p8WM#k8>t=;Z-B7G%^(j8rRAAg^r>_+xEHJFR9zZeIl>#R$1WjYS;>D}{g9ZQ7y6 z1_-d`1jMkCT0Fp?_5(2s^95h8;t-;kBhMKTT{}i=n}QT#prYjDrT_R2bCoC3Emas3|7NnBn+nMjAkJ) zDEd~i^sRuc3|4ZHTd5l=rFefsewR#_)VKmqD6V!n-2uTP~d-x8Oe4Oz*%Rs z+1cxpLG97&BWh6ss-?)q%bMB)bO9d*c81Ir(IHm0hR@W{!86nl4>5}Aq`~5bII*ER zFH%|9IS6_LMVC9(-HWaj=Z~AK1xAqI%{?q`e3C1qq}>PC#-dT*U9Vnm7dyN1o`DV! z;@tNx#%@0UC60x!SF3;P?P^u^SU}&U6dRGne;MDoOPH9`_#XET@s>L7oob)cmpRj!i2`0Jh7 zaNm?uBK`4N=k`UMeX5A_JrS>kXr1Jl47ONXbua4t^NK6MVF}`h3fxoCp^%p`A@-D) z;Nxj9QbagIK|)9}7a8Vt=!0ZoV8RAl^RJ%l^)WF4NN9~upLS4QA5>SyjQo*4Y5$v= z+A5%)q^!1AgW!Lf7K_-k<{i=%S+b*W2{gqbr>1~}pfQ<@W?PYnRRXdLvJb9f|pJoxpc`-{OTxcL&8y+beP41x+Juz1^{Cv^78 zL4gK|A?iJCjPYHf47Sd-84TAH zXLifUs1`D0!ZJ#Hr0v?PAON1_GRTeK9~+Ly37#n*BqC8 z>F9!sOxu5c>%R!w9=AM@rOjy*_x;n@bMUjV;BGPha@>}42~nPeHyRU#MpySd00kId zFSwoFbbWX;ULod#`O01QYi{GBF9Tt!e*+1C0=^Otu5El1nIWSo1886yP9dyPM-tT% z??x&Mww>@u)Y3-xPyr}alM7l5pav4qW7{TlFDrk1qEKxz%mp(aBOaj}u$Ks|c&n+; z3slz>pftpPEYv(tPsx9XViIQEty7pFc#M989tJt=VJH+`pj;wvzR&#*wrLCFJ_CAa zDdF#nv+qGKSz{nj46i|fRk%MFiNYEN%bUFoua^a10XCTUZME~uj^ita2^CnNl$~K_ zf~|i%P=HB1QBbf18W6BYHDY>M67I4YEb$bo;%{Revo}?NoZ6~Ja(8g?I1Qx0CQ^yg zsvs1g6B?+83P364RcN3AR7qHmYnzbWP1t#bJY>ngH)orSJlpHWzj+Bh=DX`R|Ni`$ zo9@2xAD4^p(UT?3<~;&E{HQ>^Vq;c#&B1@d`z831!{6KC0B!!{GJ2lK+X12q+Gewi z07hdBCV5*d@rxm`Gp>TTQG&q)<0;LNOl5cnOo0BO?5vd&Ow~gLph=B41RMx#k8c|h z_6qNEN|R}D6~M8oeh0=#fHPRUDWSs`OE)|f9Q*$Q5SH*XaCdqChYwo6sAelFj#af)ZaiB5j&n^wJ*o5mcLnP<{`K^UPp`z!z=cBg`ugZ%g?0 z@#bNTEeMNHye~V0h8+ne>yfWzMQzHO9*~MOlShf3KmU7ZYV#me?{AUsQkdD3YDQNT5}P&EoKx&L7{B+%gE=^$|Pv?CNTb zgs2sa1n}jk!{Xp}TwfE(V0OA~d(Fh^*)6WigcBQwmelvVE26L)0CNeT6g3g7hk(b4 zYZWI>Uq+9mf38grRy>w+aEHXd?8e~o=xL}6y4*Z}b;XHV#glcC?(Uk_cC>#>1=a#X za(Ou2`sd~sR1Q8tw-E-HM^AGc-B`WqB@GA)Y#G+RLze5+Ke5)edRXGi+x6z!C%l&V zRTS6T#k;qC+yE|YS?dxI?)EYFH?bl#r3hRPttg*5L=8M;Dre6!%(8l{GeuOP*gu(Y zz(6ilk@h@sI)|Fxfm(4pLw|p1%J!W33D-f?%Hj&t4gH)%%@HYPEk%jAFZesvkCqIZ*kOQcv_Ec{d#`~xyM=g2=i;T zmY-UFb|;n&xND)-YEoVfL5{vJXTE)~1;@6dE;miVxb~@-7puG5)x&nZ{2Xs9lIN?R z9@kfRm(l&hVsimnv2PoHv%R~mN}x{`2Gsfz*XxQs1QW}^&!sNmDMWAJp1UT^`@QX= zdKxWpT0!-YM(KehhBAMnETl0X3H8CQ*0!t_RPM{9%No+0(#lj7ob$P+w3s=FK5Q<` zkku1M6|Nu$(s9~~6XK39wpeRrACb*YyFcnfAJv#RRbC*muU*{9n2+jFYd(-~q`||2=~PN}<(O=jO$LAWzHX6=8<(EYBo9|F z_t1K3Kdq;a(0Zk{Vqk8Fw(fWjVLgGqxpOBQmldfIpeK`y{cH=dA{A4VX9P@{Iq||D zm0zIqZ{c1o#&&gL;PE@WE`?!XO4xlmG0Mb0vzU#W>%oxN6^w1+pH2^ktJ3k)dN7o9 zo^;D3o(eGaCX9a`D8PL1E{wr^wc;eNwqbxFe@8-@bo?JM-h zv<$$*c$%6s1_-cvA4U%pVD^apT`gc;W2K~ZWBb*m=oGr!b2*cc<0)LHV zT@ZPFPf&k6ma4&(G03=cCB6izIz!nBB|br|J9vWrlQAkg05mEP0p1z@mjkoI@uWr| zQ7n-U+!D|^#vS{T_SiNZynhI{mEq}-RQhMwQsWewTa*XtVKOIHW=CDiH zEe9RmwAzm%GZ=7iMBZK1pQPd(k6&sXTzcxxNHTwEX7^ZFci5Q;^o_@REc1h;QV#Z* zlWa;H3S%uMXeXJN+~k64L*L5nUD~?T_BFB|6nAX;7fhVF>wLWEg^#qO3jCb-nuCS+ zPB{#IZ-)c4`IGoWgp3eX&^DW81TY$7FiAz73>SY{jV?wk@1e5+f*YIkQ*5h9V$p{| zZ5DqAdAZ2rKyaNwZ9uSu7vq^e41Bq`fGF^N<=T0nfe+LvQQ&Er$-RQ_Jr{__hJME1oS6MhlfvHMX`|suhhiXAW;a4MrO@rh{U3is<^6;uHXTcy zEk9PRgH8=`f2xdNI-3sAew>A%g+>d-RW!2$OKnmY_PR0}czlNM$mDW&$6vm#vhlyz z#o<|K&rFGzE^EqVK3al-h4X}v-;eYtnKPUi$s#&+cI<(An7KVrolF;0RbuL5pn(N; zt4WKgxqlKI0kHVsOJhLJ@wgS^wf~y=CU(5)yIvgVp#spvdInJAQ@n_6L^c*YCXTy> z)MA_E7Dssy=59^Kst$PW)jmH!@P7cMQ7`C|F(nh1vb_Zo1RyjrHkW~=0V%m%`<@#}t5+4RzCL*P^x(l`TRGx1*VWUP zmC{5zQCTM7vwC`3Jv;o*krjul#rCKcLL4$4KA&72)!ZJgmg~j&`ugUmX546Tczk)f zUA+q+|JZET7pv{j^QYfDcr10Yi)4R>XsZDQzXL4ED5Zx#eD&z*x8Fa(2M)e^dhpW$ z0|;8N7Ap!%P+2W64xT-y)hXQjrlLeRTfOs;7nQV(SO=Hq)sush1Devwbj2hQQuBmT zV-(>+c8D;p4u3du5=gt*Y_B~sahdoD$VJqc5QG|8X)TEn0&)AP0>G~;4}E{&(NlmQ zetqKqtpN)Luz)5(oDZxdS~AD|-{;lA6A#AV58C{X*8pWDW5$26yg-;|)pP&XDIoF< z{C`%}9I)YBRvh+az^jX@W=N=30O^#5U26&pIfvVGW1VVuS$4PTc&~lBZXb_Z)Nzkx z^`ttfB6)~auT-16>81_0pM$`H75#03#$ZavP7XGR0Q(U z{5dL8T&xcTOPwTJHQ2Vuo_LB7y-s2m;fq#ct+XOVbxKw%vQI-?0HHasl@jU9-NeNN zJgh)mMxkAmr4@l17%!|}`oih~<+2Kh)*YrNksN>^z@lpVs*0E2gW-P?;|yhJhOH=5 znHn%tDnRV*MIu;34KC$B>ikatS61=%b3)EaQSgC+Fh)U67hWz_D&Q-ZQh3P$0F&s@ zG|$BxZ`JW$e7J6(jvLf*hfygDN3^z;)WB9ZL&_Z+GwvobH=G#BLFNpU&hQbT0~FE_ zfxOiJcOa26`;U?`z)`ANJR|WRVbkEZ9X0;8C2m|iL1h*oNy(UH%nY90J{S!I863nbMIP3fJ6Wp&51 z)}W(Mlgpl*qh1^Ecm_#R`i{=a0GwcW)+l1e&YB1nfx5G%0i}Rg zQn_q%yUz+6;FX8~zZ7@iz$}{RP0o)R+$?xP40`|+yu*FS;=yABcbpNnBNE)0bTV1K z$6Z(n+-ZLT^dsc4BNX!QH?ft!v9#!Ktjd^zpX^+qfikyn2adDv4}clfZtV#sEly>~|Ndu9aR zj}e*E2Q718J8<%%<7iH#C(FgTuWNzZzc>=?@b>&>eRaNGrUyXgI3T&wc&b?<8b|!5 zU|EJ3COdZ0q6D42i|Xy|h|MlX%=dM~S-B8|#1b+XSf;UuUl#TPGiR#B<_&P27m31S z`Tc*X66r>)NE_sqW|BD6OwcSA{4Q;r+hZ(;Znk9#tw|^xDuyLo+pg;A0YE8J)FpKh z;QM9;kywSnq!u(ogL?OzcFrS%J~M&)Jk(@Q*W1<7Yd8EU57*b>>+R~T_oLhE)oIau zBw&W26{Ox=H0IM)NrMS3PEXg-a3)Kpia~!&FDq^Y5qeI=w7rP&f0v~DHAAr{mU`Oc z03tmmC{zI2OKQENw1VSo~# z4iTtd)5(<*U|g%*Uj|Q6IwPEBQW4C74#F)XkXv6SdZ2SHY2wU3`}^MXtXm#1OI9P*&*f*WsL?X4(LXpsL`4o zzAb6AkgU__LiR<8Vmb*0XfYk()c${V)xF_c!nUk(7i3g-LfWD3V+H!Iq+_v)rW#FW zl8V%ALp-AJIb6=GS-6Nd;9;&PD7@EnO11bTG`)r+k%3Q9+(%^hQIw~^5=269?F%$z zbq6R$O%;K5IdCe~bmXN>tBw0v4a)!=q%HSn5b}NvqTy`9*u)?jLDrolOBH{S%#~nqQGZcVS0+yBT6bg zgQ&hd?3g&_5OtPiG(C(Uuz-JP3pBOn;QnN5n#}Z`vSWPz`*sm3Sw1COEtdG#>yVg* zw5-Xo;O^_y;xyd3*)*Sv^?A5=^Llj|zB}8jo2&En z#uq7`WTva)d|9qBB=KMINKLR98iyP;juDIvG15(73{EvIO`)$*N|$3-MPybLWW!7d z%@G1M5DZnmNAnW|E>c+`0tl>t!5Cg+Ow(nT;lVn2vXous%X>WjI0K23yYB?PAy%=E zOO;XxFP)w*@fT$mM#X;&#p6A{JSb>t;xNTaOEUjlyt-W9+@7vV=P7pEWLCT^oJE`% zZGIDl$(Wc}y2u;^{}2mlO+dS*Mi;SgfT>M0x>(9h z!%|HHbGi`EfjB!_HxIp^Isuw1g?uLzLVu@0>94Q4eneAO1{{Bk)(susVfno|6GAod zEq>F@VD`^vNJT8;r+hSTk3!K-4Ay4|UC z_F=oErTA5;RBwO4tEr$6l&ic{@1u^ZPP@9e3d59}BM4RSVha}~U4z4cnW-q*5xj`^ zFHcLy0?5Qn1*M8G+p_A5!U{FR1DV^QoadU3G|(R$a38LnL`+Em{$>33bIaJDnz_(;@p?$4wiwVSK( zmcZtEeY5H{psveN4VLY2v=_oPD{XQ(thQIamAAS)T`zCjzU}lefwe@Y@?&CAbX2sn z@W0+EtiykHA{Toc6Lv~u*2{g`hBK$Q+lGBLfga(QRLH@u*O$vi8JC-DY{ctBN3-Gs z9q*@85n>3TAf;#=?!O@T?2Dx(E_vEOsKfi}F(rVH)i2+V^S(hDj3_J)<5!G-8N_&4-K^ah5jJFlIBWuP46`&$eXTQ0ia;To5 z8f;r++cEHV004_N5nT|_A>>G*URdl?%%Kb3)Jb8_(TiYLKH#kWS0TJV2$1;uQL)K_8WiI zxvgWm#Ua(WyQOQ3maerQDk#<-BUA)xygTP5V^0Bx#_qGji0?_&{nu+ZMz3EdZhxrR zLQ?e2urCD9LjS6<>aMEDqF9X5X3ijPJ}~;CG|-Iwp&cW*-So7Y*%_RLGru>S3st{b zVH&3zT`_aVR>lHC`;l`_>4|9WV+NBGGZue2Z5S?hYHPQ5e@vLOJr@#1Riq;CXZlRL z4yoPC?dGCs%0U`_*`(py+w)Zj4vC}K_=8W$@JMk^Q|rgk%6I&*&i>D28H}Jf+2g>) z2qMA@ZT^Nb-eBOYqrBR#s+af*|6LFq`+0+IW7%d{-!{F=N5@Z^iWASYj1wQJ1mJ(u z&CPeHAI}y?wc-k2MZk~c^UuS@v(xao3Lh_@cfHN`paW1cJ+1W-61EJY9e=moT=}8u z)%IpR==m1Pt(a}eCRJgi-+yKK14i^J#l1$!uwyjdPJf@8rJGwq?afh`d2LIJ&A4H1d9rmw531WH4L#Vij}F+cR_NR zvv)z>C#K{(DB`mzx|hgyIpKC8MUjM2o9nfluN>=wUTdO^+o#u4?8e*qj^%%>fQ0cy z*gcRqE6$dhJhTojcj=sr8wi}HtY;wlgE;z_f|kp6TFacB`yCN0Z5b|bkR z7=&}v`CXP`6}<|O314*mmix2LUdjXPQUa&P8ARV~s%gU^C)HD3o4A(4?vDQWN&1vu z2hQTpnsj}iqDnGi7#m8Vua$c57p+H1C2CH2N8U$yNALYg^emKlp)G$XfQwit+O1*I z5$0t3cd61XFj^Pn?aOVg9yPvU0TdV&E|6=_mlPX#t3`}KiXLM*FH90piAeXTT z0VjXmJ!_L3$8F#5SIno>U8EWH`ys{Ukc_3WDpm4|v|TA$sahSEcPrgPygiC?KIFFt z=*LXIX7)kKq3p7_v$N=KG=K)s0J@KKR~_lTI(z!!?6WUTX9ug8>R!C=q#BgvouM2) zyBDvzm*@X=VfguG{czE9&d(|HpU;1~=$U^x-&}6jH{0FgMNgSl{QSw?tB1`y5AvV) z58K<#!^L+mzW(e>p^{Mq)q^q$P;etamy{54{+B;Id-2V;&#}STA6}fjIimnUIyz!S zpbH|p%iFV;-;wSW{PuN625wFF&OzRG!qCB3c)aPJpRLYFI!~%PN(Us{u`S6@z4Nl;)fj-}#6QQHu zGACq<6GGd)oZ$O8p)*eKniEU_*Tn}|6S1R%IAMCS!|c?r%hrmus+F%sEx~arxb+{^2F{pCo*I2f(zJ-#&EfZ5Q*MzrGJ1 z={h)VV6LElw6c$AYu`D822NWo?ix%avxU%PQsvbSnRS2Ez=U3MI^0tP_`c~+fWKTQ zh;#%!NGA4;Fq+fL<_LeBj>_Z5mZg+z;?%2_TCfAxBg`*#7ihUhB>Tz#%{^`K2w=5? zrtdjwq9BHUdbq#nVaMA+N#vPRG7_{5zFxV1@%KTaOcL-fyi`wL-O9#iR7z(?z_x!x5QcKh1qFR|)15sJ zeHbe^E(IYp1w|Mi;t$Z)D8?wZ6`T@84qLwLzH{Bb0_?wr|9${Z2ON0@+-0cVVLx+= zY895LlDNdA;ugC%!YOu;6St%SmY35{ef(`~-H*-V5PcluvU}dGx`Zf^qMSiv2?`h8 zMxZAR1L1$^v!8#>Sx&r)wqv)w0r@gOCut;T5yvX0oiZ5>KoMqIk15X!An0h7j1%zh z#|f<5B%^{_#mNqcCSVvJYt941nfpF6y`%;5SWw4w@>^jqIK&Lt0GiXAojv@W$dgfR zqPJB8*aYCKmyPUr_-MEC|@vq(4-NIu3?5C^O|NiU=e!tpv{_EvBe)T3~ z(g)ya5MqCbsJ??qgzd8(KQqAb%Vl@gR}g*GNuRaGMicM|(+2L-v1*XIpK_?{Y`#xR z>Zd9Mtf~Q9&xJfl$f7ZxOo0Y@haJ9D3hciaB`Xhoc%TRqwlj=X)*y!~wT8pBACdKf z6^y_@!6o6rJ8+zL;_=nlOIXp?7{kZUxb)G!SxtW^HY#;XEuf=*NvLNqzG%^xQi40b zKhUjDiI-Ve>4j0IL?nQ`Q!3Ht$)Fm3Pr_UV##u1FtO8S@QUMZFetcj?J1-8*u>v~Y zB04}W6*?XvBEU^|-93%UYvq<_$}2ymKFlfoCD5#&h&D1YN@?;~nR-um1D=VaI}z$M zxut&s99&7!hXGu*oKcAZDgybyTcr{UsB*?0+kQfKm5XSu9@D9MHRqMwn^KRaF3w)@ zy^XT5s{U;brEz~iVM7>t9KXXg5lXl zC*zPFw6Miy3|xyWvQG3ALy_d?3(m$EzY%}uKjoX1&*J`M+OOu@M>9wZrj#pqm3TkZ z25j1a{jQY}po0b-S%qaXBEV2IiT{vxMBkcxH(CVHzy;&rTEpgS5OguYLJjy+b}5D? zf#YENg)&2Q>GuY1zHdxSrcve}>VTAw!Lh+;GoL`f`EU%jNtKP1g%>ylb}4YVKu~`o zTnv-d=@lwKqIGVd%54oSD2qNfC;I(4N0&IKh*Ob5fU1=C{Wzy!69kV!K*Jc8+#CHo zlyzAE2Aq1;F@iq#NJt*D8cmWiv^5z?Thy>1bD(4op#~UswipW@`}(!1;X}a{HEKD9 z6@~Gb9xx&@iYZ8~aXPD=Qsj0iI68kLf_aRGfM)@lY!(*te>Vm~TTa}jWd!@a)m1`> zs5)`_u!0X6fVT$7<^x*`+A;y@G!2Np-pASmebSPTEQa{DNl$++Kqs=C zo_klp+h!bIn=&Jk(OaR{n9_T9xenw71AIZx;gO#2v%`6yR}EBTW_Z_%wBjbT$c~6v zQTbq#&z3fS>LeX~efiUq8@@1ASq5+SwV*(Jf?`aS2Y14|v?QmItVC zqExQRXNq?AJNXP32DiWR%HTK%_a3^Y$1aT=Yp%f`^V?c2^t|MQb|ruOXvERY7c5PW zf8SKxQ`eu=ewDXw2e|9tR03K06!H)rkTy4|G#`qaOM5m(Fdh40xCy&|w--H#o9t-B zXSqo$6>E+T7k@a`|!du=9U@NKq^$@`gsxL|4kDyGPV058S7&R9+>^C zk|b$p5VjPsQ}5!ZkIu9rYH92zLWfT9W2pn5Bg8;_mVu2gphI+cxsfstw_~Pdu3Hck zs$E<=KDcZTSPf~#%u6{i&B4c<9xC|p%_TJCsJnsA6Bzgdh8TaI^f11OJz&G}<=Dgc zP{EIHuwmWpICPCnGUD|NL7pbDwK7~f#@d2V^^;UN4Uw%EPQVWYot2f#KD)m`DIK>! ze!XooqnRxR;`~Ly<-XORi^UKM6~nsQ`So_Q4fTrmp`zvSI@E#e*0-B!6_tyKgLG-d zU@7q{h>c()@?%%k9KG;13G%c|rGUEET4N>)!@ehl z^tlGLgQ*402?+E|E-FGrATRBe92HPSNIziPPw4tcca(n$P;o{nH&e`7ahQMe9oEfi zDzUIv2<^(Ph_;D%#qU5$a7LLxt2V-5L9qZC9ear{;!xNszLQ|OfeB+T;8|FVpT?2m zcWe`}iSI^yLnqaoJf|D8ulNi)LIFQuv!lp~sT+K6FJf8i8=qk^ZC36C6DL5A0!=kYI z)JgGyg8uH61wWe2sjL7MfqbcFJ+U0Bm|8%0!ZuAcHVdf6p2DQP7KBT*q*zh65+7GS9= zYEZ3_%vqDhbql;eSqM-OXetrSWTAj6WFa8ikJzr}q+m6}eTEfWut&s=-<0|F%tus_ z9SqElD+L%I{4We+M;t4ottCYM6EI&=7tw#})qpi9r*U85nF{0y0gJ874EF<61Zo#m zmQbbh;;|i(J(~GgDhW=uK-(Y;0XI7-rDX(-0P@;E_kDbbKR{b64W}+A2DAESU_TbG zGUrh-a~k&r;qK5R?AI`VYTMk8P!XtIpjSfG^*4xYKVrMY{>3_uxYz2F%~o|tfx~~c zz<}5&0j{zNo5Rg;HC*&U2v;f2^m%$h?eTj3SV=U7Bo*|6>3m-&{07J@@P8g;5SF;4 z8F3sKaSRRnq-Ddv7Tr4}|MdVQRws|dFk2Fjrao)zluaYJyl^7)w%);j?@CxjGFW_k znPj2io{1FQ&ycJ}Vs-LJ8OfeDLJ)rpV{IZ$GhX#jl%&->`y$Y?pd?+bP9F(tP3ZB0vUHNIvLFH!F9koTAlZHk5*zNBOws)e z*=i(Kr;n77En1NLFd`On=%#;W+h3|-=CXi?k-oMCS%uP!Ef7nk31xzIu1<(8%p|KR z7z?{_3(1Txvf&mIwSYfYo>Im9IepJcC!md_iyg+uIktXCa+{CgdT{GJ{{;% zgob_6vca*U`x)7&kyxER5(7JEMwg@_jwMULJpnc1yU%T#1lZ~qo;56A^P zX?W4PP{>TCkv2>Hz_Y@$V|W;w#E|2kunb`Ru)ew3+}vM1tZ#pPHA@*LOCtdcbJe!v z91qv?0~7OA(xu005|mp|cKp<68>hmjk~k)}sGNyA1gHo!lXWSe@@QMYc0zX5I)F9) z+pILmPWFxeFK3OLCB;AXBhD4pu%F>vtB)G*^qgsWMw=k4ct24TU_s6T?TJf29IkG>-KXcr%zV%TfN1lDV1> z(qiyoV3eK6TWejxcF!#)K<9WHpdwH^Yh6N>ybb8~6TX4DH7{?IlAHwwXGfUb7ogmr zsZMKzK4MkV!k^*QKHzqJ^!U$6rNFcA?Z z&8~VV#jvem;#X98LgInL`0!g`>B09CkOOt{IzU1DEO{i^s5fLu%bOZE-m^USW1Rh z%JTN~B2<3_TAW@9T;5&b@$N^&n^)c(CKi>!URLL0g^F^A;oJe!_Ye(k*`SE_q9N>z zXhf(86ltgGs-+yTtW@zx_Y>AFsjzrIl<>!G-b3hdFD$t)Fr;!uDk4+_nw?n*Sj;To z+>c1NB%-M-tF6JWc2SP2+;>Vh|E>n67$)_@X9j;be!)9$Du}-7q|aKri*iQb5vC2? zr(@M1bwA}$hhLNf>Is*(7}&|Reqay@X1h5aIh-r?3qS#8_NJTyu2iNT*?z=!&iEun zelNTDg$~v-u;-J)X*!Y9+aP-j8;Q)eA6!?1UaiK0Q&+=$x)W|OSw zR0MxY4^U<$IAGXic{5|))4->TKjKkno0f37i*Wh*V zeBDo!tFN3niWA^op>ejr{u9L?oHKtX5N=PkP&14OP!VX65o{kL_&!GP>M(512sUWB z$cF;m>M}G(wvlR!_x`-eE~Gl({-5UuwZVUzKLmyY##{5k_vF%^WPu-YlTUTZCptgPp zg^ZgwZ`U{BsM_Z4>hbzh|7H8=0k<(z;y)fXmv{-rNz97BTN$g20e) zEp}GMh}Z4FGDM%+iX#?FXxJw$TNQtfdG~X*lob-IlSksxMKtUDTyc4o`{M}vE}g={ z`TVa|6n~Kd%Y{dfPZ|SZ$+XFDCC`epwcG!eg17920WQjJd)Xekm6aO zyvB1kqM|$}?k^K9)n)jGd+1SgKUbGgA+b7nq+0RJkl)z*aTmzRjJ7F8jxZ~S(FiS zcGNvR>sCF5yOBZX-oCyCnkQ-AzK2_b^oSnZG7(-4yHO z9Lk|Lu$tT&YsUB0zSyJA2{dmEvhs+kxgVQ<8ALAriMC|hG5&>;-Ti-UtG-KM)~oyr z9mPFCY`V-VUb4lq@x-)vzHM?Q0l0%z$k_So2K`z3XR}E2HmyWxukuYq4{Zl3-fNfC ztO_QaE)#qD>m%b|FvOzLNtsg~I+C%m3iZHcNM0vlEYHeYpG5YHd*#Mv_J18qf~TD_>j&#}W7F znH+ct-3j*!nq%)3Jj#w|g|gaT^ou!BNy3s5Sp#re{tu#rcrBN!1OXomOl59obZ8(m zFgG_Km$3-}Cx6{qTXPf16@K@xm`Ay?)AaoU*;ElWP*BwF+ISxl!h?{hqU4e&#^cN5xP-CJ5={Vd zK#jiyRcY&wGBhNS+@=L@GZYkIVLw|bn6zLL7j&&`i4;0LA1|wDuUXjX>`PRA*ef@2 zuZOr<$5qp_cwN7%zQj9EAh6)P!-Gj1lv#86DJO-Xypexme)`ZaDd0$Wpez(=2~{jU zrd}31`Z=QwW(n7gFa4QOha!ryhEYxs#TtG7CBq`zr3JGL2SJ#21Cw<*7$T|oW)2q_ z4we{c2PS3R1tq+k8V0pd;&|Q*&3HvNh|!D8u9$=p4RNCO!d2y|Nj93U{FRQX&zH+;wVJ-2Rq?@i zRbS)tS<1QiYO)Acdpn(v*VDy3E?At!hYRqn*L^$;<){o|&{_Zy1%SA#I(yAyc7sSi z#cvkNZeEjvycTXQ$IJ0-R?SFl!CuV(D}i!hbYyk%Zdp}-XtDq{#ca{Vmf38*!bFqoq-AV6Xvo7J9$e7lexw?$> z6Zyqeo$wd6VlEG1pL0mTMnMrxAx&45=Tw}Ta&S9SNaKj1+E?cf1r|Ol!s>%ipcN{# z|N1EWZEoU!UrLNK$l9O$Er=3d$qz~i#WQ0#lfoI>;$`2QXTAxcqz7G!otodR=wMXgi?BV0;^REc~m zHGCbL(Hu*XoRjuZnVzMW%jWIGpiCSl#jE0|=%^!qDYH~8#8N3GvA9B+tY+o^ckknN zI*M*+FzRa%_(}mPCIF_0fckkou1br7hkQ=ptFi826-XVmtZHdnVULRX-$t_2-71c~r6I98K5#Fll8Xp+p>%U^*WhN1q_rj{ifCv_HgM0HUJi- zR1`6PZ}Ub?tJ0!i)GtG$4p;S!TGryW((bmZzj(_kicHY4XWU)c-J-Xlv?z7=A|A06 zZv>5~8%85K4GZvFDrEv{%SU6qDlKaBc|X_oSM?1SWi4A_yLO9p8zme-Jz>ItNynVlg=#~jG=PLUVAXZd41@Y%R4li_+(Hj+QW)Vb*AI z);=uTr)SAFsrtkny#@hitrg8Rc@iX5ekuMw+u*PQyXS_X^-yR%tT4LX=WTgp2q$(L z(FCZfG)nAUa_iAe!HA|_nkE>(&#oFKJ{@yS>Hifw4?g$XVB5B$zzfQV9k%WYQ z1;kUaR^A|8I032Q|L9{0Z_|9Q->KKsOPa2S)i^g^<%p%Wr%oePsvuZJx6Ti~dH|4c6}-Ap>Y%RO{t*(x7HO3WyWP8SwKP!1M1OId{lNCP&qW ztGajapFE!RSKnmByY;)};tH5Me29I2&|;dpApf1$V-9IMD26qohtF||L0{;Mud}{? z)6O?T1h6CxGOp7>o2Zdn+eMGCWo=@O?h}N1vD0rLXfpJ^=IBw)a`fyr`H~BH1mX*+ z>$h7?*OD5iy0d}>7r8bX;y5>$6%1N^xh|ka5jWpFOn95^)O`n6FLB&-K*PTlMQ5)>ShoKfV8nCI|wOD83cYjOYg;baM&h7Wz zUvn+>jRv2Ob#0IlW&34YJ^dLwX%|~h7@+@*brUTe)*6j4NG%}L? zL7;7CQj}$b*V$%6>lkKA5Ciys6*4e$9Rxqr1#RbgyLFMtFKF7V+LaHW3KY=Jnw84T}-mNP+aY;i&$2XSfu80aw%Mxsh7yg zR`T|Ag>f}{GF?utX6Y#7>}o#oHE}~lMWo9*(pS^@ruwG|qm2gNe$FL-HD@{_Sk@i6 z$pKTm%mkez<^I;0$V`{%!k2jjh zACNTOHP0v$&`cY-uQvNgITY#ySFcX7Ra?@J7m!G;Lw4V)EjWA#ijC@ONP%lAi1UoP zP(d6E+LEp=LF3hzi_7(5UDeai@j3@gpkBuYm19@!>G~M-lP^{ne{|8;h#;KqbXTAy zBwl9VWPIzvDZEU%fy4H;=X_B_8UTz>irpDR^Gy1Khia4^5zN_zV4D-*pBXYX%%*5h zklvYO@7(KOxoLjsV~~4D9ESR}G{@CsdbwPLv)@S?=?^j}H=CQ1CyP}z8P9z;v(A(d zL41?$-!QU1Mws|Fe=<7Y2s72G6rATOpW%J43<{PKCP_2hoMU)7kX5XK6R>T50cuw2 zzF+jxNlnQBk7(Ugkz8uRb{xOHoq<^eswcYbbR_>ikIou8x8T*&ozB(9Mz7&On)XgY z2E>qYxSw)`lSGt<#F?4FTRq?DfrVcd7vpIrr};6&Ao281f8TrH<~Xy{UM%GFW&9|x zS&)*+z|wHpHg7%5o^Y!6_;H@KZs(x*+k*Dm$<;Z;!Cs+0iDCcRT<`BueD+ zn>hT*q0^(Qf8~5SKS!Fi0fHdw`gsg4>kM2qCV=nMbma;;Ll_#fZ`RDza`vsYeCYE1 zTJBn~zqOWcujJCBWKp1IprCI>Qi2l3+~z_qrJvSGkn-mvtY68y_T@laN*3{ed26BO z-z(;? z7p(YY0arfiOsQ+aWry-LXd*N)twQWL1BKi4`;;8i^6i4u`$H|XX3lJfT9P7yxGNN; zVPdlle`|r65}UDBA|)LKhL#O_%xy^B5zuOOd_z8W46qX|`_hLb7{ z%+@|x?uRHjwPECTLqy3pBgzitETZ%yIi`3!1)VI`c|_@?+#gX!k8Kg<2G}LL$LNXr ze-L>3gu)9S$^P{1R>0HGez0$}pG?c0lQ*#wd^*&)dpYHUn{cb|0RSyI=cBWo1CnjS zKJlZ6eS2Xv?$89WTL6Z;#Aq8G2Eiw&zJF!(zDz7SI_w{tYCjlY;WyVd{TM~{-axke z4>yCO@d{;bWOH?M@L*MB(Vax6U_ znveMV@b$NcZ=U|2&suzX`|Ry!H!;SiK8%0AzxvZ>H=#Yfeg5Lv%NOt7e|FDko2g(I0DW=z=^U;cn;L(_jAP^Ur_v+h6_L z*T4Ds7o&+^{QQew{QDRG{uSGJ@~f|({P~H;P43`lM;%&q>G1s3lW%_S4&UN;|9XFL z$JpE9uX5$9Lu&rmI(~e4`0B}*Pu%IyL%lopTJtf)G`jZH53gR`zJL1zx`SEx)7v)~ zb_`E%-@bow`)-Wvboy#K#*_~?(H*m^qltI7&wuB#8y9_E>+p+MfQ)&eME7`dm+*=k7MwkICB=7~9^s(lMoc zrAIf_AHBys1$XQr?9EfUJWpkie(AV}Ya=cWriWAYQq49g82= zJ%4j~)k8VD(*L=ayL1C>IAb%8!K>+*{?um1G%_SNm{&tR6`KYNU&>X?FaOQk)#tIWMWIt)_>8TKdD z!^+>l1p2

1w)tjxezCkYRslQ_t6IH+Fw4({$hQR@hQ4Fx=(ntL~w&yD_?NXsnr8 zzaSQSyTjiRi?gZlcPF5wlkPRejNqzI*I~h%3Wg?Q>W8$m9E` zU9yb57}6(LvJ{TB_x}t_c0s`>{&>~Yxnrw$7VQ1*4&&DUdn{MLuyTL+1k2^2!b1Ir zE?0l(a`k1o-amW2?{wu-uP#?S<`&oG+S*#ZQ5b~3%W}DVjP2uBD|L1;|7TdOePbA4 z7|K1iFdv(z{c3O!RrUX`AKw4**>`W=-eTFr3cmPO?cxji_xpx02F!3>4I#~a2v2`J z{+fNPn6h56LcGnvEc$;#f@>1ji9Q_&>{6rv%!~fEH#wTM6uy4bK zp!^X0u|RQ^V~zdXdE4>c9xs3w*Xbe8`C-TDtMTaY;DCQ9xWl=*=Jk2RbJyHHYpN7U zR;mfz8=CL=5sKvzQ+RQ!Ja~HU8lwuM5wjSh`eudT z6qdSc!x8TEc5R3koVHz`fwA}p`iWNs)7>MObMv3}#|MNOf&J+Z=uW>JFG1FVudCap z6XEyMWORRB@9q7Ry)ag1e-KT)lq4CE2l&Bu)!sN@ze+vJ!|FJs3uS*@>Hi~a_*Cm! zA2Bn2IL_1?tUDwOAct+qFAMdUwZ{py&cTP<%>0q|jCmAhPj7NMh7(hCd7Ll>F2;wC zle38pADozvw20q@Y(kJq;pr33l{-`yt|)Yl%GH1B z6&536uf$_1`97gOxoAv)6;|!$4l(&Q1k#0Th)O;5}gpa!8^(Ncm_hAoXo#E>i&LNBsw zt{4hdN893UEP8is2haL)>&h6*%{G`XcSaoBF^2YWBhKzvaPvJw)~g;k=IMs)#klZO z+O(cO-O1=3>sDaMcP8zuC+n=;=!}2dGjBfjV}u_5n2Af&*J(#q+LCS@7cKL4X;S<> zlhQ6u%K2l?CdGz(->kr~s92hhnUxG5!jX+}ZC31}WmfKNkMpa}2c^BeXHd1Vkb@|> z=JbI(1P^lDiv|90ys$s?nsLcPcgJ0gurzZv;4zY$Z76%gZAFrYEgjn^fPH_+coE)s z3U-6ow6wc~c9C6kX*}yyXCuQ)8_QrJ5 z-D`t_w-7&ip{i7V?irL`BZG<;2eq}dJE*O@V^G$~>9eMwc6Mkf zhbRC0@Z|N$b7dp_i2gqK+c zlyeO%)A|$?>8TVN*@oCl`hgHAW<*oi2ZU~h2&jf$q;*V13wV%6l;Wxn11r_HPOOwNeBsO*EN(@#=N*5&9>G#}St3Am zt>%F>ELoMPFqR^Zg_aEH2!pv8#-PfvcpXU*kRo;zl;j{LK90SayM{Lx|4j35r8-*SINA4N} zA_mG>FJL9q8Wc=Uc0M*-_xkLFkYR*nJ~P!u3{%x2@22bARFZ%5G1uti%2J{W3SzUv zyffG8MqbKtvRtp^$tmdrzwbS7z5KluILs62$97OWIWj@*@diiZ1@&Yi` zG;VLqhz$&SG$)}6cd`fwa(e_U0Km|P`~riR2STZ##vSAHMCKAl9BoUtosVQ#UU7&rFf+agFGC*K$m>7ryB%U!Oq%X&y zU)@DOj599 zm<@k|z4l?76O>e{xG++dTvdz>2^f7CYYPy@9v$Jr*EX^;308wvlOP`648-IXV$F?x z0|AXp#Fw0*#wCf=9A(%cfLJ>SJ;kQ?I&O#AC@j-NYMU?=GC=qeFp`udNMKa3 zL+YhXn0mb(W+U`*drx&(Z-CJ3fw4EHT1|gZs{9!P1_;N;D~5H3x=~3qur(+TVA$2c z(x?y)bV1_>3B27U))$8a(OBA+!=pj z@duVOEB~yy!tfc`Q{#eHSqNE2@u}%#a1%i*HU(>7osayXIF>Q9{8e~&Bj+h(1>qgy znE*qi%QnE)^T-c%r!8Wg;NOIUZo!~nsd3y5^D*>dmbr#!2oRke>W-B8Ou7#@Yaf~* zbGGPYL~6UPy@Vo<9zqWgqEr+s0SbSM7@XPR!exxY^>KH>4sHs<7-Pe6ujgT~fI+CJ za5@dv*rFMagpbz`i5ieB%mKo4z}-{|B8da+nUNYm=<6ZAg+J5Fpr(M`tO{0W7eLsd zUWSNJ1+oGq2e86l>k4L1{Q(erb$FiuVPLytA7jRvLfp62J&^ zIGzK;Q61}`^z!QnZvaBkj07K+NqzcA5iOFYX~7K*S`rr@S|d?i7KLCt@$1A>AATsD z!n{0*t>{;-I+{#o8SjNMb0OP>6%WY-Gj{0cIU*=*`9=^s$15fcQR&4x9J4}Sn;r(h z4$C(N!y0Bp>(FpMl%a$Q^C5rm@(5zo!xJhJa0OxsCepAR=(zzz55{sA(r+=>1hK`2 zGhJXeoRhmD?n49$?J2~YAiSFqS5-$R1k#kKRQ*^*fC;Np3Bn;A;{n*P#XP|z?ifKV zDK3o!$4(z0R({;hO+Rjj;Rr&pOze^`3Sw|g+U%IrtRR#NR1Vd6(1?GwV!nFh?V@Rm zfw=|2;L+=I#A3ir5q%$qvsi_0im6F-0pn1$0I|8M+zw|*n`CfCRwm2g7A&HrK(`Y% z!0TjWa-N|wn3luRkB&p>I{3&0p`~>)s9(u0pz>{Ff7i;*G43w44PUxaMbe@IY~Eth zN_Qtplkl&GPOdzeMQ48-Rt0|Qa0>v!BtqjPs-8Y}MD46yLwFM1l|BN2O7eXex5KKa z96+o1K&3&?vW+Vn19iF@0O1IX&I8PyiYielYbXw|H^+H{KEo)+l?;b?K982p=i&A@ zIjhSG1%pI&a~gJMs#F_|9(6VlQ9+b85g(0x3J|j}Zm(7KMx%e<0l$qP!n39r6bLLJ zt!HY(uWblZdZOBZ;>2Qj1yhTd#YAUI*PPk7DrE(RXK8rujj|WU?NCX>F9wL-4lusXW8oEStX&d>r#L*fhBb6lskGgl$)*8jY?4YaiE$Yq zVhwC?fGog{&SQUS;T7=+0BfxybZyL>7N{P8*nnf%8-wjUZikW@35dqRC=?Bgv5*OG zAeNHlL{EtyR=dN11o|7|Cgh=;0amCkVmZb!bDdst$bQs!T{e(5OYVl}=M`)4KzT+4 zUV=uCEGyC)kQ|ErZdl2zp#Tg)m1d7(1`EMx3KAe(O{jkkfSBK5i~+(djN2hxBd%kz z&ZF-H8K*}D;o>A|v%7gA!ZlXA`M@*+`Of1OnRiQoJ+@`H91a~EuY0vaj})vBL5y+O zkj`o_egtMEK4LvlhtU(#%dnFr{00OG9u^iLbRKpcd>)23qd%}99#TkeNT% zzhK7}1zUgXoM5VUO&YOIP3249DyI>fb!J?c!~qBk;5AFwmIP7b03= z!7EWHGR+G)43Z8tUj^VbpGpu`r^q`8u#Gff>zIaM!h-H(S9!!9$08LdG5C%yI!%f> zT8+#W=zcdtaS38X9)x6OBnCs_VZ#~#g&4YdZA)~efWm?Xod!D3VYE<#vjI1WQ8Q8a z<<@_*PHsb%b|Fu$8k!iTXF4x5_6lMFsLUAfsQ>4g<&=p63QZXdgc6hcGt-?0_RO8i zj2a^_0ikdZjYOhQ2{9Rp2S7mpMHp|_@|0mAkEAo9tc&iML}R`KXn>E@4ec}+M4>dC zUJJ*p(`TV?EeU2tu>s}MQo@KtJQJP}g-Cz2xuDYMM<6NRuQE8wGOL5)?QMr*lL0AP98p-uCDa?9C@-~eyHi^+<;koqTjIbEwBRYRZ zuu#$r&3r)yz{-S#fgQeIJV-#1M}P`j1j!Ci8YIG{qWN5AK$-F->fy?c&N2ncj89=D zz`1N7!cZqnIyg`hYNqFbQjWfvM2S3;<9l58Zamg(9x^ zMA0kjYvyT9w!q}9&)QcOfSA?>>RT$oP}m-phZ3m+y%`Fb;EF?hYqUO4zc5?L;L58$ zU_!FfKLrToW`kgi-bMrP88zX}Ok=IsL=42T?R}<2v1Kz+-!;ACLuU>ddjNlEgd64! zEh&!{QqvI5GYuFaOGGgpBhf(=CKN`A(Om5+9^`IAW;)Rx^6;>DP63)89YXMiT^uHg zXJJ-_q})n36x)d{2unpZ5c6*p;!8A3x?NE?#aIDS>LuAFD065Xx&UaiR4`FE{5()e zmp`|8E$kH>sKS(!y3L;FynTO#vMG|K)*Z!MmZNkRVY;iTV78QY3t-Obff0nVYtn4# z)?3&j1bT95vx1gqo(Zc`iT2*LM#A(FXOH1(YSvkpB6z5QXy{$bTFe2#jW0yg)`Q9l zS(O&3*7RCN4AfOkWmrL6fj!5N*O{tdDh5K2W|<~atTWt!Au1%|w&8yq5=9Kd`#Zxy z9Raf>xmH1$(CCID#G?KXmuI`S(|`d)r*&eO!H}?_Fgu^rY?6@SGq!qVIZsnFo@oe2 zp9W}eSfGb%8Oc8|90HRmjB}}0f^6siTQI`m+vAy6)R%&sr z77&FW0QZ2gdvL0)lDL0vcr;LWrYfNfwjs-vp1g)8#1P+&`w`vE3*iNnNDxx0-WKEF z#+)F7f3KktQMj0pRlbQs>3W`-R0JoHAoTSFp?KjGF;77KVQ5cuX(~eitHCjxj8QH{ zAZvYv_yl@1q&-*7qId>>&^ov_GLbyNjG&Ad37p=*Mlq^!tHFPG#$=6_vP!*Ed&Pum zK}#bl(6g0JGfM&RP5IUgA9Q;%28u8=1erA+y^`PtVI5HfU(G-)HdJ9{ zcFU>b!BE7}PBE|1s%}Mw9X*W(SQ+z%!nKD;G2MaqLOYA@R47oQn6#P=%`)~nYSh8d zju25=0I2gtPaS`jhG27=Pb63);~F(3=6o8%%lW!g2f|l0zwvS zVxaI^8x3H4)@W#9xJ8u4Q=8?X?t*BId6!@UL%$RA5s3P3el6X}#D%KNm=v|pbP?fh zR-y>fRJ!Q*F&PZ7ir*~NWybb#pzunxfx@~|fRd`Lmj{0wsI?`#71ep7-VZErv?$yg14)=@1mS-V8B>9S#4hGrCvwvGb?9g4DW<}t ze}YO5B}=Ql1-n-KVWG_Vt~CsT@ZI1IF+=7xC&<%*h}GfC04-6s4OL;JE5p25?o~$s z1H@pdv2L$fJ%VT~3ktQM_7-RpMh;LGsT8FvNL>iD!oqn&C4<<+=%@t}<-*vm6_#Gq z9jkxho3Vi+u5~sPPBOekpp{&sf${|#oczYDi-ok@@o=p%i&PWlwQzF_N2k%L(G|xg zjC9n2!Ohsf>UdzQ)s3a(xih;PXA2-^suh`;6`l@Itm1|?))tw-{(B3E(T~5HM$)&VbIy2of#iov`2xh<~owcN@vPc=^k}(w+Ou!mX<#;y0 zs&~=l1=`VSBAT-1Nj(J%5kw~nPeU~wMF^(6M=9A3NO&H+J@TzosyZkt4bn!mGRuE& zXp^FTXEv?a9KZ|}Ch)qPY_8qV0$ZDiHady}o%;jq^utZz6YytDNm6vp;jWz2@ zVlfOH6iuhI9VVEC#?ytgq+ueDVnu%nrep%Ek<&2y&|1Rxb0h&8vx%Co2;~nFn5(9w zWL*lB4KsJ4nhN2{&~rL49mhy;UX4g!8cB>?)d`zyONU)sw1)E4odW|b#`nQ-^AA2^ zwK6i7qXS+}OOU@+>puTfFS2XSPSeNz6Se-FLw$OdTX3Y~!Ne{@Q*rp6W(y-Po#htH^VVr+ig5 zsg<@Wj%kd;0vd6Zo-JIt;f@-0RbGfx$}qM{UZoRVT^!rR=&J;woXRPGm5wSXpg}$~c-FR;hpBq#=ou#41%G^#Ui0RVqyyWEhQ=#Vb6$E<9G&!&+=@ zA+j?5@y=+ggUKq9lJfVA%F39k$Iie z5?UD%M)TGuqm{v9$g27#r8QAutJgCrtx2l%Vdb>4q8z;CUyaqukT!ohRlbwg%8Itu zEjC^&3*seM-p+`vtf#l+S7s~E(z==FFlsAM$chDxMsDT%=O6@aWw(+xpmnXuZcUO` z)I8Rtx012YU0>;~a;8H$0vo?IF{7#_o=I@^!mX&P(T(9M`HJq$nNp4`QP^7ZPX@_V z5*|(ownlO#7&ylZ%awnqW7%(^xk`4WTd-k7SE9KT=NG2yIEteM&`EVA>YWldCfAku zoz`M33)xk2LB$RKWU^g}(t}(1t|OULdszstM4?zGxpgpJnU1RP2*N^nC7QLnlk!Rs zo4qfTSAtk#<&zrem02>{=DzS=iB^`o7UC<>>`PsluSBuE^;&^*ddZCWl z(~SH|v>NqsvR{d2r~bj@zY>kk4H=sRSTD@CphR7zz%toLo?2KqupC|m7_PAutX72P1>t45+sS5mH#`rutcMY^CZJc8n!9( zWwK$JvhAj~jShcHusJPfOg=2pLT`H^#1c(W?Z#xp5``rjs>&#_1YONzlT1!56U;C{ z$^$i0EK#_QN-i~4tfZ)89A40*#S+C}hVM3cu|yF8>C=oD%Y-;%--Q_~S#phXCo`5H zL~bN?CpA{m?B@DSaxBr%%TTvQk0l6mFywRcW0}+M*zkXGA;=O%Jafj7mHfZU$`>9K zSz>Uc%gT|J`hlbuPD!#v9j(*Cl4S*=!#JgdChO&;m&T|yo-EPalo2+GvVO?=B)|$& zmSD*07EG$_D2>!fpdDOUmQh$%_X}B;Xw9nfjV((s_jA51(G*nhCt;Q-X2GwFS)#7@ zq1Gm4R*HWI|zDik`vtG#m>K{$+tQ5&&9ud|g&k{v2KZJR*XNkJt;=-O~ z?F~yme4k05C0f;PP6DkI@3N+RCWDqJbFpcm&=P+oYcZd4XbHMDEbQdavUb=*SKg?R zXo=31nJikOC1@6U(rBe7S?X|JCXtpXWJ9^I#-t_c^~{qoX{FG~6BrAXmPJuGB+3^y zE-lgOQt%6zmT1mlF)x!{OVoK~zfF2A%j?)wLy{)HmM9cM zUkSESpBGJd%CIGxxSbY~Em2Isa0ZNJD`kIw%T!L9Eg1sjjrfIUOSEA__l0OHYyz$R z7}J(mF6x9%sx48-PFlIPL_^i0(j?mwg&`OMYHVBKIJ7*OwS#U;l;J^K__jo`S%=IS z;Z~>nnYTo}o`W;yEomvewZ2ksiMFK22PgNIXoYSm z3;C947T(ec`<7s`MEIoN3NxmKA*YM9a?vIQm#A~v1Et^!-=-+}W^!R{A7A`Kq$hy@+#wF@4eK6U$L|xJf<)q^dI+PyroqSxPFd}Xx> zhTu*{F406z%EHMdiokV<-6Z7_h4>7;I$60yT~+sb(sI2V`prsMHD0a|z`B2?mnSio zD9?I*xUXp1U(lb%Zy z(cOq$CO=nLa9NGcBeQp|7B8ii8`mJhm503a$YNXCTNm$ zg|Zj=@F^xsmuR-rx|63XoWFk@hebD{F2RT()-Oz5qQ3UY${kc)p%Nw^SFSE;hh4Yd z}+0WyONrYN_v{SU81q;fw)QBB^t8UPbYJiD2#uqa;S~EOIBz% z#Cu}R(~%p7Z9*}H@>-oDazg_+v3v0sh9OW0?t7f%8&VHfPI zwJ~^w^V*E-p&VXmW9ap4a;qel7%=4^7 zUjAeqRvNGTa?)*$#!G*cyr{VHc%?AmtoA*Lyz<`;> zLG8u1aC(V0s`Q1_D@*K^zQ3`03FkUFrbg=}3}G~qsPTHGWHf&%4U^bQ*k`RqO=7Re zpVzZS8?%?v%Bo*psJ%oH&cv{CdkN=WH8nfQy`!R~hcGsFFJVNG);**55>{7tWA_qt z#tWP5UfFluXfj6cmAV={hwy}I!PVB}EpDf=_21V4|@nrc@xp}{FcZKEK zStsddBwto8Lo<%7v3xrtzM@sm$@1;PZHp_*7bw)4y#~WrzFl5#p+Y!mzMVG2a@tDs z?K}--^r}ho?Q)tmm6hj9ThKJ--*~>Ac~)c6Po6K(Yzcpgjps`n14VYm^X+^KzLEDP z&$sjC1I`G!#`C4^3P!$|JYS&I&IWBn-%j3*aTF%eS8CJ2_`^o@?K~@CB>hSB?Q*Wd zR>FwB^0ko~(@OO1boYbWib?eCLJJ9DCHk_G9;}W%iN2kt!f2F}=u00U7$0F0eLD*? z?u_Tl*ExSi&8BWVUn%hy<<(7|FVJeFxJmORN1$6tYtno>LkeT48q1f?O`oq?F_y1T z52~?}jpf^!{A`hLh~iv0e)0oX})xbLsG$?G+z>1s+HO%&9}>!DUJB5 zG+#1fim^H-%@-&fC!?qu&6nJoNx_~p-|kNI<)r!2)z=p~Y%JeCta4mgzNGgUnO;f0 zjgfyqDrY2LvV))|^2+j+0Hhip*I2&tezRueV`KS}wi23=kB#QrsIXhlE6h_N=K(;9!zmwYlG)C-?HU*Vn=eQnbu`jV$s^{n|u z^li+(`|4MsFGJZhDXK>FB`dCKUTY)zwju|jR-SK@%6-Ty&sP|D_AW8w`I4+>PcoKo zW9mi^&~H3nhUnRj;Y^+{iGkdz3(uFNE=_rEG~XtEx$-3^&6ljOY!+nFd>g-h*H(X$ zZ{zE}wOX=~e3^O(F|8cmM%9_i%JFU7divUgjpN%`!P6@z#h1AcXRNbH@onNNtM_FT zUnWmdP~$NvzD=x13M<8z=@*rYN$@4%RB8(g!FSO0bXF(9x6$qGKCc8{68@rJ`Mu=9 zO7-o8-%GY&wvcM$_p%-q&gs3LBrt!~IH&YpW5OMA-iCEdTD@q2|yQ_twV zSc-0k2qwR`$~!XD%1nMQP`ECot^8gl;UIQr1mDW{cIc~LHiECvHZ_H^5qzt};Bn#i zR^jNV5KMkADcx1yjk583nMf=}71Sj7k|{2^-&2AwGm&Y-2EP{|W=M_9J1MCS?+QdGG@L zEi1v7N$p~XM2z9fGag>ENE?5{S5JwYF?>0nt{bP@7`{A^lKqAX!#t6}q;LFoDT`Ojj;7d92`U0Dc;7f^$%`P>9FHZ_dN^2qb@~qK3>N5$x ztXNdl$dlhoQEzr|Zt{D1UdlL6M(^cuE39W->Agkj^}4u|-pdVWM-_i3ySGRtqlHs; zuN*kjS0ilnUY=OXcCu^IdwJx|RW+ZJ-YX~ROwmnxFHh)or|Ngod*zJZq%9l0mvt+? z;%ue&vc?6wUsi%IPc;VPz)ym&oR-Ws-$w8)^6ESdhbO_8hdW)5E5DcOJy^P6@_SkT z3w8i<@_Ts{wpTUxli+_#vlHjr`HkR9YNx&cZKL-Vafwv3Pj;^ybPgKiPI4~`tG>6g za(j7PJlXlQN$sUSP^$V}#_T1(GrGLX>%E~fKT4ht;`Qz^SU2)3lTLi$ab<*liPx(a z*)?ZhCRupBQQkf+Z&dtPUhnu`hP88-)_c~gmDVehbaOIGlhl8E_g&a>a6``c$MH?6 z4|qekFwg_P@WTY#$*ZH6H-GC@cG3R8&aXOu8Mb!!X6x_nsF)wC<2$MOL*J#Gm`~)J zsH?o|AYB-iUS$`pU+U zq3j4hS&@7L1Fe65ou6O{?df0mhkk-3#_gjkKi!dMTC_61BlL&854D|sWo-A0apcV9 zvnH0^Cv7}v@0GK?x4g(625;GVSGtoP^F8>x--N&O1)^)8UXFHA%ex#ob4yRWz;Ia#TyZ^=JO>}oUp&v+cpXxkFx!-PF z|9siqPg$LRUu&6^y>C4-eo6fBH4OIhIa*5Mg^vM~Ddw*!X97LR7{k^62jSU1r2q72`<3pK6TIL1GsVdl-)^1% zy=pY32yy?=XyINzZ28dh$7(cd=f5@DxkkI{2|s^m1sHFFESfTCtvlS*!aXK%y|M;GO=vR+o``BT;`%%D?k63>A z{wvGJFn_uu&^%0@&jmVN`V{8hZ%f?$eC>zM$pd#p{Ky?q@3HaBwC&sY{cl_*c`v~K z$Nhic@9YQG=I>bWv}jZ^xNml^JGGWfPNmf&*thm1H1iG2UV!ZpS^tk{mbv)?R_lT$;X{}6j7S`;>D{M z@89j|LPtuhY=mYm$;%h7c4qm8q?CXj^4Qw?@!nHSkWRPWk9OJ-_Mu(yY`N|iZ6BsO?t_GaDJxTn58@oziFswslM3xP&T<${EIf~1*1LLp0xzw`8r%4%(;K2ZHrx+Xlv zPGMc9@Pd5Z1lm7(Z#-DuRH=kr3EQ7#QlX1FVd)dk@|u_9F^BCT4-v$Ftk0enksvX3 zQ^95DIZMvuyS?Z5EtG%%R6_HZ64~eb$xr9fV@CGtYvL#GJ)!uVieLP1@%zN$7yiqN zU-*RLr%rh~p54OZ3Hyo6ZTc_fiSG|x(?7&E=~JHXN(nM-sm4SIpih7}M$Z0}CI#i5)l)0&J`t7Tz2fl9suU zNSPvK`QPtX^WyZdXE@Zu$;CsHJyq59{HnUev#X3}KcD^U^6ZCqJ_{^ZX|u~unX$|U zm3g7?%r58I$H{-ry_zhhoAX>LH4(CWez-l)rJpQj%jxy83+b$yyjjgRi?8L9 zi}hxCv)G*farw&+@3d`kQA#jpJVYosXuQoipZxUx-MhEHz5Vs_{hN!D#E)+-e*FF7 z_YXwl?Cs^*motHvcqSS_IjC}-&2G*<{=u_3e)}ckOa-5PEmq!S+6(3bK3-=Z&i;MI ztF7}s6UXk_xq-ab%bRj@f@hWmr#!tcEi=|4#Wu3tiMUv9jpUU@KMAzDe?ti)A3DSxQ(U5*f(J;cd zXoy4o3t^aX5^91_(hL~@E42`f0Sbjj;t(yb9B2s`wQ_&EtCUzmy~x&L2XIVj0YX|; zT7I42BglhkRgkh=^)8_#4KIbCk5H0jlB*#dHKbZP`neKJ#L|OoOZtBzx~yx~>egE5 zoy$fW_D~hP{_QoQ-T4WR!+^q;Nnx_w8fJOr?KTdUj(kEgr$kNn(;-g-zYhs3w}~j` z5eTuBV;X-p=*Y@NI$7S)Q%`2=)j5*ac3C`j>)l;KIW{og5rp)(_nAl{36bix7m0AU z%#l^Bur)o-59JQX88XXT>s}{#2@WT=9d2%b*{c*MktqeQ5uYqv?7-RsnLrp_l_AUstDRl=gWV^>RgG*mYlF+k*AfY>3epcH9W2J%D5a#P8U6qBdNc3IKxDusM)J~mua~Pu z>AwG4FIUUeRr&RnT=*;fvo3$7!t5q%@@-ejj#Y5@;yK%G?rH5JA$MM}%>_!2QYG`t z^I(4``~4ousudEU?3H!Ptz&lVj?*36wr$(C`Np>GbZpzU?WFU@woZTl zf6mo+>Y~QpqpoVy*j2mMnsYvx)MkAiFv1QdBXi|(ihn9B%JVatS_XLv;rH@O{n>Wk)ix(5&n*JjVqaok9*n!On6+alIo@6 zT4KYXrZ!R|ayfNusCUF6-(dEU)6@(p4PoWKmm?N4$k-4lLPSD)il%y;s(3H3Ti9x% zc%%%I)t2~Xs}W7_W%{b`R|*d`3{w^=0k#)kB)Cxz5qNYSrRh0mJ4ID%ils{p)iY8} z{x>kdif7tzp|&>Sl%h_7gBDj=?wY&NOf1RG^RX`a!cxSQ8wm%BXo<}~Y_sqGzB_X> z+6`mcKz)Uh;Ul{Ks-)g8neZ5y$bpTGZP|)C$JV$P;h&ht-eb*_LUKRi`4nx10823N z(EcnqjKcH@R+4aW+!4A)=Iw&=LLbE-WOs+m?+n7Ym-J5~Mqa4RQnK>M?r%fY&31Ei zPo5X3llTFpElABYsLSwwF5+>I#h4~EeAH@EMDL!skFC z=rJ;Tz(yYgJxF<(XH4ZtQXn6f<|90ZfFeW8eDuQR!Om;LEmNzz!(y?o0E>v_8Uf7%8BwN8HNqo*VBn2)(bzf{r1%(uFg8&lZa+^c-!Mq- z#x0mEAuv4To(t^P`CPG5F3GXd{ z<3Zx2o+gnFQUc|CBNuE)oYLko-flU%q5ch8>lGP63v*nJ&*1YWA5vAT(0pB9LYWj_ zQ%itEn3>My9h|fq(O=I+HDN&z>$s?u!D8ar<;V3r+Zfu(Pu~fc%XTp;d+7-SyKFX= zzRHv@%_c)|<;U<|0JIy$&wni)G3*kA-IWo24Uai(iN%H2XOMPs@>>Ezh6;|BpJ45Y z5eGMoyRasVic4BWMb7lLvEVOyQ(Da=dHd1Y+eCQ;WMv#GEj`x-PI=e)$A90v-Na`d z(Q~mcUUue3-fCtM5$7~NMcwkjk#zqSyHFP&Wd8=8cVVmp0t}p2*#(iiDQZN?i5muH z1=J6fIIu*42*LDPD%73q-Yz6zmB>$6op#DRD5m)$=TkSPB&PzBKbnRSC zV!Q@G0g8wcfSHi~^T=>0Yq2FCQ-p)knHK#>;ZIpdeWNTqJ&)?nGmq%Kt<6T^{^?ga~+6hAE(wPF>6u95me9viu=aoA~E(^S4Alf>5}kk8lXe%5;M3)+}wvM6|Y5eKhkRN<&v=ikKpu#qP!L~HGf=Q zU>FOAx>?}NC`M9X3_ZOU!P2ccmD-x+nqXkIc;2%Pv9*rb59Pa3-G7y9mL?(Jxs;({ zu#!EiWZ+0uw68ehmZ!w997;yZXo{Tygl?Jv+#NEwHc%vpmnFdU6=^3iE(P+vHzivB zmXn2KyIjhFZO-){E6Yd~gULwQ_C(PBM9P|@?zp?^z|kLfAMfSMx3&-uWYPf2M{n*Y zzGr3%RCOrCkOC?LLQx@D5?5P>f4gR=`ez3tlx5j;j17^MS-bbyxA4?^ z!9^Ew_d+CDJm}dIxr%BCH~CK(0sSHY0I5GV6pE!Z&~s5#3W#n3Za+KrWK8_M&$(U7 zn<`J`z{jHJ*6ML*L?&=V0e$8k5W?E6JpTkOa5cKw8Nbq!>Dw%LMLzknq=#1j+f2>I z@ZY{@7G@S!qW?MI=*2A4I$%Kw0GD{{PPn7DIr{aU;FBXJSA!ACC2ML@l%4c8I)f5g zJzdNZCR~;MkU;a>v%(jE;ZS$T`@AL6_wprHgf41TI$nJADwll96lUTEPfX8WdfcN9U`YLHS zeXj54aO*!SHL78@@8j9U2{WkvL5KzNF-Xd}k*D+1Hd0rc|MzF}o(!aZR}{59+$H2a zs9!goUhe08bg4L23o;-O(%8hwufk-<= z3gjOBAsM=}Y5IH$3y;1%-9(AdZ|f4X9S;99st(;P!aEs{;U55^vnG>)e`(CHGhNmh zYE0DI$cCJ2^OUgMQC5r42k2Ui2qt+^ebKd;Jzm`#K2rGLnkJ*M`y4^Xa@c>XIIhq^ zq`duyX&3wAc9dbJs|1F+lp;R%P7pN~NoZhvz>fdKEBSsS6t&$kqfZSA zfzbm*a4FNzWa%Y3gYfwcX7VjbYy`Q1kXXYsI@6{(uqv__%6!Z+7oAt9<}OGiNTGbQ ze>~8)H0Mh5y(Z$J^iQXnBOB5100aTMJnoK3;Tr6l+^}5spke_K8FH90!L@wY!z5ga zO3}{HduM>*_Jw;>1{iXVgJ4;3CW`5Fa9MIPVPUWd+aB4bDBs7JaOFIG@43ba{3Fwygfli9LkXf>26 zg!0x=DlPY5fh8_aI7CqSqI0sf4jJ?Su0eh^4iNyB<0lXlZikKpNX&_cmKXv1z#wx< z?8TB#;Z;1Qo(x&~*C*5$a}%bhKTS2Y1`h4J2lCyGZ`A;3M}J#xZYt;I{aM%E9ncj` z1l|T!kVRuEywOI+vC&J{pXRoN-Bi?@ZM>px=U%U6r_LUa(=Yz6`?_vbKg6%Ee%4RC z01fEFP7dL6+7?#R_~ZV*dW)rdZLo-cbN^VQ)%HT^*Fn4m0^L%vV)qRm^Kt1Fgd`#b zsw6?^0z=OhKb5iU)Z0@{1e(PxAz&~TPo>_Vzc(=a1lnWEqp%7S+{Is<8FaJ7R=(XO z;x(-nooFGUGtg!zEz-PeK^_&$utCKv;|w_ES^Ed4g-Gf98^8rN7hV1x9vtBkxfFWR zQT)`N&=`Dh`Zs>ivWDBFQ&YhV+(~hf&R1Azh;8KFsnO&>Or5Z0JZh-IMeKG&{P>)`Is)LME}bWBcx`EKZ7<0fX2H5`@lE*2szZaVtJJxB_jX? zu%?0ZMftPEKUFJ#8r@*w7cZ53U5yHn-%1dxhuzMc#Vs@lSWSAkU;l}r-e>qrYZwF@ zsUWVDWKEyy+g8;QqJiRD(7Cos^g005NBiU5tef&X4oGv|l6>v&W6<6=y9n6n##gOY zk~QdLBmM3*`i!GkA^fh@NO2R1xoZ|n*S+UxI7TGKAm_a>h9(BG=t9#Qr;v<9E{)Y z9z_h{*j68^#4|PoAq9l2bnv!rN{2Yjb1jzl#J#kGl~cT(t-%eaZ3Q5v4qRk$>K>|8 zo*D}Zrw4|Ooj4`lAEBe?k80L?!4lRN{S*u+xCnxizkhzcR?FCmYRt4bL>*`LRv!-f zN@7LioOU4lHKGVnPrY^=1#b-Z6CCZ(2pBB6)>IJSw7%@xKZUg>35+9 zFykIuP4Dew$YJ{2?vIPp2cjaZT-IWGX;-hYuRGZ+)BIjxN2I zKMq5!l)L{pxW#nj$bLU+27Y+oiX;?Cc+-8Ssr&p%1DC*(cD1B6agGS)_o_pATp zI@MOn`+a$c3g~geEmp((5}lqOQGj)Rnb>@z?h7o|O!5GZy#iK6uHC|7RUBdelAx~` zms{7lLJD~Z$RT+sK|ZM(?}j1VX7vgM3F`g4VH)}Ok*mULv85!ESxg)rb|*k{D@GVevSO}8aB?ssYzEvrQqmc9(b>|k6mvV9s2+)- zxb7U#{uZHF)}yAH3QnKJ8ZTr|zBit6J14-Wh#2+|KBOin#mXUCwyyIc5!0#Yc`p#r zHeN+KBJJA(5&xNJi=|u+x?W>g;EGCu6(73+UrJ7REe;k44QCBulKpdW6V|-4GWC~L zR$eqfMLT1eh=AIv{f9t!qSQt)+)L6pE%aDS*&13%oHH@4ay)1LXR7PvqcPVe@!*7q z-C7a_ekT^0Cu-3=$d5OB$kgpJSQ1$H`X2UX0{)*ha*txu$9P9>I>0VmyMg6??|S$# z8RmeDPy@5S15EB~9rUZWdI+YF%l^jQGgk)yv0-OPsMtTlN3!xu6rFl3_U$gVP*&yC zKXRKdmV6871dzkb;52aM3QEs3R+PLdBzRekvz@`SgX#v?nJ8F_DxzyBf|WV22-0id zi-KlE^C)6rl@GApy<(=3$5o!DC4g+QL6M#?0?rAgFw}t>nVJ|%+92hTOUxa7aX2S{ z-}f~^k;f~784QQ01;pXXE94nCKT`~piGkcHc`j5{t>vZIg)lN^#vG-JgAV6DxPCuQv#s`1()boAI=1ipYK!mtRxkjixLJwXtsTIrQahXBHP9h6}HHpyq zyD3XgkmTWvmSpJ8<-~Mykn#u3U@=)?gX3R|cgi3zt2w|8`7~!%PHxS$(rycCg9nA9j15A!XU6<3qD_AngAooThkoe~x zB?^g->|@nGQyr`9rnD3WIk9{3V_RKH2N*Ww)ksBa^+uiKFGEWT_6>h#Bc+B|9xkrj zmgyuECwh!3ArZ^Pg>}Z1)+N~h$W_8Onnt{74ohK#bwAGz;RBuev`u;Lg+c3|H7}j5 z3NFGwtQ7x907#^j$SiwE-7=#%z~Z*6Wblsntaax}nEw9ug6<$%g6RI26??|wRqEiT z`H_lIi$KCOtSnGOqrfY5n^+vA!h>>>KrS)Zb`Y^PTO1#vBQwYIIB%r~$YdWP=7UDW z@gad{mB&=!#B1;j&%m&#Ajst&4OW;8puB;?e3oSv7M0eI;j5h1u5RlgpsLgLQ8 z_1#J=m5$6X5A<1{hRn6dHz-MD;VJBW0?Z0k5u&M^pKJ>tt^lP(1B)1}%}Bh{s#yx2 zb0Cc;fhpfwDm6+u zQTF-iY7QA7-i>j~npY!N{w*6WV_C;YUr*JpF)HSX7Z&*_x_X*+A%o}OvrXh~H+FM+ zbNeKUgrqqnHShkQYQvYL~nX&i7A z$B2%wGCvz+x%_$s2p~+ry0x`&?s{;0yS;y-UsVTWdBOSA>#AP+YTBl*wobde#I5mu z3uK3!IGZ9J&AC{AjkJFol52QPgJ-HY)gqZ#$G{a7b$4A~2KK<$mui;!dOmQ(U<%jq z0D-?o`bRrZ*XwRH$J+$=lZb)~)n6J`GfWqrjlg$C!q=BE0c^rUIDBM1Q-SQUIc_LM zXXrvIe#J%v=-8Av`oQI`r6qG~qK;Sk2v>OE|EHwF`rjoLW>(I$fD%wjz_E^|Gwvvg z-%0ISSHQ6W&vOA)sZ>2_nhw=y0#JoCl~BMy(l%NcN+4>gR(^I$uMwz=7fiwJsetm^ z%-hVXqxY+$RGp=B+T!VQSihF8$H$UcJo_(KXUBLl*+#?^6DWUUrRLKjFfUCl`fmKq ziRM2k)_|T*2hP84$?{Qv@vb!+`q5}yTCv%*M%OP!M9*$5tSBGf*ZXC6{hs6w)+pp? zY*Ry6Lnv7Je=*kon)W`on|a<>6Ya9|VOsl~_`O zR4MB&j<<`mELr{TyQax7=8bWNMNT1U=715H;1UcipTuIQtsjGP$+hU*k%0>$T@ye>* zi9dNO6MPXP8{iqC#qJ`b@Ip(<;0?5ASz6-9hg(TwF435=A^ zkoOuK=je}#)_Bi+ngkFOja=FA%4#Ifs{${e9Wr=2qU=U1V_blCr_F!*)Ptd zMAXyvB4c?&)cB%GC;5cI^XA5Q96OKGwQUH*wokbFlPLSYuU@ZOz1EK*z!*WZF?mWh z2n?;y7SX^hBSL143t&tSzM+KWVWb<_X#(06r?!4yya4A|PF2qz8Ft@%&z8Y4f?hG= zp8gnKZ#Yu|ggr7?d$si7*f##Qo{zU^&=QBSz_Gz+90`AP1r)oxxOcB(Zgw&liLXkb z9JAzVk)0WdIHQa#6FESIY#WmN*e+#o-~`vIe0jLAV|O=K3M?^QkX%duIkDZ3YD4Xg z#OdAfOe7_gNFN}CXjmRxlu*Z@UGfw*H#LZVTBq;?c#W0C8)th{8MIy|LJJ@V5x|C~ ztFeNA@oSz&F~mdM1v1~g2C)%TNJUB8iMjV!90NLIL#i6O9)FBjj41fC7-Ub6vq#EQ zfuomOy=&6eS2Ihu5x@oc`&4~>nW?7k+>I~MfAIc+84Gr`1w&dJr|>sM{E;baV^Y$7 ze3YsKh%HGrL=~xmK*Nu>g0&U;Vss_w95fuQ7W``BY{1iKUjVmaMrM;y7Q%6!5w9BE z$xsghPbegTA#@9fRF)GkR{}#_6wE)sTN#1&uRtXwQsH21gWOyX97;u^ENmDxnZizv z!5P~Rg#?7mIv(-t8i`RG4%+ms({PfV^O{`)h%fI`+5RHKwF65T@X>|A(XlfRt@OhK zoe%tJ>r8JvZ`-hsP1j{K5bZ9Zz@mPuWx9n^RkG7ifp*P<*?5q`4F01i%SB^zz;nn< zBl1skH~l$GUpGx^q4%YY)8Z`rAoJuXxtV_Q?HMA0vB#>+!_M_0Q7T+*v>*+oy@rPY z6q24f7=*Pjx5g3?73yj*XxF_jK;eLSfR(XBpn~Egn{=Ad>)1XS1mhRk&o0A&?Wk`5 zc2ptUdOb%ous?ud5FUqa4h|VAf;9WeW~+R)Pg9LfD;g&oSvp2lXFcTdaZYQL7h%(ZlDk68d1fNI@s1co>0tQ+GAcp!SsmJ-n308I_C8&9v zqCn^VK(S3Q*HCI)Bb#}X8FI&O=T1v2O_=HkPFM{q==Bq)g@gzi@CR}m1Ca~?LrWHq zCy95TZskiBOuhfSgMl4W{6?Bo$mrUG6A(cIPtTJ$P`Y%%7@0@MEyf6crlnAD3_2G0 zSj+i&vv44ix$44DAc7$1K(6~+evu_ty`3$b&Uduw(yB-KbkhCVxi-c9>9E>bHI>6c z(c#i2TQ8Cg8jWZcieFcO*&`4I7~E3V)+$n1AXTZpJhcj%hEhPv6F{V{H;OQVY-XBL zi|H60B;*ZfdCMdy-tOy1lckSm2HmF6MN2A#*i&sA%A3wLybpMu*eJvdC$3X4mZ)9g zu=`qApBaw5>^!MB@Qjus+&!_T(M--?3so{mGv~{yBBxCoewCY#eNw^$NFW;SVlkT1c=Tc$EvokEA#T|IJ>eY9X5+ttCoi}oa zZ^Ec+;CT7@NZrT^6oI-06i?tekNr(XEs;*K_-ZNiD=P{jRPH42zamfwT9c##aq%yK z{Nu1Yn=NyCjtZ&(4I9Y)lm9$v1Pr%$<4NI#B@cw}nD2!pE=c~Ar&==hjRv@W&B}(| z@Ka3Q5A(rB)&;^UU;1Rkd~|Gr`)g*q#}diaV>#D$ZC^DF+_gddye9_J#=VL_09z&D1x@wE z2HZW0>|22WcA%T;LF_U@`Rtn%#@HPwS^t<=_n2Ny(JL9(=Z}3rz@`4g!^L3g5v`E)LpR z2PyO&wd9l2F}=jV1WSu7!8E4V*tw0ZyLTky&))1B%vI54jCeDYEfiwijuQ3bZjri@ zJ5*zL+MeC&@(iPQa7dO_Iq1t-cPALaoU*9pXzr;4}US!_EJ$YC4kwFETO`K1KZa^+RcoV4w^P7MtgnUy` zr@uqDfRF6AC%?gj7^(L-M0#c>cdfI|ehH`o;z8fQf7GOXJ+vNO8yg&+?RfG|^V_iZ zpvk_N{<3nubO>VS#+$FZRl#aE6lOdRw#8&e!nQm{w%qEc%Bm3>+_B=NPEE4SrI=nl z@DWdviE_-c}?Q1i5%RZ-`H^LuY>Wep{g&&-g{Wni@#h12;7 zFIUc_a@GUD~c&%pJSWFi$)j8r;ws ze~G^qxb{Fd2XHLHI{eKu;LWSGK7AH(Mf)#Ls$`gV@9XF8@-bM__=i%u)k=^&yZikp z!oP0U)<)u`zp8A|YptV*>2HB{LlnrRnjc%C_I*#f3b#Q6ju{?(H|NvaOgEH(TDQu~ zKh#Ya_=rjlyc!9Z=mSy}X}feOPu-k5%B*p@73;tiW_{*~wA)pe`dj;B`pTC*8htFq zl@_054<~bRd*R(oSYPWKl|`q;nki>0*myPATvesjb@01gQh^PVKz)e+6)~)82rXE{z`|f zufw@m#6xe71op~NPha3PHj`_GtA^N165$6@ll=q>@<-YCSHXqu(fGuowal=Mdqop? zBCBJ!m7hu-Qfg0_S_xI*FTC_XGdL@i$Hg$F^>V(E1aAUiX_jzu550%rnJc$5>X=; z-UcL0-?`5D=AhlfXSoB2D9^snO;2oaE0Sd1EI{7lH^Uo#+cP*BS>Z8kSX(Oxuuf#4 z_XZDkYpYjlA74hmO~GoCR360nogOJuV?9l&2#g$pg_Y_5VvmNkH=S_VQGHj{r}$`9 z8OejV_o{7DR$G+hJlP|TZI;y#Jk}%d=&A&YWPmdwfI#(>K>+k0>r#jpTnq)UqJMs;A;@_ODMk*;$_w~p|LmnP_ zJ9%;K_^Rrzo`8R{#S`O^7|bH9#__^8^w6#x`m;_e$FKAE>z&<>nQuy zW=i!cznSp+TGz3v&&TK&LxEBP^`9)1Ui83W!5l`YPzD?yfm4QyUPqaP(=8lB%XmV> z5T|lcY`|lHn5l7wv<1gs(HR*Q;|#UpzMi%&21nl2&hvh&Wij;>rkJs6%h8Wq)PkIg zvG8-&oRWB$jPdOHHdKO>1bogLL~0Ay%QF4FCfE?5Y9}N+Wr)VUTpfj@hay!o1zTI0 z865w^`Q8f`qqw+ z2f#lNK%^2~E0xvM9$0o<4_q8C?sUD#hro&0&;$Exwu0(?HWt;Q2OMRn%J4$9qp#{a z!`he<829NDG;z><-w0Q$tkcg(@7UfagDrQll0QQ&TH~Gdw+%W~6{fl~PY~Pbj0+GN z0ms<=@(1a057Mt1y~*tgOp7-NGtlLsQ~)Q-;W;z-5Z6u_V`f`4hyJ_Gq>+G-X~q{v z0x^dmpPKB+_Lz3J1}P704k)6=L&L#-Fd$9cFbpOqI(0HjtPTuHSb+kp<@Jq_L1HO< z@=`D+8;~^N-AQprwNlh~S;kMzznm#dQNq6tf&fu%9Fu)L*M7(MJ%6{@qk)O+1hDZ7 z!xzyU)n{=Jjwwb#0>uA_-Yhns002f0)PzR0j-|rmfR8*5+5cvX}DebKRP-AKEE^Ioa0M0 zOsE*^dxKQd6s=nAsCXD%xS%#$qnwn4>7)u(DdHwH*i!Z{eamvsuHs*5eyj(}zVIjz z)28~(;U)OqDS_dsKVGQL;uLlUjL^c&B zz{f6rg9KBhN)NU^=#zFupx`I?qSKmqA;_#>{Z#trb&>m}Bi{fW+IKw0YD3!eO-h`L z<17IPQ@mg~<32=iOMV-9Y!SHT(sGn}_QxPgW5Ah!bI9O0wi6REwZgb7wEGvhRwn{# zFH#Sq1NDsm4=EQesLav;=LBF|jQdk#G+)-)-mxo{VDM`I3uzE#^^j&9Y}-$9wZQT- zJeRipNLL#Z)-UE$buD>1Kb6L&UNF>3p3vBtLC<^*l&y?bezPmgpe)BGU-2Lc#by$l zAnhWSwI!oa)XPZR6B8`!UNBnVQ=zU}l`QB-3E1JbDIeU4KUxT<9Rffc6q4Tz7Q%TO zqga6sof8^Al}pg6cCe6QzFwCldpVl{y5T1@x~8d|QMsDhL}_bz%rKwTS$3Ojz}pOS z;~m?BZp~_AWs3d#RSiPCnQSk@`%TMnT5~c_7x^W^5p@US%U}&hl6~1eWtQEitZS1) zD(GXs-xiTvy-r;LuPs27INnodHLl!MvnbEVFzc*kx@WYR2XF)Z3n2WN?rg+yvwSpe`>}4qDPH=D#$X0mFQ7pg8YpciExW%;vI0BsCPc!R7|g+fm7%8 zJ#M8HVkqtKeN&%4);C*ggs)l*6yH7t^8tkQ^>=CGE~x;BGLfQvQtl`#hhP`dIN= zw*Jk(m@CR)ngdXOebta^r`M^T9v;CCJ8;z*UGQ~O-L7SuPUY1eghO}Wxr*@w?!W|r zxrv=K)3{xFKA^ni$FO~S;^z%B!-=g#ANI`eaU)JXURI1`t;?c!W0z)Pbc&@Eowd4x zV^(_l$Q3Ql+*&d2wcz7EI{k*`P^Q-6%%H~AUcfq$iv_GS!V0;Fg`rlGX&WWJ7IvKH z8R)$Fje2ENsKXeD7{9ZxhRMyT+4P)VL@ zNtQs{qIr#RBVd*y_+|;4Y55HZAb@s z+`W9h<_DzpNHC?-bFs->6bA2>4JjSCYGlA| zmbFzLR(+MtUGq!(g^NN@Q*6tVa9<2haW?dmzI_#n;grsQV^cryPypKrDL(@#6?w_X z^&hKJPJ`H-XpAVC^X@C4Wi=p(=uFmPS9gK8%!FH^-ITtboA^S+{F!ET8Yf?33044Q zEkdYgI@S65z|Z@&5t!az{$WmX9H9o4OIAj8GCfUPx-athc(UP)m<%)ddf90f{IS zp8cOps_WeT2BZ^E+bx0yQQI%I$B z?33HJ{?z%qjXu=w5)a2HZR@w59<6Fv%Q z;e=GDg2O??()JMkqoid;p=r&@!5>SOl8$=t0 zBY0{eW-9%ZUd=zfW%i6*deeXLZ_&D2Ml9uiMfdjxCxnG(!|>Fc7VeTV$Yx|4XEO}o zTD;_sL=@mE2G#%#3xoy%^0-_ZxlRwXWyo$Wq}AdT~505^l#7wj3ydfvliFw+xMJ>4p8ue1Ue`LqG7V9>-lrGiZ_rGM_*G@q8LC@t4 zIdzX*awsf07iWF`IULR~u}+tLavB(fP$h)Se~#E{dsJH56Qk7vMwJXRIbIqHz3Dq` zy^;CXk$aE9GYBU+x1TwNK0vaedLWL9jWfgK3uP&G_~j*BVu~Nm=x*@0DgzPS;2wqTpf)d8AnzK)oDAPJ z^YWPuvK&>s8nB@N7+FZ$6&9p89S5~v8tjs+EuW&jGwY_xlr{w@3Mqkg;#7LI_Lal> zhu=Kgs+Ff(>Lp43lB-`6zk7&RRukjYYo8ftxXym_{mELoXCeMEpx&hORw+!oX(JF@x-&@;qhNPxp6dp(eEFe>!6 zqKdxyK3npsUh4H7<4SUa^d0T7t%IPqlhWE+o<$UHN(!xGH3hr^3yw3)Y?=R@Hk_3b zW0{iweI%(HRX9cvN%FNuv7r0FwIiHMbQ)Ft&ib_*gnDN1Pi4|2t4tuxxq{!uv+St( z3W4Rgk#%b<@E1AKWiyE~Jkq(okR8tB7Lc1#`}4m$f9y>E-T7l;|EHz?U&xfJ;-p;= z19I0p^%D&A)CLrPEK5KnjH;C*qH3}*x&+5R7 zBAku$C8eCO8v8JZYj(#3UmDKKj(F+`ELz*6MLimBoe{c93^qgA1X>9Uo!?Kv*= zByT5!pfJqAECnhxnZw1pUEG|4E%;bUqXRy-w?x(6ilRqgCNJ}cuJ1^Og2ZGFBN2k< zudE>tLmtVJI^$6iJn2xj4&J5_PMoyvz{d=ct4WbYxhCYdXM_dG8f7#DCFiJ97gFL8 z>ZxFt7{Uh$Bat+>WH7?C9|fSKts)bkA`{?@3=FNe^)~eKeQJU5hE)r6MI_!Ed)9wBO3<`%l|%s z=qGR&J^OpeAEkoEMUGc2a>ko2^Vse-n=Q7L^|nRzF(Z~!WcF{~b9~>|+ULIND^fGL z>&&Yc?PfEuum#y9ti1)zdE9i#{R^_icGF`AYY@1 z!i8W>jqJ@W2QN{?7SK!19<8vaoLy*ulIm&@)L2XqFEJ2acxYZ~XncJCfY{hiei3VK zMF05Qq;g_`Oei8lTgav`Vw9#9$7W_$Hb)Qs6aF|5CvZ3rUT$vcW&V8-Kk59O@_<|n z0j=472#Z(0!hl>zf%%O-bl~0_Kjm1v3?7~hhlOQMPLAaR&8214Wwa+n8ORLa4eJ3BWGIxHz_pYwxw{QDjwUrsQt8YQEKWd?3 zy{6b)8*^0J85>++!y#YOp6vY}^*G@8AX6?jRnaz6Ao;W)KqCX8_jeEgsXFc+zuepI zUw4GuE4CFjkRo>+0eR(Ld+&tU?%urQM1B1;D8SRN)o@z~-o}q!xwr3XiJ|#{1491S zUYKuwKVE5N_*DS&j`-^QzAr*?^=?}K*|(Bv!1so(Wqv_<(eXFnF_IhDT?^iua{Df! zyvRI1$M`vEXGL#x2F8-i?8?CKy1Mo;S@Yq&Pa{+9@3ivtr&pixTG7Sjd-S=-6zcDF zEz0}z`bV1d?3eE`-dFqBF7`{0%C~k{T}nXn{`IA?ff*=pef_k3piBRY+X$*{vA4FI zcJ1iMb!p(I&jQcvpZeW;sviz1Kz##U4`u=RO~eLLJqJLc z#`jk{LMnuwi~JJ2)-3)aas#Qp0HADoXKxWc5RiXEGlE!PeC0pWP<@MDTsH$hvASz9 zt8+tQ#tGpUy)QbwtWN+VbNz4I=7taCZ{2R6{PWj3zWIQ`JcFlaRD`dnbU@K_+Km2a zw?2CHKH=CytUo3q0Br{z>Y1MR^ta$NuB zvry(c@Oqo^9lob^^n?DTX7!*qe!rUoo>$s;uvg9p%jDL3<}0|XvgHHqPA{S4Q2*2K zMEetRml>e-4Y|9{26%h+Yny%_(EdKf9`wFt1E_v?Lbd?<-OB-#r2zA9Rh-XGl`#Gr z-uHLuqwBwmy;0wtEAF9-`e~m8R}Zt|hxD7BcxkAvn` zeRc=G_W(U!0{QTBAZDKZ8~)6FRc!g61(}3^(F`v@BK!f#v0zMqSAziVgrR_km^rr` zBeSt+gN#Xgo}S2Nm9$vj6S1}N?S^k{Z2nHlX>6vz(OkL!zuErf)u2w-JMYyAf%8QB)D6hK-&Q4|Am^R1~#{KDUgStFy!(ls|ObQWo(6 zkYSjgh9$m#ab+4V@Fy+4w_&E|Ofs5g6LoUp7#wF*CA5W$2Cc_FJ$UzfQ04sI`6Ghx z;zKyY97EEHDpgkQko6j(a^w~iwjMwAe1hg?vMt4s5b_}_GN|wJPxieRo|3khrQT)F84B|A)uu?YNj4#?YlXo z$fB%e5TN3fB}W~5)h=?p*y3G8xNsl?S`t;siLYS+{bTtYPb_z{xW8M*bUJ?_Wh6b_0mf+kAT6SaB_d?xUKeBNM~3oUxnX`qD@WK5EkM{i{1a5i_iB;D#!V7Vya zXOgqSj&ZE3Wo|=(Vc~Lx*?HKla-9Rf?Ny-L@FBd#2(syw`;l=Bf^Ay^rev6$G3N#~hXq@Q4?mY}KMq)W+_g$d|0lF8sYngx)oM5xUn`r2vPh!Ew3| zZ#lF$sHR>79XVtP!*4t2yfbHCSWrKUUCdzlt(OHfbP1yk6_jP_(6hkqC5XFt6>ap& z&0}LQn?Sv0;kg*VIWT1ac2wf4VQO%z+PWTG2?9M8Tv7_`am8yQs>+#UPmYmg1xqdg zM8jpW-XrBei+en(OPJ5LraU`iS_Q8<;{X{hFhch@MPh}OTxjw0FSC| znJIR2{S30#3sAye$ZgKKyCqy=CMO}>(P=2Q%(U(<9@Ub2HH*vU>EWxW{&be&lp0z+i;=x(*2-xR zc)J)ti^b5SK37m3=F!HRj$JcrJ`Ix#%Gr+yO>O1*Rh_2^@U5}I2WyGW<>^#J{DVeO z5wzBafnm0cs>@&CV7j)-oK8An)oTCVN|N9*C`xVK0%g~JKP9^GS4AZSPD{)FYEd>( z#pCZrl^@f`zFlDd5LzfIRQV;1%0m(o1;99b4#};`+^USPx_fwaxewkH+CX?L4uOU~ zKK|=vGABU{S_YDn6LzU>POhs}CfbxeVv@@>9-4nQOX{J{s14ZCC;5z2 zlnwo1PRyP(WrgfTpQ^Jzv*@+gBO?ISkJ3D2z*tHdJSF|<&UI9(F(%t0AXmp}i&?t8 z#zN_?%mv~?245}Cd7R@m)Q-7!#MC3J2f!T5pH@KM#$t&nP zaMleW9GMj~_h)~a!|uso-7$Te{mAr~db3%#_GZRUnXYR*6D(g=QwvRA^n-KEw^|-v znIJ&WM*nbvkMp5V5QH6gL@J^|9uAZD68ISNSj0Pt8EFR+c9zoKs&i8r2#GvnBnzdw z@f~!xB)i1%k#7AyHqx9nu9CEh`4(MSElD{2%@272jv`^7XNTOCE}JqT-52K zyhJMr3TA(?XvE@TyOo0n?Fv)t>{;U{CPrIFN%FL+pJ*Om^`c(mYVGp9(X8@3*(JYL zu_Fac)3t%Z>Jx8kmdc@@L?agdV^h6eR7JrIkqWwq=!#vg8n5n$%wjBe3wZP9%T&V8keJ?d0!b8t~+q@AAEsF!iN8 zX?Z4@%~4J<@44lj^JHIHF_>RMh;TR(7pd};bugslcw-xeMnB02Rvsuy-_4s|%)_tn zBqAUWPThy>!|h)(QZAYisrF?G9kU&V6JO1GTxAh9iG*#Aj)yhBVjrzY#dGR-!x+jZ zNr-b47RFyTRUP)T$i9oCtJF+>zM9>rai2r{XO4F_2S1%In%q)I@u$c;kdnSG8HT}51 zQca?Y)UO$4S5-+5H=mj7-Q=GhD~%421!e+C%Op6@HdsH0W}`AVi+zH*S?vyRwk6YPuF#HZ@%uVGrN8+#cz_^F(8} z0aXo#e=V$0N)1-=tLgL>;n2Ut*R6jeX+PSo5(4pfYlgT`pbS92#w}oB zW0BNH6enwDlHQSpPRm}`7bfl|(Ic%jp1cNwDSNY+{OG4Z?JsI%^Y*rutidGn!tI;q zHc9+S%kXu+4V?mhvV+C$udTD)C{R?y3P5PfIUxtD}RQIWl{j@(+Z_P9d^vr|N>~#Vovx=FqOlH z{pg3zBz2poxtG*5-;cA3UidLl?tblZlci${^Q!a~Q)o8*+1Lj@d+kpTE~0NVu|ZIX zCz!JLL1|yZ&&{fKMbMPi+P}k75$j#}V=JsyKiL~4)aMs0X<@G!oj~T8y^u zx9NG=#2SnBsqe1bxHl!*Zp^|FzF2O=uYO|&XB%{5=89o9(H(#MKS523?d)L#J3@3J zBqrit&BNPU#zloq=132D(ftDf`KVi!IJ$|MyL{~7gelgVd{XgxO37LZ4zQ<)Ze3Mm z*pxl@%A7&e!qeFMf$`RDO8PtNUCet`OQ$MRLRCeU0kXm8oo6>?;g#@FlSIIHfLh8A-JJS|l- zj;Jpiq__De-RyPk^*v*BQT&(}E^v?TUnS1t7}C3HO#KTbze)m}rXX z>VLS?!)Gf4 z$HS9FH%QJ%9j*9wJ1?LSKrFs0l-A(|w(t6oMX;1r)Htdo<#7au1MyLSo1OR;@^a_| zlQ^BSi6!>-Y1qUL@s`jZngCeAc{qmPGov~{Q(}MUbuao#C!Df92@O)P!AHN>SQzPI zS{LdnLbJ5Kl8Tcs8z zKct}U?B3{NnY@cRq^*yg<|kYIhFdN@;wHk}L;l4fg<5f1b^xWgZcq5ub8)}tvvh`a ztV(|(_`+cD)Yszy4e07*nE5yZ$6u~3$_l>bTVOHo|B*C|hT@b@_;v*ac(kj@&E=?c z43HnWZA>3qx;u45^~pF;W{+Q{86bfOrPhpN$HD4wI+)LGP^V`eGvSdG7dJwPlssOf zV!=JEpVeZ20OOa69y}J;Z+@~zk9<-$n7Y6 zEq|1d3`Kq-#Kl=>R^30^^t8DwzW>NzkA|1mxcSUqZyY2VKOv(y6lO5UF!$2BXoo@* zw7$zaFBqjQD3G%qeprphy>1sXt($a(mSJK0jhsPiy(?7)h?6OKm_S#DcgkBlV?%$R zbbkq}9hq{4fQF8&E9a&7M!+q({>Cf(cp!X4W)@umK8ee0E<& zAGi4JQE0KmknYcs1T_i;my3Jg?C*guUVR={g z%z5&VfTei55z_?6`H1F8l`!L^%qzr2;WL(Wp;eIntKdAb?PpxY&c>1G_aWq-cnFZD zG$rCgap}8l*Km+DHVh_OX*_?A>ZUHDY;Ii^>_G@nh*$@B)JZn;QGC<9!;f70kBJ%C zEgxWZvoS-y;B#`rr-O^GdV9OEA+ajj*^ma+5{H`K?oIIRLNyengzHKBg!CqTLL(Zj z1$sQE+~`;B;HSdEIYct z2w#C;D$+R^;C_oo`t>EbYDSiQKZxIR95YuFcH31Ok&4?zC!(iZ8KNz^do!0s7An|G zU}cw$H;^~r$G#9mTO>#V?B07cUS*_l3?q-lWcT+V*O<@XpX{oZXNnRn9mb9yC9A1C=;ni-Eo3;kAiY=}{eQEv1lDFR~P;D!gZ2c~=;-t-$YD1=|VUJ+LVr)YS%3NZ8E=0$Qcu`HtaF9mM8ACP9?KSpsM!qbI_7SMq9h&nRbnk?^YRXkAxfFq z8tk%2>}4ZBZzQN4=x8>Pcy21{$-&JdH;a7J->1aj_Hc;6p)#0>r$ZT_vuL`guAi{y zQfYMtsTiW4Nx07?pd^SE!ScUKrY`AQt$RfFcC%*oA1;4fE3Y%G07DY?j(;8{?L+fh z`Z!oz@Zc@gLc>c}zfL{ByP~Ko2nXWFY710KE5In`(l3Oyv2mzv+L)Orj;E2m=2m`zd?P3N4hj?j0(`o^tD)&J-Cm?_85N7eQ(SK!H# zb?sd*3rc_B&Ob`+ZG)96I!*jo>{gDiq~b|ARMo@!+f!o!yT)Y&4N`_Y5uw4Ll91`} ze9w&Yn&*l#9BjGy7-YuaM@5@Z%DfvCdvglUx1ouaVKTk(JRL$^IyxOCFD)iMOkH}vj@0sG6 zF%#>wi~TnO{LrK~tE@xtpqND|b$KTgM5IgLxB7fu=f{nAqmFI5jaD{6t-xMEI++LQ z5ePWLG^Ai$n{A=%1-cuF`}oMPLPlAR2vtwEU?yXpgwY!Z#ak{|9;lwh zm3oMSBVQ+7)0czK<3ETc*_gH*yr~$NWNBeqkgjg#iuA2>wDcm$790^14TnJy3UQQx zgd>9ll2Cv`qUmAorc1lT{~8|ptRt2D#EXC1YluSm#1Xtecfp{=>Oy|n%47puDaY1M ziAw|S#Eh3^Kc>%h8&#(zB_Bk0LHW=qd6u~NrHPLRNJG71T{ati_$r81iG>KBlso8S zF^Y6CIIZc0rSJuv*s0GtNvJS&#W-ja>ebcv@i^yD4|UbUDm$KnhdwE{8ox9jQs;ls z!^A0Eh`IJNx|{!0BW%}rm_`E>N(cGDncujPWsQ#~1g-Sg+$bv;rhu<3 z1#6I6bAI?4HrEEEi4h;fC9JqRX!Cz0-O#7sCiP*)>lqiw{Pu8wi%&mG_HpIITJz2PAb%8Zg zzGJI`QxKf(;w|7$^oCYr?~Qy}?<9iiX!DnUpR&H$MUTerg=)Z>mHs1NKM zDYNS>EQ(?PM~?3e(D7^a4`_eI5*4)ilDWCX&A}_%a+=G`f~bsKX%Co^?AV*0d?+oe zr&8Y3Cadt%7fYX*wPb_s7Gjr@O!=L}1Z0E(mt4oIwxIKQnNZQz9|PSX!u2$jf_WSE z!p4cQt%lxw?qHa{y_}ybm=lL((~*5M?f~XAtL^92S`CybFeZX9;=q5Llan4Z)NQ}b zZ^DHz$oW2911&}=W2C*;_RfDGTsT*Ww{R6WDw;%_NpzrNYx-gGNs~fv1HEhvDAwq5 zydJbiDQZU8FbW(+5i*5IMK>YoC<4@7YOpvE=2jna6Av+8Z(U(SbKGB!=~luPtszw- zX8DreWQXw@*SvQO-fDlfgI{s|AcZj(MY7YTYK$^FJ`j)UjP=4U$=APe7t*VAu2k7s z3oJWF<5(H^^uXyBeyQ=s#BWzkXjKOFZuuzs_AOs6yq$C%Sx)=W4ch_ShLt;s;bxVc z$?{7g(I?Kh;xzC*B%wQ;0e+aErZocHqJ70dSK?M2iPp}ti!pyKr~m;F>l^U^j4#!~ z(ZqE}T?%fxTM(x9+EmzL9#MguC-VdrcTLlFvj7g%0D*9@%6-uvNd7#-;N+I6p40+- z`@p8Qms!!m?qiMP6`_{V`683gdp*39XqznC5xzG_Ul!y9)KsnfqIL%fPxb0sk@Gq5 zTbu{Q79~cKgjat*O~AE)WSwR#-N$erfIKa?&#Rj?RcL*^Y4i;m8+$QNCQ_*8!9m?W z4mrg$RiD=#h40TkA*V~8Keg96cwxydL~!N?;~ki#6%l_~!XMa2;-ca8AWW~4LUT`8 z+b4H9uop@HNxHGH-B87;;|fL_UqqeP`2 z=3$|-(VL4Hso^UMvvA;d@-q9BBh_>F@LVz;>_NKz&p42@&Hy5wZ(WqI9G97Ih*Q@x zi0uat3<2@EJ z#-_9n;%Jfcw(~1eEjeP_R5^Egw)s7Y!iC8R?! zs$-6{9i=>S0oXUvht zAdC)pX)EdoxI$l(Xac)`+Qn?cM`)#>SZ7n#uj*b=B>ObM|8O;-dRfWVQObXp`?0^y zAxD`PJVxBbRr^#?7y)t1)!~MOu)Ox>)jM^X3I6=*rb_^u>*bE7^bIC~ziFXXT5(4ScgLfcSp9?;d}>Jo}YC zYPg)Oxb-#rBExgF#NjXq-HcJ*mdmUR-a6)>kMT z%}U}+VvXyhnT|ZXPu+ita2X~8->yA-J)<~%fBrypKgtOJl2hp8jaCALA672Ono{ex>=10|N0}{(E4U9q?86(=GzCFdrqEo zDTSpq54gOJ;xW0mMCXB$;>2?Xzj~`>qMZbI&et{dR{t=UgP(tCC&2rX$a)rANF++$S&7Se~qaU$ zu{ki?F{!kkmv+G&cUo&)jN#ZswB9S05S%Oo4F;@{5t@I{6-wP9R1>9KOhx1vY&MT& zI8`kNr>3Gh+Q1B`J_Gtl)b)Za0s!2t%d3Rg0Mbf=^;t`W_Oyhs15Tu6TB&|1!)T;( zaK{1t))>>PHz#os1sr6N%B4w%!EG~JIi4&;r2PS)R*8VPqq=pF?SaYGONjb0%a zmTd4?WGLnjhh$y%X7wOAzA&HM3vVhrr(ln4K}G7YPTu=J%Yd~&OV-88_Z$lc59gY> zxV_QKicG(jhk|v5#1C0J6p~N>*!GUrNo!Qz=k9-phm1#9yJtqUO;G!G!F#cQ;CFa% z{9$k9>5YV9Pr|htmJ{KXi_7~t$%e*MY9jwb3H@bJFK*1|fYF$F3kPJUpaTSvN&>(* z1yzBiu7&^o40n{D^YH8XEhFz7QXFJ6nC*z#pfeM{G+l_+z-4hal9EQ)rqf>F>KEH> zyBU8fJiknh{d5Bj8}zD|e#o5YD#svA4mB`H&H>v96Bqs_&F8Gwc$CLWEbz~kTk%Nu zo`r-GZWf7bw0EA~D>!guS5vC~I13LT$&E!n2g(ai!3lQBa{3I>g=EmbV^zia%s`wj zvQ<$Bi=ek~kpyLWHEhCt6OJI!%twQIipPJs={DpO>X^FHpAT!ArNwcPl>uluaMQhr z?bKEZmL2GIgngULsr0gcDkN4)93?@VP0U;xb0F$klCE}mf?S%^g@p~>Xks0h4VQSM_1ecdUHKVpwl9OfD{BMrEq#9JXQ%?(@NdsR}^aw-3|N={#7JOef0 z3%zrQO;mk>+>rzdKcwzYahS3hl>LY>SL^MN+-+wqa_J$IvOJS^n9IuWTFg;2rR}D0 zBMQbI&UuRkxm1ClS_F5VDibWXqHqC5D_^XVw(X8a9M0Y+pNb!WS@{E-OCca0ttg*&~;`qsFKc|})Y@T2& zhq!;n2pZhwa}cWr-R86m61 zRSpQlhT9bu3Cs(SPrzX3F$J{QphCRk6N6S_o&h+DlDKkdTF<^+JOY@M{3nhSfy1qk z`l-1NQb_uFC9+4qC1dbr`b~}?UYutwm)EIVD}7V;i%y751LY7n*Za=$fGX{=Rc>~~ zE(X4}#MqnkSiU)6dOa{Mv2v%`?>M8alv0=D+9{Bh!V)RiM`JZud?Sn)QFx+)$E0U}u#h zSXgs>k1Hroq{8In$@C8T+_|61)QkZy(8;(iiqv08P95wk!M2r_NG>bir$h1cKr*O2 z_DCR}bi^U-2%Kxq{6z`&$B4U82fq5QZcqLvjops|mC&e~qHzwlcgyHb!F%GFfMhXH zh#vzWhjIi&mIGr598Z5n-R;4H5Og5TFHxVMKD!LXn}t)GXJ`~_38y4jJz(q*a_O!@ zWP6oJFo$R7VHy}!ndpQpX9x0aW;DvrUC3${vj3p1nR`3jb{C`EI^jLlA@UV~!{qih zPjTsw43H(kor}>R(?|WWu1Tera>P)NLBfp2u_3=4ET&i?+`fO=>)h;RD~;>)!8;sW zZk_SNP5+6G+iNa@F#S(*Uy&|cJK<{zS1lM*T99ZT&>Of(oFpVV)B!a5?IF2}SCh7M zzvWarYgoJ{pn10Vc*-c<*Oo#D81^cCvXHg9RW|NcE8UcdUx&m3s>ZeqwAlNp?z+he z{NXV7c!`BBNK=2i8Kq%8w9tbC`Ay^IuI*SUt;&vdkeNV0Cg4hqiL?^_s5Y^lh+-#?!E8_LrID!4mzEtr01K$Pi3HkIY4&Z>O-^prn77?1JPTQ5y9)Gnp!>4se0Bhf zc@2i_q;UI_Ewv9GP*IaFhD9>&vy~%%ON~(tL&)QBTb+Mx3Sb6||28sa^aXl9KX3ch zfP;WzFHX}(T}*^UsG`iLc`jxE9S&mS8O?BU_mH^p=B!Q-)P-LD6U`4+C8hoX$0|ew zFEWOXM+w$+|1zcvSht4eRrd#MB>?WXG1gb# z;2Ht6S+ajfvS+a}&Nu8wj-Q2&ZdZt6sg|DEtrToFa#JEMB=yhOIwrh|CgpwSX6N1P z?aHZE7}NEW8?q{4ewe@r?=zwyjKfwJ(7wt7maHpv>>{?QRi$5u`RX~r$pznuWOt14 z77Z`ry|2iu>&rtxMS@Mp^S>wNaTR>1C`zjP64LVQ2SZ zA`{OKnF0?ay_#97hC%OXb`}YQ@$-JMAzoI?XCxus6l*Jao(MtS__*Jb{g}O}Il9GS zF$Y0j{m!g|O4mDa-vLEXK{i-?&1)E*JFwll^ER@RcQ*dXaH&Kzw6)0xXR?{5jLd(v z?88OkH(`bd?$&goA_F`ooEl-Tg#49cYI|7i^mR<@V`aQLSA)*^vlQK5bIdLkYgrxI z)B1?*q%a${xG?J}%i0{mW>m$0(P8%X!_bQH~0F_X9TUz0(tM zqipgH(vHGtNTT8H+f-KaOC~A#_71$-Uad(+nLg(mqukNy-D$=#Ru>Vpw2XhGpFDqF zKJMOEwNZ|23^H5@?TRXYF}0i}TR`5Vx!*tsR(YPYYa_S`c{Ki5^|w{_<^U~}#UF<6 zqxA|;+s{-$>zvn9X;orD%NzCMxd`PfbPz_V0ND(sfrdVz`8po^W>K zd4m~Me5b-e*v&|4`%FP+O{M02Zd9wbp{?nIWMVD!Vp-u)QV3+rxSfBGdbovLKxTTE zw__`b!}_KN{z6Aj64Yr*zV%*Z1>$%k$M%g?GzrjnTrfi0ae#&Z21t)uSF6C<_Ka(H zfU#M9I@ud&U}RNr3;rV@*Jy=-joUY;(Ylt3koi-bf+8h*T z$w#H7C&~=xn4D4AR!1eW0e!xY{2>X4f?x&KXO5EvbA3J+Vn9CbQ;!&mo5PkCcNYKJ zB_m~-5h^1z^EuZ1`6Wf1Ja5B$_dMnoiD!-~rYQ@!C5tm^8E1cN3S}o@`KBz*Hu0?_ zzb3N$D{GBKfa4qJrf6PAIG<~ z1gh^#r2JAw<=Ae{gHfT9x(aS(^g~OP2 z4PG7WbWt&tYTJqMDWg|eVuZ;TW9rJ}rd2N8>ZU9NjwZTpXk^d#?H8oQPo)t$IZLw@ zvNP7>r_8QiN8J>%UI-8)Ktha4H-I1i5U&A1Ih0y>Q=Wg!tJip$)}6w8RK3k{-@MY~ z6zX$}KmBo5NQP#ns=AsNIQe}sJH<1JOW{-8f$(9)XSvst94`KgJ}=cU)v4Q#(~a5! zrA@%0R^MYiYF2Mv=(n|mwd*1RUM03oUKMb*3b*`jn?U>mJ?%LVgw&<(Zw*vm5q5h7 z`)^N1-#~wljqRc-3t=33G9smXxQq0mG^5C*iEl+{1iKK@5lDExCNeK^2_q0o@_fV? zj=TP38~Ot&5}kteC@8amtMi;*5aZOvbj0PL;C4?-Sk0?0)7h)JuFY7vy1 zV%vT@J7V7R~<>%Im9xc5Tx-qFwArsl2OFU{x-M%hom6;nGS2S0@l~) z-sgXtgpz5VvIhSLZ)ogUZd8ny`(n^=e`Mp=>~48~*$}VTa#A+X_s17N(b+N? zo!(DCTqk}3`Kn18s(UROgmwfVaLyE8k-DthsuBE_cd>^qs=T_UlF!YHMC)V7`y}LK zyVdNHh$E~EvMc(LV8g)hTg%O3JR(y2I0k=aW*QioD3FYwPEqrWn4e_ShaI#v_b7C` zV+A{Wbu8m6Xqf-7%yEQ$7mISkQ`8S;6PISnPpG(Q6UfL*Y>72K&=VXRC}25fjhshX z9g?h`*10(zTr;FJe3~z``M@15V)3BDTlI~H>JIm3wzxAj#q4oL{ty_?Ic&nQL34jG zKEq}O$(c+D%U=(V4f67^J-Y^{&7?}oHOauUW$wqra#rxP4P}B20qUPgQ&Wouh;<(7 zZ+6cX^c#A&*m7s$kS3z~$cD}Zvx}~588|_t%#OsNhrE3B<<9wek7Et@YXYL5mCFCOb zi8@qqOqJ8}KjjzUdr{}FeDW~jr$jRzKehM((M(DoJ|Duug6}L8q@Kqdg%jYUVyLZIuT3VR6nlIqyD3EZ%u2dfg13qi9uTLsf_nw)=gu`8Ls(#e=S z4fGt5++WLfX{@NqPAaiWY>-s0O)F!Qp_YiJY`1ECR1*b@yYeBqv+Y>PLZ>3ih9*T z$Z=v*+B>|4`w6)v!!Cb6Ym{AF9hrfm`r?}Flnru{;8mJ6CQf|1+R#dGztQ*R&)M%C z>c+ufZ(6y4-iXjTB@pWK;lw`u4zlD8%csZ7|FF=BofbWOdL@aT z*n+EZ8Q6BWJjo_>5nIYI_JBk$dTdwBu3xE^Lr62u|H5bPZ_0mmXX~l+#Z<>2ghsHF zc?5a4v?9Y3k&MMLI2Rd{BH9&k!qmr(bH18A{x+q3;DQ-Zn)xG`51+Kfg*sc&*GJL} zJ@&Jbn!7^cIghcHC>3Nc2~@)?i-}_y&KH$tasxNjA;KV62zWLJ!Sis$<*RfDBvSTwWa3ZJr^+uw-H zfjYKZ`aJT<^;!byBG4~IqvQaK9G{gkWLS`dwCWf1=7fKLS^>-PvdLGL!Ryu6sm3VC zY73!V<{&eh82QJU%9BBxsL4e!;8BQX${;OzIlV%BML{TuQxJ2>S*eR@op(S-Q0SSD zmwDgiskxW}Pu5l^%nQy({jZ^^RVhZy{gk$D52+MK{ebYNC=u%a}5~! z_Vy=gUbA%}3WUQ=+xhn&XYJIMn0s9w$*vwV=sTH(PAq=fw&Qa85Istvgt<)f{hW1P z+mnChY{;n!{4mId7Wrd}C;5=1&pF`!!rJF*H?qULECel@tNV#fEqSCcH|y6evcxpk zm%Vgt6_8Mu{J6u0>Fc6Y@t@IX66l&JV{yo2k0_Y?PxQss@O_-wlsS|dL7%~@2KWwa zKtl(tmSby%D0nwPg*9G`!%Jx0ENQm>*T(cOm^#`k5|5n@WD$U0D;SOva#ot2ZH z`J|TZZnMl+qwd>ttdPk*jQn9E`t~ijrK_!Fm7mGo`!0~zcE&UG!CF?_oS~H8=+YUt zA^8`!m@#Wd1YIIul9r#V1+yt{J}Up5J3&y5ZskI2(%)zX!z`5z8Xkx>-gC$u1e`I@ z_6AkRQ%-;472i$}d;2mimUfPufm?sIPypmJ4om$l{1v3FbENTDZKknC>}!|p)An+# zF5uERftV04u5x`1j%?YgZ(aC+|0~ztkGN&R^k2 z%f2wZ9yuCrC{YhLw-BQ@kd+FRIH`uJ0ZfqbhtE(UGQpJR+g3YMye*<|nXp-ex|5F$ zW3g?p?guk>Hx|50h?RB6K+_+rkP7NQG@8}<@D)NcoxBB^xqC@Tm78d=Cb$iU2vpma zWr?>q)wJ*L$Y{|=mzt1i9}Is6+pond8`CnKCS`#5ha}_Arp7XRLq??ravWDQ4Muj| zVSyyq^Or;IRd(FK5d)kb39jna@J(~fL9CMwvA%00Ul$50MvHow;BtpPf0%H(HRuyn zr9)eRfyuAv4e-HxE~*{SD>M@u<7L8`WD=w0#FdCizVa63Wrw5#wK;!J&?sY;4>0*Y ztBgHv8!-D=W^&WJ6+9pV1RYCJOS50_;}A5943FWRCgzru;5rH628GLiP|BzBo5o<13U60b4Sz>sX{uI%D!K zL!r#E^?*l;S*?OBa3a%WD*w5wIq@wa?%nhc`oy9t-=@tMKP9@oeYLx75pxKc$5-LN36ha`CF!+iQ;W8NS?N(m3q@+E(pwln>7rGnHC%CcT4 zTDj3_j|@fk2hl}&Pvkhbm*Smr?<~}N5Pb1B?0|){l%7cAd1^HfzO1Zs7M=dB=)G z5ZA{yw##1WHl%+UnQwkRSZ7(|C%^D5Bcsa$x~@W4-zr6uZ-S2`KdDtJXO@2SML*8K zUt^j3aL}pYQcom87Xl0GCg_|5x@)h(wOdcPLbTq_z6vundx2T?^ujhAxlz$g2n@ov z6=x_InjsaDJZ@2(CYRhtDf4OStrwIxVl6?~WnUyb$60?5WPn~#3}{7KZ5AgCGtov> zd#Ft6W-WDhU$=tm_;!^ZwtGu;Qzp7O-3u*TyO)X3Y&Fx{9; z{6J?chI)UaA{d3jOm0jlYXZ91gddT6Y7J3NIkE{8OAVDZDuq!)dRn*n!O+L%|!jyj^3KwTaq#@}?C!f7v2RWV^UC)el z(7lW(NPe6Q62>vmBxSO~+(q3*{hE|47PJ-ZZA{?a&e%Bfy5v@DurgN9SzLqxJGe4s z3hA)r!klYL)#qPfiTpC$ltlV+=qUw<9rp#q4uU1C1ynXq<(St0oT|;RQ_o? zj098kt87>VB7KY60IOoNa$6NbHKv}qmas$L7i&-z=p&Q1vYpA{Rp_-mS0=`Sa;PR47j0Iyz?6J=PS?!w2HAMz!=XXDgxcE>6eYoy$2TpE->Ikd zX%L((O}qzvNfihKEHqkOS(1C8Tjol7jdm(5P$Q^$$`(NwmkJQ(TWR=70F6taAN6BY zj;VjT(fvOGJpjW0_yF$!r2&uu=H{?zwJQ$5X-d}pEE3y&fayTt{3q1!uhWH~#7j4z z7P4gwu^G0}{j$2cIbUse_GNRm*mmU)hzezHWOH=#G(#y3Lzk3< zbaxKJzzo6+F_eIG35ax;z|bAiAQFl+(kTK`(unjQ_1^dX@B4jgeczh3eslKT&)#S6 zbDrn0GHU5^%i18UA&Lk%k{igwCk}X`uC5H^2k`L;@bK~RT-f4>k^0r>g&#Qp{%T*LwLAa|Gz zK%EDmf`CI@@mQZAoV;9Mc2MN)K7TI(Y+!Z(P)tmO>vuXp))C?Y1B2iIbr2E?alG9T z3~~VIBET>R((7L(*d(Dyq?0%=uZM>R56ID#e+S`WC&kVM@PHwq03C=c#Kj$A1Nb#E zKm+6m`D-*DJXU}n6z2LTpo_3YdVpLYfLn(H3=Dz0-ln+0Z6Gdy+uZ@W%4z^jCkXrx zSnUsh3-H(B0DwHe|CIYH`&S_t{C6@43`RIQf#6;+xE;V2<^Ta`Dys1yJ&{}h5ZvY$ ze-Py0inz@Oxr1O1AnRMe@76&8MOkeC=yt-t=5qzRz?_h-JgzW@Uo-OlDsy|x3UHez z2uDW<9O;Vpt3P>|3j}<7?q0lqUG6hD!UOL8w`B{1+t~gZ!^X{tS04^@c7rI(|Ao1A z;r-*YgCGGye4-)(qQU@(GXUZVhVuT}e?ZU63GzD#{N=u#!Pnaf;RLX~9RuPEvxVIL z;d#4)+#vv@iyOq(`+o=iZQ%id02>$>39yFP!QgoRRKImYZ2#D|_wNGp1eo&O(hmsW z`}Oo3GDb={D+GEhg{iUI!L zP(#Qc?W#j;U~Z289aTnxZsi~gf494(G&fL?hfna2ALgnE^Mu%F!H{6+AKLu!>;Dp* z0}Kw)Lb$?yJu$age0={EyHy$Z+3hppddtl}A&~2>=y?&ejY69%$;&R*NZ}!}F__zK0J%B(wAz-|jNd#CT*uEyX z^=FkVjR*JIkR;|_%1z zT826=!5`cViW_ze)~_dTe}15Uj`u#LWtt>vM9VcylA{+dbm>9UqKhQ%#Fe(O>(ON; z@_AJAemdUcA$gIah)PJSMtf&fQHB}?t(d{iiVm{L`h(t@&@tts>=nnDps!J85y={9 zOsbOYXLxZQmBh<^{U7E@y6N6U2B^3PuI;mgB1se^KG4bwVpkf>f4?ET%r11_P9ycU zRw8>sp{t(Ds6&bO;mMnXraeltOJ-~%`-})^Jl-}XQQMoeZv{|a`tDY zFuRxDHj)d9I{xiVQ(^sM4^C$=m-|;8?sbl|uw^j&K+B2_{a$>M)s3`IsQ{aB^BCqp zCdqQUNjW^geD_Y9f0Tg9lAc*T`G+a(A>#V5v6*-Ymd>|T?`bwx@mkwz_q3-$yU#zH z)z<0&UV}&-p7kZ;+3ByzIKLDhDivvQ6-&TQNKAOJvK!;WYtbMb9|OhB%D9I!>Pi*< zbA9Vj#MvE5j4$W)ZE5wJVg2gZ2!ZYL>iv5mHP1(o$uHVRf8GziGTr`}D%wn{cOn}u zXj{1+K-QF%KR8C!PnmrFKA!Y*}UEjak0i17V~Qis>|=kjc6 zxV~|sbjCItAGmT2FB9cl-@Ij-Z5@?{&xlni8Y~4jF`nHYF>3H$XSA^MDR)0!1bPRy zdJ4pmRCdQ(f66;CG~X33Q_Y9H%Je|Hlh&7=%4_}9D%utdV#;d&lqd+c@Sw&KQ>b?Z zoGK9MZ;#;2_(fOVY17?FMyV?Bb}o@`?vW}dOLW=jElwv%=9yog_y||5DVza&XY!O~ zG%;#m?8>M%S>d^e7t(8ff!A}CqGPGFYGfSK%WFQ3f3%=(T$u$JkIBP5nz-4)s5}@A zSfBeP>xkcksE>dzqxlP&M2W}w)OJXx22I(i>8I3inM3Aj&-_w)SG{Uy&r+0npfese zPF?-0P0`Zkt>9QZN>UV_eOijGNUa7ZAg+qwsFhIQeQCn0Hf2%W5w6I&^&At|c9N6_ z3VPqvf6rTbR5a0IQn%bAHukl?&C1gx2K6YD(iJ3+?4#>1%!vNDN6Nri+xgrwnzf&g z7uvr@+jTK-uk(qVDUvu5;sdPL(G=EaGr*qENtu2+#(%h#Cr?*-Gi#s69(i|y{Nh7} zJ&KDuD?oI0t!uOQ0+h!l?_UJ1O5q!?0Zml(a%XwXVE@#WIr57TMLulo?7|RKAYPdX}w*9>!YFyv*QdjD9$E~>l&Wj1QuZTE^YqFfls7q~}KwvdP0^YrGL>8G8 zPJhCT-7uxyGu~%78tp<)wMB{WJ7C)1j6FU9>{;k`2;H*gI>!2Al%mq zI1q9|3l*1G{20+bVygZq)a?N>>q7lnJAc}b_EJQS;e28%s;#Yl|60r2tA>V0sj;3y z$?^fY-s^!9!y`{mW*`4?(jNQvX(@;s5HGJWeLF@F+^C;lm3{ z)`Mw=+fPr-$L4frYCt4vR!T@8r1+s(4%LK~#4obHPTwV8KYd|N+S+jT^iA-F=Kkum zqTp63YttbL>*vy4Ot_3jBC7P%tf5HvJ+!YK44PYeTDtY_tB76T)j_Xi=+1hBJ1Ow# zYOUU3JT%=7o^w;b^Jb`-j&&jUnSTb1Yb@j$F;MvMv(li*&U&Nk(jYTaV$0|SKSXi`++xfAOY|>=b6x=$1+<*K?tJurf z)BiOI>+S=pxfx*<(IUUm+G8q@i9|;#=72dBr1bL%ufaL#H<0YZt?S7KF{YKDPWWNW zKNVKIbe=QlOm&GYJ&30{De{WuN)V)2>%tA{H5A+%nH9G$){65q$&BHl9gaJbTX|d6 z>DYn$#8syU-FL}kGwc-npnotof`n#KzcuCHVp4_zMVeZSrRea5_t-HBpInVVXbz{o zgZ2FoD*nFY@$$C4Qqql@s#?vN`|+HyZ}dQ|f4Sm?0@dK8vGD}%QMUn?4{Ydqbv&?7 zZx)#2PYu!syO*(G40s0ZIj_g@e79n#QjUJFpK`GtLfnkS7H1S>YJcKf;PX{Y9Mu=s zRG!)R$Qu=`7nz`}`jd@F(=(1B+)ns$x*IMR*0;R#8UGzeZ5=+D-W3^ZJyn`2ht%fv zkWZ7viI+59Cx}`*bn*Rig*_=k@74zun|`uwl%ZHX*j zTL%&IoQS_TV&_)3>3?!L|MnX1on7JB;hjl~hroule0egj2Wl7NoD?tNhXovWg|f|- zaFMyYjH>Y`WRt;}-}1A$Vp-cu_F;9JqqOWXSJzy*GP0018F^hdkq;)rB~hcjjQ7ov z5%hb_?Z=L;e0uX})UN;MDCP&B`0ML+oqJ=rHlDS` z^iGs_S*&iK$dg%Ls^$x2FS3lKWPywL(l@B2PM|q=+H+ikItZAWauHE&jF;c8yJv9d zNQ_{%^8K2Ln12mS0m6Fu(mzl|cZ{&LWpv&-xLKpC-o+mgA%5Ka5!-w0j@$iJf>~{x zlOc1`SK&__2Jx6CearJiR42C50O_G@siqTt$zd#u`l+FsDpV%~lk^1rZaY_=$o1!> zu8`LI0bRMq^@?Ejtxg8f~MD<{H0MP{A%O#`ZY z{Zt!Z6qfAn@#<3w(Cl*2@(gGA$}2f2#s zFa0509)A~mRVLD&=Xc1&HU_VLvZ;+%6DQs!0ck(NJ2YbBiQY=M4{sTBMJ@Mzlz`JB zsw?(uo@fV!M0+F`;CEIv)A%iX@%UJv9KmI>O4-%1hD5^n9zTGK8;xv~GFh9eW;s@V z8e5)?*c+8UpINK+%!3b4Z|pjm)dvDcUEvAuJAa@+#yEGHoczU2p?sd$^4A<|@p%Vk zecv%X$AKC1W?h8OxAPekeh`ZJ^6u@02NQgVbP3Rbg(Otnb?e^hmQ&K{XQ1d9ohqQL zd!V;d=Hh>CKe~6)Gi*HNy<;-_3T@*#)+>ep@kjGm>8R84nNoWv8Xv-+(QjyEX!V(i z#ea<7_Z3TXXzas$-Zc(a7n*s>R~8R?1GhIm}bX4l~!ie+Gsn`B64 z;^`o@bn1OjW@Y=`EoXtp~S+W}^(3b>33*rY#!a?-f zgUi<*ofC%q<3uKp@oFL7>EMjTqBn)lFHdze>hnmUR^)-`J~VNQ{P#}psD>zbH7+FB`8uJ^)Oww!UY^(}j zfyR(#Ms?2s20E)HT2M&$bpnp!n-`0x_S3Oz7W>2+4-VG=rS!Jv9$%r83H+IuEP`6# z-Kq;^&y@@;3g~6D3I`kyb4ym&JP{h)Hnu2WSyj56QP{H;|4PW?j5P7d^M8+%Wq#}8 z49?ezv!lkF94rh`SMzo^_6;EgaMdbhn#3J*!&*q+gOlvS0A^aoPxZ;1O!2G!4t`LP ziuF*!^F1MpUB&|Rg(v!BO}J&2m|aY9G}A~oUJvUv5w-L$i}u4p907wK{WJA!dCz6( z2NPROh7@v-dpvtU)Q?u_<$n)18r8t7MNI*QPD{Qe#1as~OpeK@k4Yof0OWKEfp?CcXdp#D@dcHOhd`Cms)Jl}xA zMB#*fBs&EQA;Kc14gomX ztB%NJT_oMr{?3y8N_TqM8?|%TBNqCQq+~gwP)b<2G3S*1W>d@ld@gHy4@)OPu8BQR zj(M7PcH|u)Vlw=(#edZjUFHD@NU%qQQd$qpNGT)MezZ%t@KS{YR%qj@+>k!SGHE}Eft=*O=c-Fojm{HxAY`KFu@kG=tsY)N9RG3^@-{n)qpDC&6{Bj&3 zApQ;rK15r?YBDr0!M7;i-&FQ5{Dxk%Gf+KGakS}!b4CMlB`>LGu~e5NW|-&pj3M__*fuk3RhjB0s+_8_ z6t@r?_Q-utPv?W2xA!}=LM^8+I8*8}A#~2fpEvV%n}Wk~3yX3dd1lMw|LQ#&-@|KLRgeDPzRnEzk{WRF{XAZ&ytn zCuw2pEUq_4a?uNt*(23CRjik2+O|bTmhC1K?O1eIZ5`Z_h^h32`Ado(x&~x zTV8^F(SOO&JWj=rFxES3ln%=ZSSQ-J=_LfUxAaHwMQ~fcl5%UAon9}!AE|NuHuY#i zUgFF6VHzy7+O6c9%LLjL_bGEwFf*fV+YuIV^fKCysiN<#7;}3iqIjmm!#H6wWMhF2 zBvDjs=Jt0NoC`?a?@-^s0~9D_K8DNP>35%1N4;Q@Ko@7Kau# zqYw^xi|$S61`tf6H`1}fI^^BBCz{n)%b7GWF}qyY@L_9?%cx#`6~DZxoxz{Fa@3cD z(;6Z_@6Y!oqK5gq`{%M7YM}$~7E(!_8AFR9n$A0g^7H zkbh(|UUkLTBo^2ZEHtUwY08g%CuN;&ybJ>CXP><|4qmurm z$twzA43e3u%W)uy`F)g-KwOf=&3X$ki*)(Ma3|4pLwPKKIb612Qx5ZXc73b`?x)d4 zA9RksMHl&PynY1)e8wVjxU{=TR|gdv?w>2YZ~P!H6GdfsLzpL7iN!T<$U(h~Sby)7 zm{O>U84@C-+jFT#e~~mGXNyWRJ`st*|E$l1KOO?or4*64e(OGiO+MJm=EV=d7Z)8mcHNBgtN z>cRODs1?U=7_1LE626fzdC6Z}+JAn&=JeX6tIKzzd)$z7y|HlTU^-*S4^8nLrE=M!h^(?ob=gz*oo|D2ONi4m2l=Q?n% z1c2ck-;>-wTpFz`xMx+a_3EPZ=*+he)P;tt>95Xxy~YKf>f_;>4%@35k4HVdWIcN{66 zEL61_rRhb80e=@?wpkhY@%h5LozK!S2D~i-Waf#$1!75+n@0G$qC2GCnX!ZunZ_ko z7%qpjT+;H^KZq>Sj$(l@6OsWKxw3JvT7v^cw6O5%>ac=(_kr{M3$&(DiFiWm*BRdl ztD|d1pZgH)jfqHuDO*Fwci(cg56VeZE1j8|4DV5JLx0m`@PnB?3Umk*Eje*h;0tPv z?NW>nyohKH*o7-{Qa)RnOE{Oin2s&)-_Fpf{^H;_j7n&atl4Ch-(r+dFgs8;Sn^?< z8Z0x&$TiRghjCkPhriTRZ|7}m(MUE=h53f>Xls9C$$X-nX;>8HRc~&iR?4og$pgHC zKDivf$A28}=Rji3EBHirCdR^RRK1#PYk`V##IU~^be>MKQ>cR4((g|y-@{~U& z8XMjpF7~ea_DmS;)J$kb(s(saTL0-%CDz_y&gqp%+%s&>?Bmz>?|MY__K(Vqx*X5$ zc&|Bk@-;1eEJ%*U3Mp=1{Zs@U*C~I8XP{oFyMNFVh=t{9Wu_L_MU(VrwF=3fEM_H#jY;X^VrblDPn0oOf&E%Cob(qp-I{Vb4xU{T z{MilK{VhR1DLnBXRFZsRRMw(0YEI?*5_&SeYLQlqs76I_Y=FdTjI#7ZJf_{(1eNyp z@_((Hm)yT#>qX}1^QdEt9k8{5)O@IZ&K~$G%mixgl}hs60WAn!>G?DfVkj=3hDqcd z5iE1@T6%1(y*%W4zU*mRy)RS8rrbio5T#`_3pgoCY;+RJlUKKqpdKW#TxuM!DWC6o zw0PAkTa77ij!jumMx@GSq21}yGkxCxN1}O zt#KL|#6k{?q;~D!o!lDSC_G(G3$TuxR%394!`N@&Sf6pt%CsY%4pjOQSb~qnX-uRs z)c~K?KslFqj@QYbU~zf0k?kpCv48BmwJi%@6E?D%7-R=OdRh^~3F1En%>|D5Q}y_w zvntU@V~#IMZ4W!rDW3{2<4x>O5m^h#D^X;oxAK2FfKn|C;nNOQ!4oEP+-0SVu?E<8 zy`YL3`>Gj~+qH1d~U?|;@_c8I)s z{G)M6gA0(D$LM35r)BY`nGW6U3}(0>nEb@eSnN`Tv-MN|#Nf>Ub$8qa?dGRFJ5J2D zA5lH}t3go-qqsTu6~;gI9SoKNR25jAWm(xZ4HySyX6eA1^K@yfPnY!)b?pT9QaLc| zo<;%JX*si#6*TvmhHD6Gxy-0v_(Vdzs6RV%Cxe3i6iFi*NWAC72@l z7kX*!h0(kee(Gdf4J$6?WJk5o&$4oeCHu6Qsi)I6g&*g~<}r5+Tpfw?t;|N$y*=%( zQ_=Bu3+=8qwH;uRMt>Ip>|n5*hu$S*G>_Qz2?`Qac6(f|HyBYverVb)BOMp5Hs=?& z%y+-DkAD*lZ*CE?pl0K%X#DMs9BE>@+Myiw=o^|&axYbK?;<;ETR$ibC^Qwjpu_FV z>&*WEpIJr4?yBstJknYM_xe6@yU;|7ioo7S-7jAt?NKm*M|V$PM3zRrTSx7j&U-mMR_chiG@-o#5vqs_mgOqeH1lj?qxD`6VwC^V zSRM9O4ea?5M1SqY;)x**HAMA)q<7qA7%oI?$-f+2=MjroO{CPUK$jsr#Iwh4L`jQv zgqzWLa0voXKT&D`7OOUWw*5zQV79o7iVdqAcEeAK-o;D1^$TGRIS+LQ2OJjz?Sj(= zv4gqD%gQX~;rM%3G+i?@-?i!r0pa~~4-J?sH5nHoOn?0G8V*<$N-jqy`8fS`A~u9} zO0S-uGqhFsE|;hw!KO=F4niIuh(G6&$N=2{9nmalg41W)e*kiEj&TG|W*a)*hJ)ZufaVt6Z=)5)xn1 z@0C9t>bVh?5ZyFR&$9DB-x2<}3T19&b98cLVQmU!Ze(v_Y6>wiGMBOT10lBt+XJc_ z0W`O<_5+t20XCQMj|CN%UJ?Wk0Wp{HJO&p7FgY`q(RTwVf3yWuTp z6g9Oq21?n2ofuh}Soi?q3JNmZ02UT@CKeVpL`q6^kdrm=FEb*gCeXnVWDDl|SAe(! z(8%f4CSm0Ce;TJ?3kJwKTLW0x0jykntlWGoEC4nZ7T*5^+B)z7B#c}@rT_&dfUGST z=!i%uZfoc605Z35dOhYpuK*eoS^z6AFE_&<=>Sn1paaOn2n?!$&Qbi+11sR$;if$$=1PKh?W81e+qK40H^{TfetP}Q^4gIk_4+00FNCYmf;L?D(4D3^oNi0A3FVsL99!luJM1Ooq&Y-D0$Yhz~wb_apY0cId;AV5hU%(6mHZ}X*gsHO~vj!Ms?+lcY_$%bq zg!qrm9Owk#WZ~gv=V1c??EyeH6AR|w^y=<*f51PStiR2#9e8`%+1dfjUYh`VgUo=h ze~6xrMlL{rlY=wR+wGxi4(vWXbu7+{=@!i2AcheUx)7ias%kHylRgX z!1DX|_uI!;d70XRt=<0#|6{()%Bu3}@8#(K?D%h=n3$~_z>|>`z{tkQ0$^q3W(9D+ zf4+GCH;b|n=&veR{z;Vqo7n^ zaI%=ZK3M;srT$0C|DVEtv;5yg{=WrDIa^!*;imb+|Nn6t*?_Fw{|a~&t+UhX0w~zN zt^xReL$!c^F0BI46y$94zg`(9qt`_ce+8SrikXp>gNcRXPdms_3giYfRR%ekSo|rO zKkXX7SIrs(1}fV+f_{HnUb9$O{>S&aUnW+s-w(%EUH<7Za(rDjr$5H{8v|e0>A&lc z1e@5J{@yz_PA-6vgM*Pf;_K*N5huWt^>sl_fo^{&8^Fv2wsm?<0lfC?4KTBHe?a^_ zW^NV$v(#_XpNJK}{Qhsm%MD;Q`Umj%}ZU2UBoB(D!(7(K|r8xWxzA`)i z3%>T`@(*NtWp?`)d}Vh31OC^Qf15ZvIK0l}k4<@<$A9o2-#sAE4QPTmKVxgcA7oh_ z)N)%XO6bbCH6j3el5(rf#yIj-AKs})a>8IePAxNIL9RqMSv%It;b zW(`TLJI6I6iPWw+iE-@A%QfUwyyp!O*$i4EM2=RH*gL*LhaL!J;z;xke*|Gu^By%y zG%xDvA9L}pR9Hn)+_J$fiftX0MH%uqM7)}Z8>&uC#(nBroR@giSsOMnfxn{k!jl!# z$m9gt?hxZ#E6~?^2l|#Ux`{g@{bgMOwoWNRoG>K$`-mhs-c)EV<)S`j6}lXxz4bJH zk0~Zit2;p(UlhBQ-lKH@f8!fkF<`U(Y1=uEzst|^pyV+_bUCP&m?O&|03NhITuV$j`>Dv6cZXlkrCV5tDy+LpQ2`noM1pGfU{=1%G=y0a4-K|x z(r>c^6^L6yO~k#B`G*)>OD9xE+N7olx+Ol5Kg{EoD<|&qBa+Pze?B~`o8k)Bdeh;B zi#=LR7WGjI`HhPYngkCqhKc4XD9kl~<$*K!gw@2%%c~5VsoFq-WPN6qSH*Z~`Y`|% z;oH+{nWRP!;ZwK4IIfS`GD+qE-M!@vR@vQWlPI1s7T1MSm%ZJBw*R7zjW8vDCH9#zxbjUH z=uFER`=phh;pbO*fo^330M3*kTEx4Gkm0*8EWDslub$%FPHk=yW!0~I)RWzqhu8wE zUEy(pN$sdo#%HMO-#D`1(-nI?WgZ|*0Ghfu1IMa*$Q-yje^KQ!OOfin-@4G+zVq26^GPp&x0D zwLHiiA3t31R`hYlQr)P$smCUuf_mN_bs@TaWHyLrgYtYJVqfqpJ{nwZ2oJ$vqW)nR zXUh{hj1qX%fBvFJD{!{{Ho~if{agZuk7Gmgq4I|-#iD(ta+ae>L)YG3W@up+rDRd5 zIgygru?L&OGO^0c=A_sUlY8@&3BfOMFZd$A^xj6B>jPd!h$J~KAl~!hZL_5m(KVnV_BYKMs6B~q; zDEIJmz|-wMus=t(@KYn_8G$~%H*tZltTo6tR~Jhd;t?amtKWuSU{!&6VaD9(^Wh1K ztwjc6Dxa3iP;LJb*~_ktammd(yk za;?W7IH3nmm$N z``%VFew`9D%j04A1xuheq$LDXZ4I~g)RV??lu1riC+e#G5u4mOsLZSGFWwF zdL|*PTOL^NcF;b(ll2TAl!LBCLfFct*oCyzXoK?t@Z1R0VRP6YvXfHls4y!;hPug} zf1*JxtSI6%<_P9zYxbr%Bf`b&!a#%;$F|48)}J(ln1Nnw$tlb$bb11 zeIGn_YR1(!ZPf^aHYr*4No#%K0IIN=b;RxP5_|_vJ%iTn&9e;05Uw;4Tl}`3opRND z0*!adq39Zo*Rsy-#KGv6pd{zTM9?KGf1OM@oXW*yc@r!Rf+=}A%@MLTKc;$~cdaZq z2@9U`3gHyjBBafYN)E{PzdsKfp5;n)@xH_=;9wIA6GDaRDVi9%u>VGR=JQLStjukg z!*D><_Qyz$bwzuk>YO6nY$h)LZru;*CwiPtO2&ftkmT>znwb+0sFB4vT6Cr`f8b)L zjOnuVZ2~+A%V5?uV(9eN1BYk4#Uep4N>y1Zc#H|7SfRNE56z51cC86k6$6CNjXuB_WVRQf5R6~^= z>Xt~(dTFTB3ljZQbYXOOsZaX_f9fxN4wUZx+)%2 z?k9&^lEEf|1{^NDV9l>0jou26HY@@M#QRDBIp7v`A*jqd@`ON^m|a;ZN$HCiyDfI+ z&wVXp`xkmnRJUa)cMY6*M>sUia=^!$matQUSzOU8)gc-qm+XxI$IHV0De_o3zd)u`+b-qtu zYU8-gSF#-h#ge9>feYQ*e;Z81)D#!twJ56J48{qD zGb;CWBDm*}N)7^yIcU%@@Kjm65WU%g8$jIEAb8YmL!vmZR`!OkQ43b!#}r=#8lUZb z94j18#Ee2p_5+Ao?25gW%jtVg|{^)yhfX zjKgUcduJppFVTkCCXeP`#chd7EKY1feXOE~>tUIu0I2ubX*&zRemwXewQGTfNfomx zqj;G=K`#*jeEGzef31riT+k7m?Frja#qh%=V+{fqP*x~ev#Mx)r+i1><9Cf@Ed?8b zM>6NcF>J;OP1A>@mEouAZA=0SG;f|%ew_vIgCI*l77X1E=uR0ei>m_aJhXemNu`h# z*N#HjBk`TrMLs4(k(&oB9}efpzZ<7U-rH3<;G44tS-w+De||^pk0sE~pQN6-u+be) z82E*8T)V*O$#+JIG%C0aVgXSYVK7&hjpU~{J)<%b$-~v&q5LAR)b_id&>Lo&%h5Mq z+cU4kB(4XiRLZt7= zmwhK?8jm+hf7wj}^jN2v z1QVmc_R*+2<_^$F13^;uxbFAlRb@8Mydf3iP;v*KfTpVH^7vW*@&e|x90Brr$g8`U zF~M%m?fucy33Msir_49L!qjheBF)=9=5Va5i{e9Xe^2)rvbP9FYRDT4(wao;#ihzp zlXPsp1nVOmibOGC7R))$G{>F@5t@;HB$}I*#mJtR6i0vmROyV@yf>|a6FuQB9@A2; z`@zV@B(f36BT1MkU}$i)QS?f8lig$=P1d=n*5rY z>nt59f3k+>Ha-$XdbLe7V2(RI?_(usHVlIur~|*?HaN7o6~^q2Z}#yNabM^b(q4bd zFz(#{zPbwnW7~(iCes_*@PhprrgQInie`J0wRC2Y#HVY|V@lOh)b-Z6+=z$VNpYak zKIa5>9JMguD+M~_N@5_^XEmjaF(vHWeUZ;)f9;WV-w8L}F^D}`kED7^hu$Rp2&9eB zmy+}M^Oj}09TOoQ;P60OU0`iX_$9$k0cC~H;LmbefZds1Cu20j1CvvVA8}VfMD#ht zPI+0yp-#LD^ewe-&g!GRm=6h6ejrv@`O}vKy#{4naNbO76! z@@&%jfa@E-u8wSA(Xnb#1$p+#>O48Lf4ybtGjV-rzj$4hHQ;j12n0iAMa|NBl2Vs^ zh#YfL>7o;6YsE`7FvosfgH_JSHmBXoJ73uPK}% zqodZZ+Rui2FnSY_)IXp129H`vH>7H($5YL!c*GiK%;tl;mkMcUA!;g8$y7eAe^DBb zi{SOx)5qy6H*krLZ90>bbbGJC1S#{qr-6aB3|x?=ll3+tGgMueGRUfPLhbKqeh+a; zlu-bG;Hj|6Ln1*}t;%q_Ny%9HT#lhSvohmrFq*6E(W5eCwY3Uk4>zSitLel8Xw%=p z*}p-l*0Yw2$@&CU7U0B9{&Djlf4AhVn_{AaRvXk`qB`aI8+(P>!P2s}!O z7@p)zQ}C97Nja=)G13!8YI+>o9F{gpb5kI#RaThFu@+ z91$Z>!V@W5F8jAU79~*HxFAEnPJZi8Ib2Kl0M()AS>1df!Dy${FAzQ6e;gdV?43F$ zNA%LCLZyNHb+fMz2aXxJX`0{tYhvD0_c)NiLrOlyoigEaCrbY0&b(Z4A@h4a?gJPW z4;!YSRSxf(e7~*q?sCSUoewh%^}T)-E$oIG##^4gmVpoC#kHaqv{m~81m$`&xRLnV zdU;fF3rT7&&DYPAgmTF$fBO*|)PU_g->NrH1RT7dC|ajKVN1hH^t0%=ThP)B?C_uI z@+TFgG*ym2PGRi0Gf1wT-K|Y)KJ<+B$@+$)4&U@#yt&_0VqBsJQCY(|y#qPLP|Q`2 zJO?8X;^p8>F@$+i9t3N$Nr7LBf9a`2JX8kz~rUQ<#8(hN-{OtsBk2s(4@C`VEh^gCei|k#{o)rC< z8qGcrMX8{zX(kTx;gFNwk$NgY0-IQbQT6JZMF!ZN)2MO5;jW_6w724!IQqF8mM9O~ zYf>BL)n|>Ke>wwq)^)%c7iQO0yPgowtJ9GK!_n{F-_uh#*y~87I;(%M(@eoIm|VmY z%8-qe3TNdB8l8$Ph18n<9FQdPPXDAFu0p3uM=?8P^6jy6VIBpeOD1#fCLJH!Y;bO(*lt|19e?7?fYYl<@_ee7AqzuQ^6N5GR>+L1nkmYj`5oo+e!M}#&?b!Gupa>6zNYXHNlY}a{ln9{v!?YE0h4f!qKSPC%4 z_|Az?@y_{B+p+X+Q8!j~{K^BUZ2wejC5Q&FHtzHxd zIB<{Zixr1)PVt(pOqA?zqsSrxcnAxrXk`}m<3!@VWk=;B+Rz9V>2h$`H~89rc;`H@ z#iDG${CU3cKzM=7Ilk#AxW4r(zerRqpkictZaXU?DV)rhi$*c}#oJVq3Up1lPC!XV zf5};jmB+xewc{IEG^iP8Yjz!M!o>fzbL_Y=0*T1zjybZzj1 z$l{JGg<dSbpcIr*Hwa7IVrI-Vv3g2ddCA27;z@ zySOwSx1No1?}Vi%fC>Mzp>2()VgL;7e>Fbv)Y%-feitVuUW|GJ_uiN^h*lseD3nyB zkB%2`|8<@r84-<<^IqUhg=dh5Lr3C{0bURdRi6ccLPoC z_-{A^K)QYM%d;EhQ@b)_M(KEiD1W!}!P>TGES`X{QwH*Mz4Q0wLvyU0h@o3ce}d$U zs5|8WKWN$J-*?0AHKOQ&StSDVZiWR67Ci{UOd1?FVnP$so@vQ4#|x_X`LVaIG2^}1 zpG%a3m@NHjw{KWIj~`{e05Gnj?Z}DZ(M*Iu%8N=cI`T;v`gYa8@~_|EcEsE!YDL@` zI7T4I>F8RNb=VL}HZoJo`}{_(f896C=hTHtFK;Psb<2|8YR7v@ux71fZCt6*Z(%=Hf%o zM#H+h!xEQR6jSBtnXQ}N{!$q{EVFOZ#+pT}K1p}I93R%#I&kfNJS|a?fB1-({=-Lv z$A>0??D@mQlSU>sXJ?um8RP_~g!=OZA}BeHP0R~t{o%uW1POQJR( z(nSX4q_tmS|9AVr#`)**LvRjyJR;$KTVuP?xqxYVxBlp%J;fV*wB|+&eBGYtloakn zFZg>1oW^KMo!s4dzxDhBe|O{yrN>@BO-!hf^8n+CQr4q+=#RYKc@LqmXTC@wY}Ytb zrLpRwm}PnSEh7VW$nUaXz#hW#NpDnyLXbZMhIObZ>}|9g9pB#Z^bqxsS*4nb%TL81 zPR>1$6^+Jc$GjW0#v;$y&way-6EEhcVA-ne-{HH@K2f$%*>`;af0o2=_BB*La4gcT ztH&H($QmPpuU4#BolXW?ZZJvg4!(6RL_uOxQVAL{!q2+2G*L@2B`>PIv(^20MAmtF z;2l@z|Kl?(-$C#R-4PB}ojVK4LA&>H%E1xbbFsunhS$uNUu((wl6*%BHri_3M7ClHI23+kXs6kWwPFO#CE>D=-&_M>51}jL3?VO?P`|yBD^!Hdducm z7u<`+|c|A36 ztUB2Y8LtQ0P|1)C9(&3QpOaBFeXkO#Aw>;GgQ0{XoTU!b2N2s4%SAwHAs;14bRlSf zT!G7Km*WPcajB-qW6BHi6zHjHhWnHs$d?I18?}||`;_|6cl5A(gzS-fH+$_jAsx5_ zKGxmT1cbhoeuY9a$@px{{!Y~PT0LMm_dShxSi%54|Zt@u5fQEDgJo|*wI{>@G ztZuOF&N6B6{z*lyqn8wSi9zkvPTdpKY_7|9geB$M1oSMuB;uDi3REp<3bhA;$RGT^dG%0peM1e(7bZ# zKm$9y#&dPk7(FUT`{LX;F$NW=w~Aq)HL4?$f3~hAWw^(5`9xEA(<&1m?vA`I z@r$23n^`J8c{h;oE`OQJbGW37bc!p}RnHHD9wkQVE-ndb@mg;%ehCBkGwm%|=TcBF zf9&q|zuOH|{4Tx0;R26*#RKay3*U(Rh8iVXsAjhgeV%UKYH?OsFx9^6`w9tqs!POs z@I7rcULj}3BU;h9EVyg@^DPHkariWf^uqDo;AG0gO5(g38qOH;y|X6*Qy7e@R+aRn zxYmb87}X_lG?NHAr+2`$5QYN9gZcE{f3~|Kw`CR@uMu5cpLeSs9vew$Eaz><2T1QJ zVWtmGBb)Om4VE-&5^q>%&Lfq3$1*qMy0~{`u5wwz<@LmolXCrRN-etr2iMT@?*e&; z2xa)wW1kkZS2uf>Fe42N9ec>GTJ_07*p#i``gih=PcF}(uNH1WQ!Zj@1q%%(f5g}D zKd$iSPkM6_rfUn&Bs5zfZpt+Y`nR!5!O7npy;@{H`>@T;^R zh(uZ7ZVSb!(X*k@`1xs(Ym6&Mf4{w{-*etItM`0=Llk~+1~O54X;!I-R%N+9`^~fp z?-!(VE^VU&73kHMnn+e5vOA$?O*F)*IM%&$g={zF>plb#P?aHKm=p<^z!7fD{{gUY zuXCRi0*s+R;V<;3BPlXOk`!`=Ka-lyMyZ5jz)h>J58=5oO$_Af7APncf1;?K4s_St zMCrOfeX0JE+~A-(jt-OiYyMQ>hv`dic9uW$Ish!SVrCpiv}7C@9Irb-qhKu$StK3l z+0%6|c(!cyQD|Lgc?8P$9RkMqL_mEU?R*P^qh_&Z$K<`7L(;mS)4hTDY6<$)VgPm_ zj{UIHjXKPt{DOkoPk}KSf8078CGn|Eq7E);I&yZE8O~PXAF+Mh z#aDij=4cfJuMHwy%%}>&BNAKC zMqQ8KntX6H=$? zFutC9Q@%OM{;VEGNIF&XHioq!Z#y4;=c32`0zpFSxhn{ZT~%e{YcR$ z{^Bk3M(Ap%JwPv)22W8KJ>!_*b!Iz-?P^qe~ilRCjQ#9)46-EEOvXG zqTMtc4*zR1ZJXH~k*=*_QVW_t8y*#=trub$dKeHy&;GH6p6n{F-KHQIyTJ`6sOr=B zO{zxq|=mv{5_I6J?!Nuk2M4 zf9vu_-%+7t49fH>73c@_vQ}b-_4H7b_j+G*LQmj)yWO0_^5Z-^Ogb4C@hgxom?qi# z6tduJ^XU<_$XwCFnsT+Gqj64G7l*7Q1tIdSQNlO}aooe24%v{Qf}A{Z(|0K4j>5ts zzCc5);j-8ZC$(9kC`gXC*#N1e(*VrTe|H;lA}h#nl7#w($55Y=r`ACQxfFUGMG8aR z?2v6dI$q-J4EtcNVo*KW&=EkSb-2BJgTd-x-GwxUQ-mHPZTo|Q_K za&$$>>$Ic%T&kPBMarE<{WyS=;pWIkJx6@7-6nS}lx&IFrlpA5+A!l6Zze|QCb#Yj zciU>h9(=UT;Qx|y!SE#N8M#ije^bAhwHdR5s>h~jeLUDEv~)CmIz77`48%$FGJjt! zF^R>|0_QftdydvvXep*@{lysLWy2a)!Z^<8JmIJ)|Jl$FX5JHhy+WZ#>6;i%=ySO8 z5wBwcL|}p#eUrv!f7FyzcwjZvF1Ys&uDwY}or1@M&@o5PeuOGtt%Vv4f6?rW^t16S zz-51XJ`e6@2$EhmJb@81DFa~-Jpie;$y2G9Hq`ed!zAsfFO&9C#Lc@b+ej6ifo;s; zrkuKi2#ab`r6RMC_iK(vdQqmcDfm@l1{1s`P{X)7C@<@!ra}t;} zvkUI)s1!v#!`Nh-2R5}Vf1^3HYquEY+c+Z+My}^|*2}WJN&Qfc^oF8Ad?|{=v#6N& zAww{z;yyVwr>@>le%tT^6p>#ewteV@X4mXO30myg?XR0)q<)^G-+tId3Y+ZhjNs@N z=9Gy~d7IZ?Gj^Vb7EEq&SlF{^fxMM%HtL{)7Hd&+d*-n5h z6Th`Mb(sy7DH~3l?prur40~U1K%|;lk8pWmjBWgwrj!EWr=ew}wLgxVNSa8N$SXW@ z$OyXV@pfIvK8i(Q2K6Up=kwgG2xB(QA zU7CJe5t4aeQJoKw`9!Fp8JH?#maBW}t!kQ+0k>pU-kQ8ZeoGAYcanS(BeJTVuSl?- zFyY)KQLVmJ-ok4R3J%ZFjl{3Hs7u|p6)}cMd`ySYf_{`_I5ITj)<-=oTL!7Aab~8JItONoUd3OC;zV%y>E__)F=Rdtxq)hrP!VtA` z65XGQPq*u8u9QRH{p5khi1wrGZM=c0N+2}OtCt3%>42Njk1$C93Gii>KoFZW5bqBsKb03s$hxrx^3=bsEaq`KuvRyXd&5rA>C~=RG#b=|TS;5qL zL8v(Kq|nZRIcpi{rFdnh^_7Wz7nAojLFwUrYP(kgUxk`W?Evd(O+4-34Zy-a0qv#~ zCEEw743p3sI@@a)^%rPI?#hJ7$@Ab)H@gvEP6Hx?M@XIUMFfSJGkIdwcH z)1=wIjnY)L1AcjHcgm7l#ugZ!jotA-pl{SuK1P^*b=1Kv$9b|{7vhtHS(9fv6pw0q zP?8yO={+)^tVpPV_IR<$q$d5! zQ{jM9A{58>s2Y+c3`Vxps3oXH)E;QgW|BnRJ&_E>_ys{o>L@0}CbC;jW{U5fkOc+^ zrr&9GX}(Kk{?44DT3AhZ3l0%;F!dv@uTdo=Aw}KEcV(wgVkQ&CMLY$BM!6081d&N? zSQX@iLK*6bVA>}EcR?Xt>app%-WYo!5I(uG%*+h^h7@aCqtaDmN z!gYUKPc(1iAma6Gu^z47mUY!`d{$H>_#h}q%Ed*?p1$ihYyt)VEGmJwj?AvQ?$d!T zl~Ns6C#A^_pCMz^#bJc=MOVBxd`g^NAJ8kR9n=E1oz7{mOB&Qgh)J3_y}G5SCtFz# zDX_64ZJtrHz~V0mLXE^Zhrdg!hGp-e_+Gu#Mh*ifgjS}|rK*o53oE&vsfvuE&1aR5 zzzCz<16U`Xbf@qGSNF`2Wgj)bu{tzg5pD!W%3?j8bS=~r9=Au~8G^FDeSDUyv~8YVNXg)gyUFZ(c)C|$S-h(H|lpfW(G ztjIn?0z()zNplgIM-UK!Og}MOp6mis-;hFda~&j)LL32x$Zy~PlGGUzfKb#(4BbL@ z38-t7L=Mb_7KPXbnIMK?LqZwLBp~?s`T0uO=fX*!U?;0vsX>E6aUj~hJ%b4I`qU93 z2;EI?Th!u4qAmV1bLh*rkmt|xg3oSR^alYM812T}7cWpfik{Y6V0X**6Bq>RNv>qQ zH`A?!AP)v$VK14hjSu8Ac|1KIZJzsc=xQRcFnf*=xg>1v{1p5>0o!Im2#ZOru;sr3BI*@;MdwNARMj|DyP*DDS%x_}(VHrw zyNl62`W6w}Xe1%`*48rA$G z_b<3dw5qX8$&au*F9I1wPU-ymZ+-&9#7Q&UTkkR$Pk64F)16#`eTNaFrAt0s@%vH8 znN#b?l7TgG_pXl;U$a+^4rVto`|zYIHF6XS=N0~143ld+Hv7T1jP@>We~PM^O}d9? ziv_3e?esgc=c>3)&GDL!`aFDp{rYmV z^Aq|(cwwqCG$RE<{zn{S&+Cps2Pnck-N>CYI@NoSU{p{Ta}P=Jiwpn3-@v7i_B5ZZ z;$YNAP0;-Vp34(zJMj4G)Rt_KrA7nMqXdW5i85FWO_J zqyx6?=W`F%55$`gsMrzUhw3=$oPI$j!F>=62Pl&(=Z_&FnAO!;ye!`PSR^))((9$Z z`z)LazU3$yd;G_jp{Wyd4*Bj+-U7XaxTshEy=KKUyTpf5u)U~?k{X(T-3M6&Jj5nfCxKlbxb2>cftbyDin0 z1kTo7&0*I~ob7iPPCn`T9b}{P>kRI3{C#^P2jWkRE!(8^m=l&{>SJJ_kmzN$ zmy5LnLheYjQHnGUB7`+=tnXW-_lUrMYdlhXv zgEz7b?j;B-oEfjB+%Bz=q=q0-s+}{fD&3fybGB5!(ncCD;X*cb z`|6yf4nVfNbwEd+7}qOXpCQp;&{8J zBTnoLvEu6k(i@0O>uKLlfU!VlT`@X2DN@r5APo}MC$li5K;LG>-47X_)iAR*ve3T~ z_3AKaPWp`}n@CPMtZ#;B3n%oIB_|vm#^-zDg}l-6vGxiTcYUTJN3%<_tA&4SIj=}wWaSGp-##oTT_qU8~H6_ zBy)DsEU{>&x(M)llEc9YQl8wK-5z~&@`+7we-fz531qnrsxENfoqbKptp8I;LPh%} z7qi@)>QIo0`KjL*iG1jTWCIo637P|P6F=SB%&y<Y zXX-R^6znJz-|UcW(9%}&tKb;L?2^Q%U=%`t;>l2S5;;nEY0h6@b~soBJit3q7Gjy; z&8cWUxugQg=;W2g1MA6@+Si&P48dweuq^Ivr#>73WIv+p)Zb6a17e zO=U%32$=*(HJ8?kZZjB$kBVITH3}h?In-O&!!#erc!A`oJFEhJ%HZAT#?rJY`rS7V z+u-YLeG0QUKPUtE^u1p<2evD&5VdrWEL?7R2vwf-u&&-L{PgmE;(%PBw@rUq*dw5U zc9F4B2|Zn(vCt8tI(V;7_oPWyij@9l;!*!wiNe-}q$35rd-@O_cB-Xv-Gktutfm>9 zH7o{ltGAmSaTn0yD@}Nh@X^q+y}y;h9$pLz4p~eN?VtmAnAZ=NDx@&FjTEzvqki&u zUJejT52mC(RopEn0q5PP$$6k5n5^1LOoL?^Yt3uyQs!+RxwbySpMyx4+$~*Lc7;< zwZXVwD9!~wniLXnn?qhekSYI02N!M}irzw(PNr&dZUArWFx2ArAzj7@Y?kYug?Hk& zgqCrr>$-su^R4`6t zin0*T@OV&g z6uMhM2LyTXO$#e;@y%-#1}1f>sB*=T6dsC8?uVH;V=@K#Yi3=@c8C4_zDc#F^!h62 zqxaXBr{d$eEE7o}Djm<{@M$=ZK$sVO!$n!FzVPe>GaRqzOR2Ps-;NnziD$kRvxf&u zwt9oz$X9luWH6q%fotpc&p`q9}o=|EQy%8&*gL~`cQmYsi z4P)1(Xpb`6qMU?h!qPs+?2h(_7(%{`dQ33fTxVL5`v*ZO7EoTX*B`pPgvc;>s=jeGpzJ1bGv@6xXd^>c*=EePl-x?{oL zOqAI6KykazUWJLsyBL)QzjpS%Dx{g~CaW7%@N-MkCT(n|*{j2dC3QD^5c!Uj(dsCR z$YJZjXXx2@-H|8eKu0^SxU*jm4bo8K_-4A{c)C*;Q(&2`ADnR}y0ZDwI&<@P`f!JF z+Ag*fJ~s(SVs;#iZrO#*ChJ6%7G4fsmnp~gX+R!vTtJx|k(FzpmWV^aN|lA@_w!g` zTJ@W9a2gX<>K1geZPE)lk5dt_j{ELeb^o+`eRY5B@7k$uaJkGIj;_VZhGs zQF03oF6PMuE&DP%KH(#;6Q{v6OG^8c^gM=GwBx5@kflPXkuX#0w;~eC)ve0L60)p6 zE#T02!Q3rBUp54`NX+!E)0LXSeEzLq{?nXPii2>t2$HGq%U?vj6OB*l_BE!^XvhZarBC5mnNu;u zyfv0<8Xq-IcB?+hg{&o2RnIXpSJtY7hfIP!-*3uqvrjDHlEdrbXkh+0zixgBfU zFJsWG{M)JqJT498ly>WobH#o>V(OY&b~GuU`n9N*us_>yzK6U3h*tehs+E5@Nl)L- z;c)M8k_WZDQ_U|*yxapkn{ZohNz29B7o+KFtbL^k1^?`;bkILf8ZFA1c^Z?(cVpUx z-fPCjoeN@CUnMtaSJ3h6hV>yG1xvq*JClgw?-LD6xIk$aVT)$au$PxFp}6J{h+?+3 zIg^FPjb34pf}ICR)m=W##BLzhhlgfI>BipLriakC7anlj;xIBCiw2{}xl2c!y=b6%BehraU8`FPw}SND28`9(OH&X%>qFjcf>$vTWoG zeZ0s+BDm9?w<8}FqY7JDIhKr?`BG*nMH92?xlnM6Ev~VdqFng{>5s|Q9mBv+%&CtU z+8K&m(YYL9%_?9P?Y742*Os+mjRBflVmKF!xRR`%UQLrNEbN7??)GgYMl%J}P)?QI z#M=!H{VdPD1(3#ODNF&b_oEvP)cbrMpeHg~ZP zV9cA!j^vQ2g$xJsHpIs-%9!6P{jReQtBS zrhjLaRRr!g1+_1cuEj7BfBAAH_4$cZ)dS+6rws@*O`ZsO7x-{Pxl^BsK|kLt#SQ)O znyhkZj(pUOVnqr06TLK5b%wP@Ms0ug#9kNlO*~NH8Bb)kpM)zS0?ck*IG{ikB@}s* zinLRA>GM!1$Q(bCd|B^r)X6w;j`#P{=)r)Wfekzgy|m}dj2S(uWfDov3*UjL`Dg^P zih#2Me+=wYKYQ^rIgh&XGeT$sW<@H5S(0E%)X8O)+LLB>g0G(Ed2JLm<|H&?LH)J4aVioTIA;ZRB2q|AK;^6M`%K%cvXRi7 z74Ud#@m~kImEmSs*w;TLyM>1SxmsE+_cr4Af068#=pc(x*;RLIxcqr{QDvN>zaqgz zcFaR%Iv7Gq3J;RfibIFKk#_#l3M}sW#=j7Cv~E(X7_`%)OThx|pWYUF4_~!dYV8hw z_()qiP)xH3k_VfwjUg5tZTNpA@i$mys{mI;OBdfo@Q#mL?a}=l{oS>g{r)%pZ#?r5h-DY6$vx@qfxj+62SyM2Tg`kso# zE7Sj^ZUnekC~RP)Xe_v2p6Sq`ugcgI+EpCQ+#C_Y>CZVSxu@^ya8TdYHa>Ga>xb6y zh9((BC*GpGciO~zk1xe0zQx02zz@#CqW_uG{u8LVqOWN=PWpUw1rejYzOw%4xK*24 z0(SRwbG`qtu{n>X9~*tG5*~frkHGDl;BWq;5Ioo2kFCktkM8unsn*unggo%xMO-%m z<1}_MZL=I*e_zTkLs53wdZ^NI;Aqb|9xD$|`6<9!e@UOcQGK`3Ly(umv3?Ph#$uT5X4 zFp(4AR^)p@jJwAGQRz1g@{|Kc!xFNy6==e^)9>LC8K+U`Q70NocxP3)DTW*o=qmLb zl;h;lSeqVEb-Q*-N%ir^Aj0haP+49mSnRH_cS+0_CZnNx+Th#p{2ACJm#pxc;F0TI z1!mo(z7T?TXP(?%FX`k<+Aei?FI}n;bfRp?Db+|#t0T4Kk3hiPDJ)!L9mPb!k#F?* zrd{MF5AhOIGA0X2Em%D!uK4K0yghkMC60rWPvqbVq|8#X*=G3{at~8eHpA<|b7VCB zRKf%@pQP*3PCL5Zya(Uk7|@7`BqMp*ck=|WKVxslA zbaXvpOQrY1#jp4?1D*a0VD_nl*Csq@KhCtLjwR zMci=csW?i~hZoUVBnwO0N&1sjUEWWyyN9b{jNw^GN?%fSx5~x&8Ok-TSAUL3upan$O9Qw%Av;?h_uN#oTe3=$8PH6- z3-rlFk&}QAi1HRdCY_~ystQHBm?H+I65KJKh>z53r1=ekO*H2aYOglNby-uyYJkps*e9L*QQ`ggu8t>rDB2&df@m_n%w>}1 z6$g3~3?aLRhFm59c&UeW!Gqy4Fb;SZon+miK> zaK^%7zvp(nO=^qPqXWlxEJ)oLoi;oD6>J}x43Qn}I1H!SG#zY*&K{;w91AX4ySZPkti0`Iz6Zg5Fy5;{_*wIkky(pFqx?h2svRjuKCy{?Nc^(v!NX z`W5B-!K*y=<4{4??E3H^PMUxke2e{%b9QzB-T0y z%1|&s1VY_0gKtC$r{rKvTYx%T2IefbDHZ#dARgjI7$))*z#$MFjUkwp*agsN2kXX4 z#78|;@}*U*)u<35ZxFe@ZJU}t6YM*ls>hdT8^RtPMKB3oIkCr86o}gsaV;#2P`gbV z7!;HPV5HbN6^kg>t?-935))4Cn)Q3fcs;y_`=*4mc+_C(7agGnE?p@6GX7)Hm%u4+ zDs7J9B<{~aqoe_bZ6I1~tB;w5->oNq&QqKv65cH7`X))-cX^1nUF%dX#Y)>tA+a|$ zX!>NS4?GK2ekk#r%I)-+cL2{`Ja^7Z?%iC4&lQ-+H@#>)dhfzZpiqK(9gyO*6q;_h zR(OuiwVLBO3;BoT3bz4zVRkgHQEla#HW#cRHdZiNG^Q1Zi|dy~ODOH$C_HSueGgTe zB_DOD;p;Sc=T2b0fQP99k5rjIOZF1dkM-VJs*Ip^?4etZ5%Kt`{QY-o@TDW|B2t0* zjZoP%?0l_&9NcfirUNwK0CE92-Wt`Noju+fdESOx9hFV)leP0(#QWb!5@;aE1LEf8 zmFDB+;p63&lHlg$~4&R4B)CZ|;i9W}dbVcYUNEv70==*JJR#;gXo2h92exS0csHV2AdTO8# zmXw``wP1>2Z}R!_bvLVp%fkA0;+qy5{bx%A07u47EVuNJBrde##LuzW)R18-w=_c_ zUVA*Gn8GzM0aE;q6&Ji|`cSAWtP_G?YxXsvDR69=+}a5xU68%UUFJdgBqVEnkJz6Hhr6)l zuz`O#n}ZMZx%CkDgl)gma=WCefPTbQN}|`T%Fg)WkiIWpmbkly7Mc+xc4(qyv=Aoa9@|rhpAQzgKqx!Pp%G@ z?07X!rfqgn_qjSrbg0^?iOQqJSHQs1y+_-YNqc04C;#ek_&qY^?0(U?8)(zo7Se4B zrW>2iwX12VG$8o<{CoZJ(%SoWe&X8i8!>f^UM@l50Z*xp4aKA5`u+YG_}XRK20jh0 zPQPDfhYW>bKf4p3FmRzU(n_|McYuU|k zUF%!VJQ`j-)XHVd_!}BG4Zw&bn*E^U9d8>vd)>Tz&s?nak48JL)0UjRwimR$vNsxj zwpXS-e1kgq2P?ff53JEU5Y=iR#oV~w7LW@^8(jkD-aJGIO6SSYo-SOoeoihy4ll2t zn^XIPkUR$4c2~f0kM^L?ro;qKSGS&SEm!1a7|SKbDTQkEUQwYoF#RtEEJN~6xGTQs zq=&puR6_1&S6P=wms{FaH!jNOt5dxm;sP0kr!FmtV9aQdBl7pWNV%lDB#YfDm>LP< zHH;BbXpA&u)_j!}dL9$q{4U=SY)9FYc<}~HBG{_ZsvJ-@DgLGq*S7_Zl?*%Pp-w{c ziBoE;2b@b7^oP3v+P8I2j~*z90}crye{rn1M)-ZTk-)81pz1`a_(QZS9x%*SVK+A#Pzenryh_lX;I>{Tf~eaZzZk4%M$+}cKG;2 z6Y$nvE3fRSU2Sj}(*5nT*T~O031*hh6qd+Nl`rL+0&~*`VlDOw)6&LmlLazB2uT7W z&m>I?3aWmS<&Yhs2r0ollX7jQZdhY4MZ&G+jZqZ3tX~_({KIoP6U6MkG70ad%?Jg+#eSGzj>*GhwZjotI}zUq}rT-m67IK(AMs@{Fqr zm5Q8oMb>PLWUKGWWYQ4|Ki$GH2Neo>Fc^V`iDd&&gr!T}ByaMugMCvOk?dE|t;q)8 zt)N?yv#iI~0Zq3@yMe@eqt4M=_#{c>!+X&n*vS3F^%ne(t}OF7GaV{;Cbp*58~VE*4WFgMHL{ z^C_km=*jMf=zNm26IdLPBT2=Fx~}OSwTbyaS4J!n1v*~=I0_t^$CsDhbE8Si=p3!f z7aV-miU+v45jSY5a8Q+bm5;#9n;oRsILS0Q8!bH2#1I3VjM__*UPzYQIaPp`ZOsUp zf)S*6K)5W4Q10Wt^5wj4pG(uA(t_8JV$>&A3oOSZRuTm8 zYfG`yg?2D3Bc354Br{`UR1TDxVY}{`G`#jgZob~qA_nVyr_ioan|&l?q5~V$xdQz- zcTPJ?G_h;J{n2bn&|jMsO?rawvJnS8k`j?GWfL}r2!F3@I`Rt$}FEF{$*JwhfK z9!bV6%Nq(q^lEinm8y#>ogoV1;tmaHEvHkeOyoPfw~ya2u}1HUs7yErK_{aTUnjZj z&e%t6J7vLp8GzJl$`N8wUi(6FmNpXCC?v$AaD;0Ik(II7T)CdQICTg$LpwVxr{^=}=bnd`a2!~DSJW`Hy)s!h=_~=&;nYuIX>k}#cMM+Myk-5oJDE~a{+^x4&RS^JYD+eya zcyH}jO(|WUz?JJVbOtx$9Aj`1Q7NQ0U!QfAR-O_|ROw)mS$BfXfpiH}j_EOD*}=Wk zjLayEX|-aakAd!Nu3#A}r1Z&@=g+syY9E9K+~7DT&_00QDwIpB$G~D^a8G&Wp_Jc3 zz>0V3-%02AgV5e=XbW%LoVeCz2kP2=JCP3YEP1d||Hy=#hta^En|CD@10OcJtm9`? z{1<|dMB*5!T(vrBnM?$XK){ch5{ddNS<#2&RSlH+!DN!(!Y26fQX|fw5MgzeaqmKy ziI&PZbfjd0TyCV+err|dz)L^X;4|7tz+x>PU2ohGU;mnR|N3Za150ezhbr`oOt|-G zEc2=p*9`lhK~6cYRDt+iyw~ViQWf#gf!E}$I#LC$%<&Qee!dMX>vFHLoSrKbYVN9Tx2}B%rVe#dwz^Qaq(F)88`y<~ZL}-BtOIfmK zmWu?u7nX%a!zZdFGSv+INg3}77wYE$r-tH0;x9?w?g-5lvai89c@-gft7~(rrWY(X z5nAD`6LtID?bQwF$+b2k1imA$yizv}wlO);`*dsTIsB@uXazfClnhb-9FpEh zjf}>hJ!I6l3YrM2x&CKTteb^w{a({DArfCk*m!%AXj?Znb|(5jAMzwUCc?Wp6r`@{ zK&OBrB|+Tyh&~*9^PXzY7;{AyjNgQA?sZ@II?s3JlxGRFDVI|F5093qGFJF8FE!d3 zht5!la(i6BPJ;d!n&;&BU?=KA+(A`Qj+3j2DGwoX}~)jjZ~rL#Scxq6?V2^$VxqwdIn zaP{0Iu&@m9R!N*MB}`g`R!?RL@)=Sb|D-C_4B<` zIhTDWCRe?=gM{%8Q<%ja!bmWAEEM~BauE^&M%@Sa1pqHZ{_NCgSs}<1I>DZcAErWj zphVmK+kE)*v@$#|fs-gGdpZ=1!Ec(sLqcR7b98oCxmLzu^b0x3CL5xJn!j3aT=9vX zRh#@`%2keZvd=H>PSLM&G968{UoCBfN*H(zsC|2* zfk5j16!2)-l}8B;F2TqXvBe1}lOd8;o96?#RPc<%q!kx7B$1VfXfy&?wK0^2k#Oql z$U9OodE(1BX-fji&sF(FxeQr|?iV83nuOitiDX1xetLhYHP=hnLDW1elrG3@pirzF zVNm4fAD}M~NoaXbVq}-Ff}FK<{5x^ zEinhr#MZAz*2EuGJa9UlV!apK?FDIy0g!P2tSYF7#z8&PXwY#XUGf6`!7D)LC$bz< z0J~{USkIQ_XzzRSmo(tIcKhS~-om}(eZ*In@#E*u6z7`0dBK(Au8 z;AM=-UV}hlt*@;V@TSwmi5<@ZTkmi>%gjkuFq~**xjRmsy#0tO*BB1E89Z=1>+!jvzu8g(MZ5q@GCE2^4UEQ%|MIHF2nU) zf(Qv!Ei+gtCT!JHm|1iulJf@j2r~@381U%w)a>omV#3zUAX>hi(AUU*NLxxMprVpT zmXbId)A%@^`96D3B?61!#{y>N+i)BAf{Tiqy$%twAl6H4GlP=T1R&Saw+{ZiRHgik zyTFhHs~(>h|8T_*a1!uk2$|I*?60@@^~;7ryjp)qgwe#)rYGBu7xYwy40ckX)vh+( zQlN8KEyuB7e>R~lRC#q`8dJePHT#T*kYwj}>q+}b!vHGQ%%dh6Sp(ot@o|hC>b)4* zxjV56N9?%Z2U?o{X!j?&2VNMX<2|6JvR3hg9_%@GAkIuN(GdFt+LI$N#^xMxcl`7E zCu_Mv)5lun^G?4U*=tg6^H?{O+Il|KEbGBAU%0WnKK$M)wgJLutADnKa)re5{G3n1 zUJPSqrtOaPhcX+nB8oqB4 zYH#XRr^a$c=9gbRzWIevcElZ~Eo|>xF;8%cAsw%&9vMF!tl2f^M~vRXC}v}16=bm* zevAos(5`XRYX5s)oGz;J{d@r5Mz5A{u(X>~eayAalt>9!Sq1dn?#QeO@m2$Ne{&E= zKR&1tGgM;D!@hz#I4u}xY63OLw080Yu~^<&9Ei-l8nUnT`xd{At)8kHHdd_?gfHDN z`!^a{)z7bzGXO<$h65HESpgng<^`~X`hPE;@ zSNA{_0(W^&;oUo*H-(kfDhI)XscU_%9jOL|PsCjlv}%cB7qeIiw$evtZ))hAUN%k_ z_EQIFL|pj%y_0l+1}2`UuE@ zk)Rj0B#S{c_gIA;jv)+gY8|Ap)}*sv4FG9LGw#PXlgpe~>Iw*i^{K*UFYSdvyn|>3Iwmaj-6n-E9 z_Rr^RNrkDTc5vSyJ%VxAmZ2hw^Dh^6-K4_2T|<-_C%FaL4EV_J^2grSu=Sg!+`LCN ziUySwAq$weN~wVx@xdF(A{|N4{W{@@+VB+LM}z$%QjaW_u2=pOG@Ft98rl1fn)j7Z z<6l6D-dclWmeh<-J`a+MNu{;JSFhsAQsGc+u@0&ZH&AMmw1SL~=IOLogXJ^+*oC2(pY#dKL&?ayZB}#P`I&4M@nEaDfs969M`x z?^@0~+R=(6Vb=ioY6Nw(DgBqKZACrZ6eBPWipcy2{|6cu7IRGO&Y?nwtI55{L?>LB zvN#wxBa-5KWoV&V)b6cpahIy%1+Fw+Y?FrPWVFDk9FNzi2~p$&K{*O!tX8hvA2FjQ z37%7k!$i61G7Ya^DZk_0>ThjKg~JfS0lMMmhOpf|MGh9?s7ohUspTR_&ER* zplc7(K4ijB|36n(QKmlJW2(FzmO3DGW%d7UTIdHCjp?L=5TKMPE^2R36i>oElgCM- zJ5X8tfCBT?*5=QBBX+oFUL%ZjKvNhd`ywhG!UmEx~_}^lzB6cGM`AWU>*0-bc|GY?A1q@86lyFdy@_!VIDM_ce6tWauzub|GxUJ0>`F5EON zbrc@f4Y`FUG|6L>;4hu?tYa6mp$DQ+-#h|)WJ?3|AljoAgjzbl-LBemGELxH1WJJG zt&12)Nwf~-;!xTeWer3AMDn^IK!}QDNpC?&4;30W#iQv*6Y&dAjz^Q|J=}-RJ%-yZ zZ`zEXPa~ef#&wPTLl$g`{Z1^Nz*y+rz4yd{pZbzrvb1o9^hRan1*BdI;r;`~iW$Zp zOe*dG6+wy$<}wk8AK>Z_xHlN$W{#SVIhNfY@Ye{wPooZ^v~lU#u>3SgM$#l*?;ywf z9p1uKMo|7^Gh3YDG#$B!PTAOjHyT?m5IJ>YP9>TItgMdfEE|oo~A3iXNH??w0mf`j6x)6C{?=%E%`F{t}vkGIV`ScmUy)gLXd~i7HBX^jyMhW!| zomEPxA7)L!*Gbx5G=~4Gv^H%N#KT?d!L79^ygoP{JRRHU8qBrkF=$oaI-2`P?T(wP z@640tXw41g&w+8hj+podOaz9cbCO@mRVsx&g9%}d?m|)z8D0T8^OfT_5>Y}%VGo*3 zkw(SKTv}y7{kiEuRagqKiM0nXBjozOYH|?JFN9M zcw1?*3uVl~ef14ljZq%^5LfXbG=VZNm1{!HW0dlW{3^92m_;uk&l`JJ+e6AMG-jc6`oE zzIzfFm1Smb?LirTj~AqDETkwYbGZv?_sblPQihgdHQ2&T? zn9(_;m#am0A>kVUr1lio63)!t)Wy}=%!tJ9e?kXiYdAJG5@wSB3HbTpnB>gtEnF>0 z*jc$!cgY}V6J@E$00vboiI9YggW~Ni7x(%;#x@WU>6raV3Mz4ei=6iye5uOD2n_>b zem}pPlk#c;r;PKn*K--Gg6uMS^cyV!p=y1Cuj9WFgTuBiYVf2;xX8IPH8Ixq$k_LX z7sj5xE^2J{P2BuF{G0S!&~ZQ&*TkZ+%fsC(S8R?<_61owK)Plv+pS(KHNZ|Li7=oI0Q>^YLhn96j|21g>9QkwKcT4O*m%=Uz=qe?VYA6YW;9X|}al zvETi4+TqJ@uRJPnwAgr76mdX$hUij7Df3F5_F#Mt%r9JBj7hIx{VL;uhVZX#Udp0D zVW>hY8bb?-P(uAHdw*OeOa;NxbPDAjy&iex+>BK{JKM^zE2 z+d;c%z&?VRWoR{xYC0aXDjh{_27Ef)lG5NT=Pml{nb7|7jekSMJ3)Mt3Px8RNtANj z!no{+3}n`!3LFz3h#{I@#!-9Tel_n_B=Yj*yi*YG6*G;+ZunA50v^se)!%j#(~)iQ zvru&KjY>rDW;P$;3y=_YaT2EIZ$fDsB!|`_V7n@fJ}tvqOk^{D7RP2k4_}XDl2$4I zIhq7>D+K5j^Z>;>sA?|wjJnGxpwq~_s?<MCiQxSK(<&+3rKAB){VN=aS&j?76$N#tz)MviMjQGY z(9=lY0F!nTQ}rq}(%QVO;y9&QIB1|gE?b83$q|`L>M49@1);{t;fzSjpQjR)$h&GP z7yf}khuKPh#^pB^p0L&1vdz@WA!yK4dmGTwL3u^7e8OEr+FmLx0h{NuUgw5#kGvG**-NGHbzP^{)cnFq@lkZf)ji<3a?PaIUri$QL?hN2m8 zE#;)?_GfBIBBD7+pU!oFG<{9*)qos0i)mmGd`u$>y5;>dvOb#|09wxeuzZ7QGZ0IC z9=X0qdB7k^s9)n?&NcC9CZ(%_g(HSRfgeYK^21{im%sXiFC2Z!xxtgu7l$(h07r~k zUs*8mkLmloaUEauv4Hexzzh~&$N-^`d9OHMwf)YK2JA)E|v zY~uXnlGxjhfPZNUp$P?&89#28x#_F10#Yju@lxCd4sHHV+`-vzVaL25-FO8&Z-2>A! z%UAWr+@`n|oy?ww{|lBImSMZPznqh$?SM{o=U4uVqYK1$&nSQuIRUn}!$Xm!gLpK$ zE*tdD!eF*V2N#KAbHF}UZuDP+mCG1@xvCX{Vzr%y`*#)8v+vj4uVOT3R*FnP}0@`&mb+CT2SR>%p~A?DTkL@dga3q3Ulho83YJjOk>n`F=T_%OdBXUqSgldwbsL-vle$;pnheZ3L52ysQ~~j9C~~DI8{@_UynKmbpg#nklH3CL2u?%AfzYHQDB~G%uo%&9tW{ zx^!7>_f>YA_!0$>HJ0#5655d{R?eSHPy)NyEy2&)*&*g06aXw=+QoevCJnk-{*ErX&%t^v7aDQ@C{awT<6HX*&_| zTSU^0x`^;iP_6j7f)@+kN)1}xA}eyi#fA1JZfKm@9-nCs(IZV3`WRmDLbr_i>xrW~ zR5d<8Re1y23|Tp~v=2>O)bY}W-OLS|Mp7O#z}?f4ZqehWSgtbqT?=sngus*$*#hOx z2(e(-c3=ej~q+7F|(IFvThz`;p9a+7mb)!k9DU-ibsc20d zyTRF&tZZszt=TD_2gHw*PpUN$S*_-*+w*TSO;Dn zvjwxWmP}xa3_3jUWC(6vwTehtbVhJ3ZC$n#I60(4EN@IdQZ3>b0t? zN6&=4TzCSlhT?hj@b#B?v}?uzTXphJ)47K}6*u9f)}x3@(-uFBfIS8@3Xx?l z+7Lm3qgo-qR#_(1#3PX zok9+Maq8(v~WA5@V?cIm>J3E<|_Ow@p&qeOa{-V8@+xpvEGL1n!xvDqe|fr6`x!4vq1V@%}fNv~018LFUlblQYBM zmdvjMn+d?$5K7n21Ah&3x^=3aUJL>;(z3T&<=PH?mF0OTNtIpN*M%{a3Y{HoaDz#i zGd?Ls9oXDOp3CjV1I|AAd4fI*Bj0v2jDmc!PD1ghxd2~C2!^I zHR>;s)D%MyTFFmv41zXK--XxBvI^_!OW|3f?d9&6ZutlVtrc#BEV>N@5nccZWom{U z$k94edY6rM)RM53suL`T%|V8wm|Ho+ka;ns>&-pV7v7W2N84tYe_qQ`tNNW9O|-ox zbJrb8yFL~}xAA3%8@bW~*2}+k)dLbE6u31#bw3KZ^qqmDVN-`BA#xhwNiQRFme82WpG+UaGkCY-I zF{3Csit3!>h%HN?(7*{U8Zs2+8%kDVkp-uJ7f-5Mo$H9<$7&nz`FQghIX7#0U%Pqn z_0rNd6gpyIacB866JV=jNaV&Laf`azvz9V1MPpCLj%uiwIElzxjUF?&lOo*fVV6`l zSQS#al4L@e_KLwO(v^@z_W4D#uKAJGjtS$Gg4+0mP5tRa+>mLKzF^sTw~qK-otV#x z30!lyksTlv4%eevX9YQ~{CjiN7Xn8P3=-$a3YgncSAt5y+P8ze`kO&20$B#LuXr2DOg0>W+9Dlw8)oqogOfm`HR3#rz52-G5-0bidTy~5doe-xYI7{pPV6x>(AR`&JUift~#;3AqwVK4*muBSc6R#f}!OrBSbhMtSgzRsKR3zuur zTYIZlMO7ZA>X;yAM87NQ&uS|ER%u4fnUB-k3$ndcu+K+*<`b&6ZGtpstl(w^qp<D0E; z2tGoVThgygiATKc{a*M$v0kTHJNk8m^YxP7uLmz$s!n_9DNcLj$sj&JN6#zLPwTLe2;k}j~=nK~`Zd;~Vy~06koxfIXbXAot>*j%Dvx_m#TN6}ypZeGsl1|A7 zPq_9J-r}QX>`Cu?I{gAJZ50vzT6NYExFIK6!Cd<;B6Tj-H;a#Se5Qw9M2e*VWVu%hkL2MqIws82^-^c_7?%Zs2}*Vx;3NLf79y(?0(wju7c#cBKD9=;BDQEl4!@ z!I+(B1RgM-^oSr1po|JtWrDkTvG`7Y_rsl71!AKy`jpym_p$}Q2jn505T!pnX>@0_ zq7T8IZvTr_B^U)#EwCe%Zu~Ga+_+Yty{Agzq9U-=^v8zB_Ua@yw=lNdZHNA=PI~!? z)|!GmwBC;PAz9`6v*J;>SX{pR>Tg)t)k(KOL{2a(lPe?u>4uctX=*Lf6y@XfNj@Y@&r z=gL;>FT>2SnU9mAX?K2hFmm?Y3IW$|B^b1}xca*|))%XQ>$c zjMh1o6_zd@l&g;};8_gI%Hr``8~Kak|AiL+AG6^3-^_x8=l?PbU{Sy(mf)xT_VcfY zQbR8H*7MIg6J3f!+bq;Ru9PdJfN9W?%70fY?{&X5QkaPE*2R_zJM}m3<9y;ltV%n> z)Q73GC?ZW4mHfaA=G%Qy2*@2(Tt`G{PhcJIeJ&vTKl`!6H!PS3WNuVJoSUrIIB zh&(SPNl-X@h?4{~(dqBEQ46M?&nq5I?)Ux3MuTY@;kcL>P1KXX@TY7Ux=U=d;u~(H6IzNSLWygbNYR6leC#g;s%G%W-IYH%QU8+uHScguZQ#}H7xNqICHgG8}g<(=f$J%jofm-CwL>|XJNCic;@>O zE~n#`b^Nj+T{^=MRpO6YpTAZ3MNm`^3HQ4-WPQl;ym&1yk}ZA3w4 z8}hb=_4m%~=i={SfZx{rnahEwyEd4OHvK1578HuP<2S-|p#d+-NG%_AyoJJ))GXVJ z$KluBbC6^@MP5pmnqsTH{XR!UF&jBx=s6%#9N6a+kO0hQ3n2UA{D7DSC1nS1rPLo{ z%Bxm(M3#pvg?J?9^jY=2_5vXP0^r{OL@L6EC)A`_*{+e6OJoLSNqGYIV9_3yH`lNp?cj6l~$ye{{IiJKM2Lb&8r%}C+eb25&G7p4Jt0k!#QmKDA{3+NivXPuvBv~d@ z#d-a3vio#o3_cY&pT5E>d9@HS=>B@PP`vrFUVdGlaO-+(F`0wdF-8H5!^^Jvu>!A+ zMrRNlyV@_N-{1;rc~2XcRxH7YjMn;mc{LDKo>h_Dvb(S66W+@2KwPZ*{<@GNC)8Pn zP?Lis;uD1H(?u!CJ136{@+$?y+Tf1R@x=`$(+%#f#s2l`hdTrEb|P2VB}{ArcSzhTYjp#E;b=S~>5yPbL`TWRA=*xBI!l#* zS8qVbw;vjm5^vLeGR{`#!f>&&%2+#V;d&{0gZup{6hJ*=Uo8f}x^$%f1%Vo5N8lFY zPYN`X7Vph5YhC7T8 z+*^Z{fkx;w_WLwrjmLVQydka-)V+#bAH0$%DJ=<(Cps3DSy5tMvjbQ^SZ){^Zg~Hx zqDUkdFmdC9e@X&b-&wV4f{~GlR`nURgi|C8D=PL-$=pJVdp6p>zN_PKvm!wmRRgTJ zh=vpyLx2=tg@b$#8iS~10y06$57GVv)r{df#4hCoQ>&p_eRsF4$oqO)AyqD zjE7Yxs~19crwBd$P+%wg@F=)Mb&{CkV+uONB@cKxYYs_cok$~RK{{j@dDx97Nl7|{ z_?gIDZyxf-{mNQ~;xZ8SclY1Q?xzHuh_fuEsK*^JbDF0gslohB=@{SVv+9wp>$in3 z(eR2y7vLW~q&RUxWTZqq%|9wdkZ-BP6PG}|x9j-M*U7Ej-+;1!pz5FC$HfObH^Ott zTnp5Ub#`!@TPgH?h;56v4Od5}T=UJcoOf1Azsj8nVKc+`G}7#SuXc@XL^9#&^#!Nj zwE>ofX|GH6?z~Zq*ACqoUA^lY`D~wUHh<7PbRkr`$_2A%fz@le#^(b%rZ*jekmR6D z`0hW2pVb6bv*nX}bF%{pN;8qL-1Wi4(ExXaK)-H`)}+E>)w!be_K;3ExURnAq(8kc zoF@#jRA##H7BJ8ehAL;#Lu@_(wpM+NWK6|}cdKPSH{MH^Hf(X{)TV)rb4BR-VE^r9 zB%!@^h+ zLmx}C^^y~hzU%YVelhp{Rf^2P9j-e}zZbANNcS&pWV!DLcHZ%RDY9czpo-NCg=m<< zjY&CpuIZqMdrE&4a-P@&ZhJgythPyuag7cNMunaSw|-j`>77QV~|;h7O!Iv&1{ zQv)ZusHk$tF3xGd4O$E9s-fZjcJT#O?5ZpA^4c;bXU>TmeqSSA6`r1p*pY^izr!@y znVsvvwXXF1o0v|Ns8)<{*xt7@-CUXH54TjR1_BkjOUEd^q3@9fw9%RC;akg#xws)F`Q~ypkq)KK##( zLU^sL7 zW&U&pd!XxnqRY^cg=+p0Y=BHV*YE*y*t3J+;G3#ECDvc#;ZP@}V)>yTTi~?)lxCt% zEd7Q?j2Z3qsV^i*A=P_quqF6u%uiqwbdjWgxmCJGIZ-oTY=^j9Rk{<8UH3142nNL{ z^&xBG(m5MH1(`rbLFFn8vMRiBs0PjaSH-LGTf_{cTK}=XolySyE5J{Mj6;aSc)?-^ zT051#cxk~LHE`1yK>H*7vaUnJm~?qT-3M%lT~o)hTBeViSCQ({$_H)a{&Ij#6Iqu2 z9?!b~3!btcAr?GFvCc@?CJ>K>*qd&9hOJv7BH|p1TbA&?xrN$!6VEbAcQkwkVFo-3 z+KB+rcH$4BZPX*00sKT=lS?xbeuLT2a%0sF7S+8ir0#(at2Z_5{A}b&#{6$2FeO(R z(1+3KGvx6ZWtyL7U`m<9td`Eu@E)f92(ofMmji1A+w>BonZ@!M-+i(a4(Y4v0sAwH zla0&t!DWa+Uxkm+(t>edUEU@kBPTGhu53(+)yk~IED9E#4hV;VCoX|CvzJj0->s#* zs1x@_M!(m)5#+^^9~3h{Q@bYcSX8YGUmMWTwMgn?iNl+aDc z5x|v+5`Z;)hF@AMplGmx_0^$7>^b9fC{Cc(Tf!WGrlQC>?zIW(zc}=%STfc%tmEk_ z`+ZENE`&6B0UU-LqgETg+IT=cMf)tN+Yhte|GTATcy!saIpB6B<}cBd4?P!zkWQW_ zN~ltbMj>mUJBX*9C}MhNxPh?F55y5#5mpW@#-E>3E65rsZj39U<_h~gea4_c8>2GL zM(Z1~N~mRery8P*>h$5ZLdKm#U&GenZ5wBaj~ePHz>JZZp|EYAj6X=oAh>?^8VvneS#%|4BZJN_{`8UK4^M~VC*qTO*lZvMdlOa*_JZN8}A;+F{;#M4ICNMT<;;JQ$|62pQS^zord~fs! z1le1+d^RJRGopInoZ9HbExt~!fYm3BF{w7WEOOfJ$~Qz;n0R6^lBU;FYXo$$71ITo zJ;euP8)hC)?RBU_kA7+->$(dP)$YPjv3G+Zq?mNmS?_DYyd0SS{yvp(h_d5_(cN7d zLVLD-Q-!v(-B7R1um?7hE?*8)1X?_nQb?OR$+*?-2t(=el)KD82!In+S>tjIzlwNKC zuWpApi>WHcqaB5PaRr;V}CnO75gXtY7Y zbFnAlIDfEdfK?GMadBm4z5|tEkJU_;w1cKr6#hmXYwiT_%b!=};Li8zTg9V+Xh}Ls z?jH-5_@x6DiQGr6Wm$jtAj)9a6Fq42?ksis+(q3N*GAaC?6B}n`3^>aL!EtN>04yq zQpb?ykw){Tx4c`0-?k+>*{}lnWqe4)=|#kAj+Tyl`;LsGXOze_3z4z{k{Q z?c4fC2wyh2!KyoR=B+EfKrJn0b;(;hW36P`LArAZw~MG|W5N3NMU;dH4K_OUoxbhd z=Elnec>mp&rfPq3dIHSSqmGTfisCj^4VSR~q zFpLum$|7$aD8yVSVBfx8z53MSln2N{nOrWc@%l(IPtE@Gp@4upJOZC=(dl1 zCqw=4mqo;4zNTK#Ve{Wlu@2B*G=dgtGKiHuS70G+2rbpi}4iz|^GTFC9*xSs428@wRi|W`4Q1i)@in1#vQk?r56o$z+ z6*XIn2KHcO2d-N@q4P(R>kfJb;>K~y!a0U{J>=SOY7-D;MYKp@jr(JkQGRMNdn-%;0j_7l}!yD#<-39HNuXQ)HwUCByI zMV_!yP}A*%+A5&BwWBdhYrw`Z5>a(GkR2gf>6M?>?pYPPt_k})8 zoW%w-ATcU5E3rkv{I~CTR9j;57eUFJGmP~tRNGnScx1?q#eCx!Tk=J$ndw(bzLisd zHrE_tU;#>T1_cKJCpHKEd90sn3_|FDJ%8R7C#+O~EpcT&$9w3WcJ)tie5v8wT} zQTrh0AA#>tcV9Q4wP$tl2kHWUmC25r(gd<1_fV+sTthR#cxP^K%uxN3%cSC3H-P)!+PffsiE=y0@g`_h| zRQt&!Kv9rPOa{uBMmlFDO%{tiD%AZ1-ihU*DPh(OGx1(n~6K({X{l_VVFoZ7shX=_2Qbz~W8S)AV zkTOjz*?;OJ7_ha3edO;F75tC0_x|VXcT%*kxq1&7!%fc8UvC$$CS$SWXHlTgIROb4 z-$fI{m;@`T$|!gY^F%?KJMfvr9 z-}_(ohX1lN=l$R8;5m~tL}M31(zoZ(hI44oas zTMx5|`I&rgFZMvNW1Q3!CMno9$;CFDa~|TuR4EXZYw*sjB`qI#0CO|E0$0#MMSRH? z8&b|ugHH!W=swjN*<_^L5QN$#2UkjI(YJ3z=jvZW5>84enK4H2bky+d>mqWA$DLFbX#RX@AyL`A z_OrRgy+RThVOEr)-pNd4UY2}Hw+fX-=JL$DuIVfDGryyRKogz=MltANf^iQ_5kCv$ z;_h?BrV@Hxgd~q@mfC30F*K~tHwyt*0DIl^XVQy>pko*nFkvS>?)QCo_x1Gjbv1u` zkl+}OqWeisq?bVGK(=>F#m}>4`utM2rLVUi_*Bn*bKozLU)MYOAoS8VK1aBGF(j{b zecjcht&?OHZyMhQ)f99;j$PXCG$imQkHjBz6^u?gRWF3^o`V_@(td>uprm{zll9N=l>@5Y|LD2iG2!mfR+pXD5~Fa?aI%(J;EtpDW?hy9u?{0 z2Kfj-DGUMOorFLHFbt5hx5rm=a|OwukuMrYa>G&V`f%`iOX?x`x_`KD zG9wz3^L2Zkn0Va#`8LkR^D;Wt9|j&;YuS${PrIU`CC7-Q-#oto%gvj&+03TLESaU!)#zmcVC;%Y9_lL`JKah~EBvU^u2bd^sy<4r&`&?F zio&8y6=xw5BKnCo!b_0>Q!zJ3Y~~?F)-Dg>z(#;!WF(-&lP1pm2VzsNMI0`BD>hYq zqgG4v^g@>1SMvv#Q*~II*3XJlt*)AFb%VWZ3lwq3t@!>T#F47vkED4~r7cSqK*;w* z8jc%Hp9Wq`TNE?0wtRUw#&23PNNd1tUluT*%nvW9LQPT?uOG<)#=>EK|1nI7CxMx_ zuQStw4V9wn(HfAD45XA?>rZK56oF+b4ehs0;?{rP?ltN|V1sts!1`tmpO(z5nxd66 zcR#hcnmoGyKWx2Ia9~Z`?H$|Z#I|i`VmlK~Y-?v?+qP}n6Wg}(i6U)4D`@8#~h zuCDH?^4veVCC4n{)>P+j~rvd8`^a9^HjPe zkRwAO%+!=w%5A6vrGn_93;W{5nm2aNPPJ(R<*F;jP46Vq z6z|@fkPtH^Y zZn=A%CL6JAo*oXNM0S_1hPr3O0GFZ2)*Zb@Ol)Y6ja&ffN{fXOdraxc%>Y)?%|{9} zW{PIN+UyNI4gZ&3^^ap?bfCF2al6-Ce}E&NrJBLn75A0uDYBAxkI8CK?}srkoezl* zDaIbmuCJV<>S#XEe{%F2z*%=^Ellf4gl{R z9_Zp(qR-eb-vVwy)DnMm;?{9p;pXqcbjsl*+mgb{(O@;LxcM{+d888x5}(x5w~J%{ z9$%2>$)QmWSMHacu99gts?kHJ(ood54P;bd9ev+yj~=b=kdpY^8S&*H@X30VAgV;gGV5K_I8SyS$xOgM zaQ1VKW{LsKgnf5^-zLsMQ|WEzww zRC(lTu3EBf-s-OW+IQD@9AK}mxn!KX$!{uieJ1@O62TN80W2aGqE?4MzA+@Tg0>tL z)|beN+lt;$Z3wCZ2L&}|l{W4>q;vOOVO*m#br>NNlu&%If+*#$Ye>fgI3Z;<9Vmfd-eHB zR!D{^j_Rqt0Tk0FFvI2UE{8uOi!2-OdC$Nk(D1O76o+*@16}qYnnJz{<0-o2AG$+I zOUh+3T0)nExeSiNihD{^#omaJoq+Cu27S>)@nZ=fmKC(OA@G9}Sx4zKJkd4uu`_f` zcpZDmizl1CEjUb)kIv9(Le7M7<;T4WyB{BhKW5)5Z&>%Y-nN_^A!iA{ z!lGx5GuDZ}CpTE2n+XvHGu8%Aq>X2Bcn>bB?01_Uwou}!sUOJ?c!~ZC$9t`(@Cu@^ zMz?kWa!Dp5ll{QO68D}tMq{l~4t}?urRt55p%_Z*_wHD&r!4X;Rb#q2#9tKV$2bQX z_2;debevg~tY9uu?;mHD!rC`hci8V)1w6OMhwVG1La>|;LZd;L1hOPwu_$Gi(7U>A z^+TXE_tW~|SSc5RX1?je^P=Z|G6=wzGd@fLSI?KV?Ky9f2(8qK)@BTKWGK0hZTZ;7 zfkq|fe4*-IC`D1ng-v#zSUf}vpf;TBe4q4FQKkTz#YR4c+1jpai}oyUNIKdO3^p6H zGa-af6QnJ)cc*RqIFrSC)p|1WFF1@@q^W6tk4%=}5SmSS8&G_Qt=8d{OBB^hqsUr- zM;C;DtDAvRTbH`#sYQamQkq`nfx82P5n<`4sTrN8ch^80oz2azji0%MJV+WYx0d1 zkA6^Q2g+v_%@mk^qB#D%++R;hj@@R!s2ZogCRdy#QbV#lK(#H4b0el8Zq~*b1=CSk z69@c912f+(#pDdKn26|OD=iT#+OUVHb|n!4_~nEeMv;T1)X2Y&#`;TW2QzoP z&~m>FMxl~TG_TIya4r+CHE;m8xz;e^tZNs|JPL9H^IcP)i*cGRx%NMUPbnup%Hnt+ zQHmj3xZ)3TZ-Jp!Nrb2^jqv@PRDD8hHa2PUb2+5lV&mKWE4@w!AM>Nc&vD#xkJh#^ zmE-?8wZnw=CbBOOnJU?Fa#1K^Ra&v;yxW;)(~tzbP;LQ6roJ)EcZPteO&_Xxg(?mA zjJn|9y8$i&Jw*%ol#6rB-lMQaJ(NOU%PVA?cKN&C+)pYFDscV+S5*n8a@fC)A8$@j z8|S5+r!5QVAMgCU)-Ri)8Z&OZn)vvgA?TLtd~mqTVk3Kg6PPh*%0CiJ&7lk*eM+IR z{IvC=O4GBBM^OTY7K8x5n?IQcld|6RagC{Wg?%B!6p8%`gJv6DkIddf%P9x?vGm3VS&LpR_ZvNavU>DhGv%1x?Fnz}Qzr-+pOLmyx`S$O4{uR=tD&|aA_ zanSy~TfqYAQ(8i&Ifgqho95eSUXs#iUwtH&db8rR67X5w?Bh+5`hy}8i~}6fmo5P< ziTRil+ll70Ng*Ivh{)(uc6-YZX{gu~RWYp<%j&D!_)8~-1FqZAiN_l})qB&p|H5@R zSFT}ey7<|>h5?wepxSss&mh-BC{f$lx(8oKK6MRK@dLSr`Ryv>w=~GL;fGJ`KSCp@ zdWvJgPyFS8q7WjUce)v(8KsK%)$oX^NW|a!YnTbX?Oyq}tUenfUskOMdj20vOyf~p zoXrxVvctR-d+efZBCC83XLG*A1Ps(6{d{Uf^h{eV_yHhkHL4kn?u?qb$!6BXPUJks zU!!p!f1=$aF4*_k7LUMR`c5dezQc0`s;JxE+oLj}p;92|1{IW=p_y``O;;T=Ne&iV z<_ZWW^WrJB{{5YaY}L87LrF~IUflB8Db!vb&VBP5J9-cIhru4ywudRL>)1k!z5IqJ zqp4LYkrc?2@x!*bSAgqjPYjsx!&y}M3cb6=BDpmT&~ax@e6Nwwbc(?!gE!*ddvjAV zpx#fUnRl<)Zw0@m@#{C<$m}vZ8 zHH_xew0@dQmg?v$jMd8~lA5cJaZNx{aWk}UfeOGdc#(c8wQmK>@p}q%E&Mdqxz6ee z&)!|gAKCg#L$n#B>x&FxG0sDjeMJywgZ~sxByhO_U+5T08MXz+yh$OsamoxMi0T*Y zH#2eSo37VMG-EX1jQAVGg4sz`~#F{#QM zIa?F6b2qx^!dE1gDzEv0sz@K61=$Qjn- zol$AvAZ~kFnHYH6GiS#iB71lAe4Ndw{;7<|!{bNse?6x(Ey`V2CucrSp3j+L%mw3~ z?krf6lBm!XYT!>GSAwjb+t%zx)(ql9<0-?`3!_?Zf2h%!_+ZoXfGvA^emg+Ec#sp2&1clCUWUpA z_on*#h?=~gxaJkq3|qzG!&4oV)$jhI_s}$d5*sP-uAU)bdCD8|!2l4_-7{Ej6%*h= zz+xcWb*ex78ofH{HHP2Ny5{}-A_|@6T?y5@w02V1B+HyQq6tP94XvP%;@b7(oJXgU zK%QwSGr$ZX@gFwxK18`w-O|Uo{n^lS8;Qp0F6=`{u>I7R- zaG)}>8GY~|EXMR;gn_9#W#>H@XM`7uUlcd^xjk2}5cH~0(t!d*)2xWJ%FYLljW&Hf zKfm1;7nF_VV~xDk2D^>{I5!#zh?lg`#-CnXlf4jbS0~o|$13Yl4L?!LB&KWJYWZ;> zfm@kX3hsOqOrb3OEby319Jg?xEn?&8I6BftP{Xn?vu!}T0MOffFeG}iKX%Ww1@)=y z`sIoLX?%9zy@?8TI*@(}LuS6c#Q_^NhZhPvFmgtaN>^n)_dDutmf=rJm1o$tqSV8>Gxj%@DhE0M12C=sAqK zC^Q=UJW_OWAKKc%8yFIG8&Gbe|k5@78-mcp+I<4s+K;9-#C_qUc|fqH;?A4{E=Man!|9UvNICW131BPAi;vMA&VG)Ls!zLg#5{@?$nIV*ywww0)SrQYL~>XPa8Hn)bz7>YWit z7-Z2rt^xWypaUZEJa{=hbgWt2`4v{7=*m#J|KM_!0yA?8(qjH1pOPqN${SWIQI>&T z4p8=2IN{(V_;@TYY9C~QNy`02&=8GtpZ^I)i2)`3pT3)@D~^L_3Cp_`@&<{K!pvRL z$KWf0t@fs|(AT@-tF)5w>LQ0>)NKaAbD-BhGZip7=auzE4tyTxggiQ(@0POs5#Ws) zl^t+z-1lOeryeX2;a!EV*z;p>e7gRsA-nwUiQ2a=WrN-8`BklqTZGOJin;H>E0B?Q zn+23?lSS+Zv;5Jt9r!P(#u0h}k}fTf+A#W=Qmox*sBN?w1e(Kc{SkHqbgIlB7tBQh zrFw}ZUjeIobgC6iSy<%JvWZ-%raSp-@SD1&)1nLe$PF~a8(;qQ)2p6|>w++4z|<4M zW`x1!ICIvBjbx)1h}0uwwuuz3t%o6dj0G&p$W$mIbU}VFgf0E>M^e={FH#D8JfvJW z{h&lMT~w!TeJALdVTq3NV=FA>x1GO*SnRt14M?`13}-@Ra0Ov-B-JVGHbUYx6JaCC z_(M$T^#|B|cZ3z%y4A(W4-3THX&@eamw(yS3_Gug!rxA9uFI5Mm5?}U@i(g|3j%ty zBZ`-6oK^?-nkkyDl#Lcy>xAWUNv+A-XcZvi3%~~&r>qQ?xwat(T8Hg=8L;0;(e%OV zGrkQ_fB0E5h$HH9OVJioL9i$dEw_}r>Vd@utco2@_i<9fv-BVi+@mqf!c2_HH{Hmt z|0_`8!tBqR$5NG%-ns>9Y7wWf+yRwZI!9-43UXu%LI-A7%W|ZtWt-AM-~!m-P@?K? z0lh?+mvL1~Vxo`MD|FrpVc~!BWMxt?@4DoWl9WKTC#K5+6n&C6@|U2(eoOEL3?erb z8Itm&sn5a+dG<;Phk68Yabr9z7QNS5`Rv&i?Hp=D@J?z&aB;#ZfYf%tofpgMH2TaO!|Jq^^y3=-`ZrWO zA;i8wCg*ILe_RE_Pk!1=H^AZgL`M34-H0~R@aH*YM)@Oh0d;P$`P&L*ctNgQw#2uK z)b|@0V!k4N)OXac)MOOF?hSyOGFOIdgmgb0)P!LzPjYt&6c)AD2`G@P%aQC0FF6@B zGgtj|8A8xcefy~^UqSGc+A{^7-*zrUHgTT`n7u+4@CZdfBZ|SYxGm-AP#ZK<{jFIe2gF9 zl&#=RD|`$|-a(K}0h736>c76MNd(Rz5!1?rd7lF2axkLp6Y|3xqAipTx=p)tEDnOx za&&mEG{<j7koeLZ%Pv5|rHoL=pquuVYl3zNCez3y^dE zuAos<&V2tyn_!F1nAQX>A!u_8+G)InqLAE6rWVmgM)dq(;g1^5#&v%enZs$ssV? z><9aoSj%k>(Bw!s{o(<&hiIp_(cpf4?@)FnaYdqYfZfr8E!%4C9q{bTI9exyrt^pb z^~N!!AsFU-`C`tG2BjI-2v_6spBo4xbJJo&W1qw)8KRZ=IL8<+%BeN4ud;Nf#pi_; zRDBFT)Va=RNL-D(?2!Pwlvr9uxYeb(abgi3#=qmldFUAQAe`b!JN(QvZe-BttfF6K z!6P65>SCkS)Gv{_NY=0^nJUkEmd7*;{VuX+NN9UOa_dT(qA4M#SBv|MuCWwV6*yE;gI|CaQb=&JBLq9)>4+qH ze;9}U7LZG0lbSBABZqK(ehyVUn{}O*x1Fxo|_T+LSB1fbhRo5okz@RQL zn;`)C2PRA28v&kvqkyu!Y{X3hp+-)+Lsv{)fR9{{QQ=&fTlHlubQv#!CYxo>^!*(8 zua|_nN{O!GH{isWk$4&~7;B z6(i~K7>(km^{^t#)-!{3%5jAzjAV=^8&xPvz-B-MOW1j~N?1;zEl#hk#%WE5)(i_@ z6^yNS@u(n1k`-KVRNVOH-9^rknOF+&+?bx{5&^^BD_br)eC4;W*v)2r9+upGfY2@6 z)N?V~cF|m_?#lOL^sWlRyY1aM+I94PuxCU8?P)RbhYW$~oGdWEH8d*!nU~#?&-V91 zcJblrqa|u8PTwL}ZCKl53p3L5Db(}R2A?~+^JVcAsT_MY?O00BFv$0XT>~EAmxKR) z&zyR4>-+G4;v62-M%gxNk3p~c-b%7Id_!cAWE!~nh?Rf2*iedP3N(paTJpNLckH!| z{BMg_il38iZAXt+!1hc6%nDQ^4td-4+q_5d1pV2M)3Lr5v%X!SEOh1Z&Xq+C_okjB zC)e?@VpHQGv9Gdq!>OBkhcOZu8`?0|{cNWh;pF$>kUzNzgoI$JqR>n{; z_v<2SI;Tm%U5#TQ30b0)q$@*&T{P2=a=|}H@&Gk6rpjljl}>vQktiom_9ZXv?+1UR zz#cgyq)QOsGaiNg_E8q>Ojdm5MK>JIT;lwnw+lvpt8fA!<)0xG$7aNo;B>?w84Tu6 zyvZ8@XDwMCrdzDG*+V4n^HFHHBzFA^^a7C0Yqak(`$pCXs7gvrTmhv7XX9Y`9})&| zrMKbq&!zG`(d@JTwT3g}Yo1K49%0&ks6r7VE>vVw3I~-s&r2>08Yl7Pt1xp7#uvE; zFRiRn{6YF}l%}X?sQCO}g5tK^%i()sZ*I2F`=%mminb-yZ)|jv^r^)m_~4oGwb#Rw zvtGsSjN^yLGdUU#%!UsiUtiutzYHcI;?=BvEoVB&MMFN9erDx0)M@c$-mEfPI6Gs_snxsydE9a!5(=ko26x8Y{# zsySG&<6Vzh<4vqb13O4EmLu(1?8_emh_z+mCG6?$9VtgsS0p6;+9fvKU}_L9Cm;Vg zzQ!LbJC59W1dLiZ4^~B|b@6NhJ0cQ%W{r<$=s}T|7GOey@0qtiTfs8bUn5GBop^$ z6SwAgEZzMi9Vo|

;z1fvQU3^M*@hiy71@Z-IGl_*TlUN8ArgSHi**lP-Wf(Fij z?IgX)oOL0KN1BY@r=EYtKEv^6NL#Q2-<0C8OX6x3X0PARy6SY75}JTYr+DkCKQNoy z2gsIMlwR_g{NxF{buArQ&9EB5c5&lr53K8#*wYfmy}ul#Y*V?{CQaoQ{8X3=KVQbS zd-J2Gv2_bc$gJt%aEVcYyFt6b_=~YVSA?D0lO{wCcC;h-5}RDye}ia@#%tP(l60+- zMhL!as0L{>7YgyD&;=c4aL)gfw(I2x@MR?13%gC?H)9lXR~5u9C0VL`h@dMCcsr|bIZBr}ov^|gD0VX6f zMAni$nZY)0i2#+?d@jieR*<5{jL0B7Fd{_tyFp)aXDxL6y-^eHYFOIHEM6USL5(2E z=n^*A#+u!}66sffK0+dQ{Kp6+$&&u9UX@Cp7_pzJHgbHr2qAQ4t_(P_6%_7zxvihr z63zKvPf;%12OR_lbG#%p8&E${TMFH$Q!>drTCBzGYF~^B_8o@yLQ!)KW|~Xt5@ZD; z$EXMfbV}4P@g%X$FEv<(zU-$zRzkH)Qx5PBQ~18o}xoMjkJiC zuc-rz)EyuCvOL%8ejL+YJOf&k1U}gQ-?YX~`1MWISvF*LBi*MQDwYU!?Sf64OvU4U zap1QO8zi@|>`6+^7062&l!5H~H$w&R8$TI8$P$kxN7BcNz$Q*I2AX*2j_u8=r zPr(HtFIP%*`W|0G%_z@cCi}g4PI!H`3ceZPTmKyXa><%apJZm}B;hjKy0=Yaj=m#H z*`N&Ja@G&ZUO7_)-7)LmjE5VTCZMC?D4if|!OKprGq%~x3&A&tW{CpLJ(rjG3s-@> z3KzQ%5DC>@!|zj0)hXB6u0%)G^WctmI?7oI7oczuKOW$XblJpanRt@=&Co?fL5za_ zm+m?x+@=h#AXn`#gx*DjNWWCqLv~$m1fhv&^om_z66yB?68?gX0GL(H?Ag>B-T-(mcJppJr#Vp$TXy(VVh-> z9LSDYG!`;s*0~=y$Pl*eL;Z@mwvxL0{6lZVF%s<5 z{QD?3@T>U3vI9N6?2tCRdA0QT0msvEjN>AbhxqW0tjX?N zLye-=>#OL?20wy0NWz3VKz2T2?e{PfpjYOjKaHMy;QOm+`EB+8^L~!(kpQnyE&so1}mrwop~~R&%g9* zb`qbf$SfMCpnfuc`{>xfi&AA-OdBpvW4)wcqnQH)Vn{I1ExNXDac#rrRsI|YC?eem zs~%TXQr~5`974#?+%xe{2}$L#8zj^}VTm)UA_jf;5~jsL@l|~7;=;E$r#w^sKnfLvt2x_y; z9K2ztTIUbvLgZ(t3e!Z;-gXKLblq}PUz@?1yby8*t1v7(gMjZGFg=R?Lw`K^l_+K8 zx^jm^c1xHlJFkRpV|Dcy{>{1um88Yxkj=P8YUrp;khL7;QZjg;y&8jalQ}>Yc`>BQM7&OC0~oE3O>lo$*Zpu#5<@9B#|H z@;CBoM+`~`-GbQBU9;D>P_5|SSf`KEvA@b1?=TbzT3(bw17BgC;Ln9Gl(7CYClKoYP80aV;q>8_Y#eU+^+orKF5O~#w^&CfCH*WrPE)aew#~Hcx zpe8}nh1-F?gd)8tDr1ZV4Ad4L8l}y5-yfo& zPd8~UEJ6C7TfQ3io!`5)chD*=Q?8Sa33k}qAS*PpEnICR_~42~)0j|qdnwtu=P)h5 zV#1MG9okIX+`k6+`RYE)Q{?@LhVE}2RyXJ|sq@A6n|(xTX$SWO3~efcAHGBEQ^W6c zk*aBvK-7!h$RJM!9Es0NfM(s`M>Zy$1su_v&Hi!|inu@0|GwN&ba0rzk%> zG?(FihIT76uH4bIB{RWdubbE{0_)>WxN@p>DvdcEGJPm#Jo=eb?ND9nqlw(rCjF!k z&3CQT4P`a@uSjB+H{W8Ar+hm&`X5O>n^I2ZbfN&Pd^Q^Z7+$HN?2{-Y;H{{5;{iX_ zAi>rgu=!uOFjiRM7L63thzp=S)xz`2_=$a1`kRMe-B>feiwOi|{SD6vEqo{YW^qt2 z}yJuY!K{N4XDM{0EQSlK#DokcsGej(umKvnLA;4sw`B3hBnjZ37_iOC$o18&|NPoQazUS+S8M07OF9?<8Sw@K$R0SfGNdYP zB#s7*-wC7LY48g6s;tFjWxBTYY9FSc(AH+L%`*r(+?hR&yy3XS1AJlGLi#rj-^0C0 zY_>I%y?347-FoEB{KAV$ypE3bmOJ(@J)tl3tw<*y2vv8~cn~lJr+maIew$Iih^D4m z?i_DFNi)NnV0@xYg5aCRLi}|va-Uq*k3Iql7v;DV>}+`440dF*s6tAUmW)EQrKgjW zpRN90Stu78zWup?@^mO&ObIm|5ML?0LHqcfm7z`){28%`@{DF)UhsFWNpP_0=c0U< zf-5MjLR&oaY(ISGhCgQYDa6@@ellVNk+K$|w4pA3$h08bGe@=9wPGI5kC8eQhu|V0 zb`s32W=D?q>tyNK-HVcwfid2!QHF9))@UraXXRG3<2vAW(llF<@zg$gGq`)YS8;y5 z^|F`oZ^`}wRV~q$KB)}M;6c&dV2ZfMy2M6p0vWFpQBCeN6ZQ?$3E>ceXw^J} z@xA}LorI(7XH{Dpah3Bs(d*;KalHrt!agr&Uoo>0Q;$YM9XZthq2A-$Yf!Qspc?b~ zDZFNjR@nTdB!RYtUm4>g@}dk|I~bZRD2o;CX6R7|ll1TXB<;#hW4WO#4F5xC^A6lZ zi2e^v;D2C<|CcMk`M>ywtjw(J#KftGq!5(Amd;Omd@huK9^$34C~*jz50MVB`~j(i z5^=P*#R7qvl;b9^n{}tOpP$gR6@}BVFL%mT3Dv6zB2TS-53Y(vX>wIhrmr)q{5*3sRs9{26`BWjAgD~Su*$l429ASj$Bz%o7r#xVSQ|N z9FMN(xsxLS?%e{Fztwshi!Z zRFKI{yIbZ&JGHgTkSs7%5P%eeN}ZL%M5|Z7e~{3!_2HLB6a^GXyRM7yXExLOAnf|l z7kJ2y!MVG$q9sXkjauD+$NFEO+xb@l+rz_>=-tP`qaY>C_yC$s%^rl4Sl$qvj!w5k zF%&E-CdVz9e<2Ud{M(N7@}i}r2U0S0myN^0=zydFHLQz_#^>`~u#?N#9d+WYbbO~L zM);M9>_nLMR0(iN7ut1<5Tn4zRAaA!4WG1;DXu;7x20aU^6QWAktZ%d-@J)e454sG zm28AQ+YeX0r@HybV2cv=9$t)NAoi8hoep;pIB+tM;sI@BRj39sTe zc3MpjJu&A^ANyAB?p9u(Ik75FEBw3mzbnMO1P&O1ZQe^|%i7|^0o1|kFqpZdE#@up)>Q#7cAd))TJ2j>;4kQT}e zxVp)SDOnj++xC#K2HYSDXc~v=A=dl-bLcs-p zrdKXXURJ~J+Ks3Ih$fCQt)E2^$bz+$tbD~195NI5WoQ>F@|g=D80Q`0gAYCxk!>Yh3g=( zWe@~0GbD-G>6Nna!etrKUqlvx_O5FYmN;2Tj_ph(xD0oO3=){5&k=2N@1X?xAVrw7 zyD|X-ID^~d@MIX~(Ssb}&{2MF5MkzVyT-IX*OC~J4o))NIsT3&m`hgJ@xFd_uA36E?fd+q$iECLAm#ZcC(4cH|O%`Ca}D#-5K87cTb4 zh;a<0zTatMVxC?ubEfi>I6`kWzxa0ggr%IXi6R9E-l{12yf$OZmF*m^@BgwBgjOA6 z=F@1X6sDb_)F24${WC(HexcNGISE2^2|;%jm&NxSl>$RYSRyXQ*LLA7hcQe&Sak4- zj>sM(m^mOv7U3Pk#y9cyzIrrRk!}I#+tg0g2>%^W_$iuPj|wI7Db}W1Z@&PUd$?(& z5(^3>Zby~=5KitAlsk_ve>jF$=qAh^Q&IdAWR~@)P@c*@HoO>_O5-NW9##4edfU$w zpZ<`VN_LVcffRDQuC}!u;XZ3; zeiR8KB)$;J{;r6{)(9cG`hWj;1PK_@7X3^-U|iAP|A5uax|85D{b|z4Ft3;Q7kvAZ zEX$IT)Wv@XxXBvF^wB+U+>{4!ACwVkr$DATlxMrKugFCg-gxv?!}87N?eQYE#X*XJ z$OFTTRRInWKWb}zqy1%dxoGO+=Mydc4@y}=K4x2_L`KR6$A=R`*9>q$`qj*+d}8Zt zu7T3vteEd+xH*;B%(yzY^}n2CvKLOayPPK5rY-%{do7DIw`>oWD{W0io$p&|Y@z zbCE}_;7>^GN%KHD0h>!HvoHs^rffd6)J@JW7jn8{AdhYap?9Np#%Sp)=#!RuB06cG?HVT>}z{roY@ApRVY#aZJgR$A{HP z$rC~-GMHcF7_r7X$AwBW_EqN@mG8G`yBwjon+$5s&-N3(Z=C9^co6;R|g04~(5|kB2QL zdq195=dA87?)PWhKdBC)=h4P#m=C6Y&QI6wS@gS|MCegzbK_K8_mq1X#J0PR=~=m- z2MEZ7`l#gTvPo!R0PD5;(}Gv#YqrgOvJi|>xVR+C6%r}xAn#rn&i>8|BGNu|#WHs| zwfd5y3=gUuqEeW0{3LUM%DeLOCmXsf3YS|X91V`3n+17T&CKOAUe)hXG|4`-K3G*J z-bZ}+umE-rSg|Zvp=11Ce8q{cUg#vyX2M8tgB0^j5r-Ti>;knfnpK~g z+<5ll>=^S}iDb{+Jd0s1=Y|VMu~h>@?BIqDq|a~>Zylpl+!GAB@Ug>1T{aE-eu4(L z1z-*3Xj5?m41!4=|B|NLjwOpd1Y%mTFPc9qs!P zgsG3E^w*WgqsSDD;4#PwJo+|v42a}IBX=u!{m6yu?Q7HRHX;Wf~?tO zNvm8VmB|~BW(`+Jo5Sc$NwQY*9ti%^I2-R=?Z+(uGStBhhlPc48%FD2Nk+c}21NT@ z6c{oR`~$huWyq5VL}>EW=l4GzxBJpX^rL_$! zTS7kX98~54apzgm=&-ycU2)g#d9hILnOe=YfkHDK({kVaL>msn8m^@qrqW$ye(`BA zFkuYfmwo%S7(%)uIMCS+bXh%+sd=OPpzqT8_d~!imAYRgh28b?sGx#>uBSbSvX$W* z5+!LtzVq9K;lkE)w>#A!qv3OlVBj5M%OLjH0tcYyIf;F1HGkPar0ZcneY-S=U5!%viK201v>I{Er!p_Au z0mek{rM*F)WMU}ov9=ee)fhrJR7g&^$Ds*P4z73^cj&W|mwC9H&5}L~rRk+3KgdnI zW!F9)WY>P@b!z2VB`@>z!wT!jxR1OdFn zVU5xuZwpfYapfKCA!DvE;WfHXvmFMX?CEQs;%tI{4hTQT(td(u55`A`Qa{K1t<9&0 zHss(pG>BJ_@_wLXdGhONF$*%6+~75^d_*+2bzY=w>$g5e8!cOr)}oMU_wYDzqQX>) zA|v>6f;e=O*!g#gb7#99Rlo}VPf+~bENdP%Xd(=R{lgJNof~$h=$?KZrN6Ck3vFs= zTjU~CoBS(P)cfSOv?YkRNNa^y4<}02)>J&r?%#l6wRj_XTM5+*Fz zi~$^(Wf?};R93Gq)Uuoww?h(Gz&+VyKub?4EU9a@H+RpKQxw7!utsdyEQ!DJH^X)c zvVo%ywMw9_!I6c6*v9G&`$L0ElO41nsHSX__y?AQIVzK-%n4SH7fgLgZ5;&SY>w=7 z8r8$*9fdqXDmA~ajaoc88E!9O#O{!FV}VM zm4*~0A&&u*k#C$DZ`|U~08$Jx{vTO&Qua?Oj3$|%oW|O_-Zkr-6_YzCiV)8|4&uKe z_!D3jOMF8-jef410(RRHjl3acJyJYc!L-^82u?>3aC)?NzupCPhv{K#N3~;vs2Z>Z zLoaH_w6YlB~;(>*7kV1wCSJp{mG|5?TA-}x({kS*+>_2L)Z-{cZ1ZE6F zG1VPn+EUcRaktB+oGrlFhoqNtQpI+VmaoVh8Hbn=VvJGx$&6|OsE0UlVHJAC*_Q>w zBN^yD8c{b#CO8gIE<(%aM#wJYqd0%`tBDHtUC_#y)3@cJ%(v*qJ~`!?V1dZVEb!l+ z%wN58V;Uzg-pp43JGRNb5s;Mwt~$H%Naat@>e(C+OyDKKF=`>z++{7l@ff^RYjW4? zg(M26^|Q$2a~O5FN+wfOJYe9kRmrF%{JIUQ?Hg?4XR7xfI5~%04HJ3&6VyAZE$tCH zAyBI}?d-e4&BMy&JDMaV2$?9YthlxU`>p&RYLPq|Y5CTNI!098@{m zDfUN&pE}ldX1U@`BPo`!6R`_;DNzAKxLSq6PtsyBf$&~QaLLs+EHigxzSXV8Kwsu& z{z_%X5>yrd;y=wI=j$i>U!0C&e?do6o$7y*1;k7zv`l zBz4drR(cnY`7he&Wag*DAIsl=Z^xruofTqppsl7(L}nbP@I_}%m&?0JZkK5I5wRkz zlWZI9oAyC?5eiDVi5VR7FbO#%00`rbceqXUAwfE?k^U{H!zndPFEk|s%z_iUXSN@n z%EHFR0Ixq!RKKONIX*FO(`R|*Z&a)RzPa6zt&*r84-&^rgNH4pnE7{K28e%P8kgh| zau08}@AZv&X^Z{g8_j3!5HFZa6J>`e5Kn)NM9P2|rAtqeAgP$p1i}gH(tu-bayz5L zf^Qg`-txu?i@&*uRBoeIE29K0{Xt6ZL>E8E2Yl&@)-?}8-+Nfxv@LWM6DA25aXK&4 zR%vjnm1EHnIZ5#*SbkE27ETqK7G}xl2$Y1vN%4L1O_(FGimk$~*`TAnd2s4}5~au> zVg(Ueh?Hk5BJHvV9z@RJp`&-@p08SlcgPdrjGYpYSSQM=f3H3H6b*B_6C2-GN9E~C0{h_%X1wT z?nchn5*_P$Yhe9-S#UASrX+uPEbZrYfX#+?-MY`6=@qV2&n0Y>5roAyUT24*6*KLD zaTV>s)0<(pZVudq)mMKI`8CVhhc$DglBb-9Vm^bYCorYiOM#i0r>J5)iJNNUe+)*k zt@nIs`<;`@i`8oN=gJCLc+;D|)?|%3Br?^}8puoN7ADPh6k0v_lvA2iN~7+Kz~Q!{ zPO~F}Ghb7^M%K;z(T5!mc}ai>_aI+l{Fmt`ul7!SMl)2j-XfMaxQr@6l^labYdz+w z(%&6(d|e8M<$Y}knINc%zvjzyk;H5w{bQ@X+Z$`SWEd2Ah4C~f-0fo}xz)}8h zXq9D(J1#-}wiuqI5N?w|Mc2;P7x;sH7X<-T7&f;qRbTi7oII*g5V#E{4R$Z}+BRLC2jqzuP$%4pxBU&8pOMc##+wDx2 zVJIAz9VRY*YfT*8_sd?qjlkL49W4vee@auWF}r~JnPOcXxK<;X7fpbU&Q-f1;rAeM zG}4e~1dOTX2l4HAdtb{RW&VO-0m5g}eaZ1XpWD73hs4ET!S@+`fE-|i;SDmz&Qd8o1 z;^wt{;`j^T-LC&gZ_uAXjo@J2bEqGy?f*)h^2Tf}+$KfZ63?^hIpq!uo+<=Kp_lTy z$HPV;m@>9?_src{%&hW)<8tRBJZwQx4F<*c7&Jln@J^$$-8rc#{}y{~t@x4h3O7U& zbZlCJqS+EY!{yN-koF7a_N`aU;gUYJ7YvLFoRj_k>)ulXQ+nFY8)K+`E49CJz|`eT zuLsMEChqEw7$`cey;YMhufgd>(NxgNkBokP3+_yU5XX>!$TVd`!;^E{xIF)N=c>41 z>c&IXc%$(3wRbpUKRH>V!NT$Gz>-L-o-%`Q)HW?hZ{AD(Ey%$?-uQTy<(#90RdZvn zcrr=;>KU&OU}s*PWwBO!+#9!Ro#YNCH2w=UjsFWZ`M!M3*aunh2Rmn2S@s100e!8o zB;%E>_S;>4&u_Uz+dbUyNSOa?fVKicU#XWZ!z{66Xe1CB^C=tcKXO z2GiyZsC;T$pRG7G75#A+Y>g%&khcOI=9%jV`5*+0bhKjgI3Wt1(BW@5_)ItmY=-Iq$L!i~ABKR?rB7`e4bPDZi%F2^C zDxoMv*8^J~lXP|=>qGGTP_E9As+7ic`mXxl=kej>JTzas|I*)#Gy0;EP8@>vMf|aI*DZC~^)O%d}^LHHvT=n;MUavIp^ar{W){PqFo!pSQEK%$$TA zEjfl6yJ^SeE#yQA^lxq$lPvp>q;^tW&^)|hqD#6CxF%s}-VpgOZAwnE)CUJj!vkoW zDfdYl@s|(kJ=0_u=`vFWT`wtc?`FVL6J17`{)K&iGifJi-I)O)Zd?+3(obp)+2iK1 z{{wqKgugiRCO_u_yp=)rEMH!3uMkJHOjZ}+nuW{xZvE+$(L51|N3%c448dd;J zV%+N){+dy*Z>)+v5}RsTS(v=c*4unjWXl6C2XN{*L8K6OdrC-pZt0D}~%<>+B}qu8Z^P;U@r> zgaX6kDgfkgu?kYGFJ}indH3C;z7y+p2?FI>>(uY=BRWcK8dT(n<+BUd+akueKP;=p-23N`S4jE98E~}=>~pGt*-Pht{pnPyB)i^a+uS`%Bp0jo%_%d*@u^R2270Vb)$Xu>9)uzG@f0N19=YSqjoI)*VNm}BRG627WRyUEliIg=-31_}r zXNv-KQ4np*u1HxlW#R2@sGW-DlF&dA$=+?k{Q!Vi6aXmzAZGo3Dy9b_5V#{SCWsC% z6;F$$6)lYnL+wDe7Cv=0f>5*+qp7BJEP^7fDCB}^{EviCNmHR&hyQKFf0|$`go<_) zB_b{Zm8K~}ET3tFZt#ATJa)8gZC;f9A5n9sQJu!qiA4Mnz>KC3aMSn66MOGKaxIYe*L|6XP}AW)ayAhTlaF7B$ zsVO=KHnN(Iz(ED<8P$0!gaN@D^T-g^QHBpprl*ZAR5Zv>bdqJkvl$x<5-1=D?MNB* zGUtZuXn_uag6L^7Oo|k2iU=;wjfJ^T<%}9^qf1I+o*`Acm3qJ?e=OG{X^nB68mW(> zshU>Irn}h2xbqX&IKg))tFaBBS#}-TE*HDy`PO%R`?4XV8Qn%aU+IV|#P_Ja5&4Ms zL0;yQAN%xls?C>Zy0v%JI?3S%NR$d@H5905%IVOiR-}+8d1Y-s#pE(teF?$#^=<7} z(^{TC`tgRppn^~;f5x!`>UMu5z0N}o5~dBW7 z>`x?pLlMAwwO$m<3c%M@R6i8@nyP8szY?lD-!X?;-B1r6D~$%MhbW)jpH;YVxz28{ zHtw}bt}^!lN-GUq@9%7{@~~_J^dDYT3_pvhn=rtc$;U_Yf6xA)nDgDS-h{$^V{vd-BPN#d+pgg zasyE_fS8nPfBV?I;unqcAHqi;@ra8(kNVxb5q~!G^De zL}EoWF*Ur1RukNxcuhW+eiKD74>~rCY@>kT$cQN7kSJ45c#ptp77e*d^)QJW@e}?e zR;7|Ze*~4hiT25*96g26ZbX4qO~6>VPC1g?ys^p!0ZtAfaOTd47;T4_R|SGDhae%i z6jgL_;p`9q>V%RX){AOnv?(QL&B|vUJol=&yvp6|sSArPTLN*o=;2ds6(ft~rdX7r zb5Vt67o&?$r&1C0`ez zA>QN@oQ0>&U438S>O8$nBinD05}AXAMAUGQv8V}1*NWAktlMn>J=g_^^p{{bAU2aM zbYX_dLXjFf)a`^8QsnoU1d=yur0X?u5ae1Ds@Yt+>+357%8t5tY-)+SlY4;n>d2i( zf2st;5U9yHJg=Bvc?4R~K+&sm&LLISXFRJ zQpS!jQ1zgRe?yp& zq@s!OS`untFY5vV8#u@3R;2PM3I!q8DQ_wCK6>tCSzDiw!X`1G!zhqrLv3}}vtv5$ z7Y!q(BLpnWHQ%2uX-#U1>4=Ewv@#A5hBVDxiuA06rl~P}3iD8}l46MaidKXB%h*tJ zBLFrGwzcJcB#%rRjNW6}Hr(aJe>PQwxM#GjkGn6|Wd-QkqS7~YThZ=gDCYfinlgz) zL$0V&Hk6jQB5hQi2lsX#5a&{o;Nyl<+z?j%L^dVC4?!t5G_HH5EH5w7{65iW?h2 zb8yZ~MZW{86Ruz8&U22Se>wr?m^rrUcw2QvY*qy&fig|aH7evzfy^fAZrth+!+o$n zis}?e-7ry9b-JDToa*LogsJ3h|HGcnX%}LNJI^p(4R`wWNH7ww=aP8R0Z!*`=%wGW z2kH|Q>f1aL_Bm}apS$G{>_g<#uq8Lerk@D=DpIJXJB+kn7|omG-QTuJXh)lb>QU3`rrWnbW>!cq^f2t> zHg$GO-4Hh&JgbCf42@LmDY=HM__~G?>uUQkKehi+>7m~{8SjRzI`#GLI$!^>{Jqmn zzP(!cnsgC@(uE(Gf5aya_to&@)$0Qo%N=vh5g3hTU($)SKdm6u%<@RP_A17M7RT-i ze?>RzHqfx#w_F|kr$ct_aHXFLI0(^@Bn2WlFeHM!YALX#9uZPaYl?=`sX@InhhpW( z7)m)e)mU`2@E`s=fs1M|cyp6oU&qEk;LB1Bm=q8$k!nV-=@#+@(mwAD*Z7|XMcBdq$hv&Hidn47vi94VZ1bSnwe{hO ze%2E;ZfSOuv=$*;{13iqa+C^XZe(+Ga%Ev{3T19&Z(?c+IX9PJWCjrIjlUER_JisJ4TAjn38ySuvthv2f& z4I6iNcbDK!u;36hNP-0o?(V^zOTHt?`QNL$x2S?Ox_k8O(X)FksL0-{F^ZajO@LBh zJ7-2#CKf(`xT2ygD+_>yg`J6og$;>{O5MsC1pJR3iAodb=wt=9lFk0&QPUG&KeR)WD`zKxdEt zNkJoE>FjLJ$IR^J=Eh`f>%;_hv=E|yWdOKYIa>l$flfe2SD+c-w`72lu`Tf5(wLB_ z0P2=jPXBVKfz6%Wj2(f1R|Ck(6lmx4N^!9>13Cg;PY0;UDgc!2fp-52R`^!{1K{7y z0kAT${x{vf*}oH6+5JN{HZ=v?+8f(>SlL+s%&kB`fU=YVle4=s1HjnM?02AlF~|x0 z$~Sg3wgMTOyaxPJx-mdXR0UxCs_@_XoJ<|9?46yMoUA~xtu4^b z*$L@)eG*oVK-1U0docg|a&7FuZgyV(LFQI=X6CFY1n|IhRO59R;gnE%f5|2paaw<0MQ5a=I2&A$TvfBeR_Rv?dmN4$=%i}ULmD1u*? z!S4TtY61VXyNW64<(&Vy$lnWyL zhoqe;*zEWAv2k(%j2#_~J&;~6{}pipyjWk?)C}nU&vXNrne4!S&aV`}t7ad7IoJ{D z_eFDY0+>aAoBoBk0L)^45I2BX{14)J9lie|ZWaKu)E~qOV3z)aUb86tLA(HF<^Lj{ zSKj+S=#{7P2eAQ|RsW#ZESmpCysxzw{};Wk7PB$P-tv!yqS}p1z)>k{TF;~kIi53RWInjknOcN zkg=_a*phQdnQLIsbvL*%d!>lhdBI-{o%D#szIg>qVp~Ws=Ja zblxE)y47H;4SpY5!u(3y6BQum8n}H%8S0EF$v;FS!2w^Rxm1Amm|N<4n2F_OB8@F_ zXx3l3N}GCHuXJv?b$+N%Mw8slZE2Kj9?g2>c}I+Czl0-}?wD7&6KS^iF^m+tc~B_n z#!0h(FT+ZvcjeOtv5j0oj^~1l&Q3Av1&5j_yBMr!&$Z8gOWv79`S+)+%-6{Auf1#B z*Yy;`2eIJ%MZFDgJbZS+9Jq5EpC1dzapuEiZ_EOQ_8En zzYM?|9RPPgup_ya1w`K;dOjUOWdf9t>>E5`E8gSsYfg4qa19ppBSQ(zGrar~YD-gp z_Lt+Z6=fNDQe|(NZKcB*^6I27z-!yW;>BDKv2xiSS4`eg7D2c4VZ>gfiA4>>Q5g!_ zPmGK15M8@$&5fd+s(U+qjM7mi7=XaUTfUopc*$<@mhd855RFu~(~$JVu)c$EoM(9ey z=jse$F(;v4Ck3tJxS@{K`a^Y)MHw1g7pqBUYqng4vA0pDWlX7wA8n7DPSB~TE;WmF z@>#t$1h>bn1rm0;C4pLVNC7phpAVM(Gvnle`K$rJ_+i!%ssAmA!&7trV$V*0^fLRk+lRv*1M?s-_ zG5S0wAH(LoD-MOJd>q}xk;>GnTfdO8!+;6bHfxORee0M! z26c!q@W;$ef?)W8d25rvnYH|5>=dO<3+Q@<%J9;bQXeCOca!mJP~P@`8yjPVVL!s9 zyL9#O_pDw&0t2CpQt`StiM&182Io&GI)7~0zE;0{z=|+f5#9B=~C$N z+oL*oLa>OA2)pIm@V!To|2%~~HXLP!#u$-tiGRI+4yOv+2X;REoaVPf0y@$YUaYq- zrkb(@wa{ENhK`Elw-L@EX8!&`%N0t8p=|o5R>tes92YNwr^KU<8SSnfi#3)8bUiZi z^L5^OmvcH1ZrF`~go=lS>ed3|H%GrG6 zgIG=sHEZ$4+N0qYN0>{wx_yTuSk7(462k|cK_^0Pi7VO%0vj?qF|`9Q?ygv0uzmcu zq!=l)$g@mv$Y>fpZ6s7wO`Q2Z52Ec`7qxuNu|eKaBDm&%_%sE_ahGwq`g!TaT9hu! z$YL@~rJ}ALk)~vqe>k941yzGISlr%ZZ&ZZ;woe>_7r0L?rArfqRPY#b7k^hGJcb|R z2oZUl-qB`wSsen8IcctpptbS?YO^f2%;k<{`6eO8hB>jCx`y)#<=bT0UE|CgVn7|^ zs)CN@hYFK_BM$A4x+5$uBi49AlG8Tz{`F+q{oM-jolUp-g9#dGwbxmj0L3uSy}At1 zklp07N7h%M#=yYKqf>||%u;qFIE0;a%v+xnP@|u*we!}qHDFn(nmUCrS$al;RirVL ziJ2FQe{ez;@?c!bGnula(_dqbSsn@+^wXTn-C-?%j~LMdsou?}E>K2>`7<5W{h~>V zO;XLHPMrtX{YR5^^+}q0VZGXybZ9+~Mq0Z!!fhWl_X6db2uSYW=t+m(+8BrA>Ed}V zjhLs``D3O1G?%4Y)-@*(gi^%9W1pg>>iAV&jgjO~QQf3W1KXv?_<<~%faK$$TpyAQ zEs>*t%5{7ru?pvPp`SXwiGmNa&={u;))D@Vpo&|8@-sIc=VLgBz{9bBr}y%Ia$i4w$wg;d{n}6UY@RtY zzY>CrA;ORZ)VQ2k8$n-}joM8zcOoHwa@!ze5Ai054QX>eWL!)e0x=}f)SOX^HB32= zM#a}fq5{GFoEU@d3KFATqUn)Meoy^MCB#2e5daEN$Jyos?mKJ}G^v3jc6s#+v)PMQ zOEDGW6XnrPsD1MtF+m&mOpYrEwa_FNlDg%L&{a>(M^|WjL1h7+UsAW@9IIh}(GS)p zDT~D_kQJbqBjb1ZTEy_K0JAGUsr{wjew-X*b>U*scQOhonXJ0&(dQ zH2)-}AGx)$Ust{P0rK!CTo~P=t2fhwMn+qm)_ly!P;VeUe2(*fdDbYQqPypMt2cMi zB(}4jw2&b1{b2ijG^IVX^(X)Cfql0==MZ|UvK6c9BDsp`kIj$MfG-+<#r?x)PJ23S zIo2UQ1xR|m&NAW$@TcGJNHUm_B-Xb9?cWi-tbkuPQ8J*b1oCU%b{>pBdG|7TrJ2@- zfo@r13&Uwj@fQ5V5z^^TMu}R8=0CJN+fxFle_SFD^lX-GO zVbPqPt-q-aE4Yq+#}6TFWM>t|zen;Q%;YqRLA=`GqK`WCNgMlrP_{5@U^*Sf@r&MK zQ*Yq6myHKiAlS$?alOsa?2Wzf(fD+AO}6=r_!ur+UHNRQ7VNcs==6mRTtU#-kZ2w$ z2F<*_;ugVAOmsvHoa?1{gMd#HGs-D-pylx&9)d)dWd@#{lF1_9cM4S= z$-6tS_Z6>wGjuK`{*<*J|HFGi>nBw>OW}y%j%0#JO*;VH^&rleUpA2QHj$F6b6Y?!_}-MkQoC9iyO z?TTu-vVO*YgoqJN&%Iw77A2l)-r-~_bK>jNAAHL%!&V*grCu1+)lhGWgSGVx@xJ)x zk_?DYxOl+m%o;n#OvpT#U?LEjlC<<>^T53AwFxf zY)_trKQhe~%QxL$^Lt%gskd?jVuW_*_QsVe6`W3Etig5K9IkyeTXXM`wUiVb3@QyT z)=$)T1gIx=`=GX+$Ob+fXR$34R8yc9hrwijJRkJyBG#rM%_N$-JbAQgs0P@qLC3%T zN7DE`;%((QoCzuv2 z%P0`qBxDEoqN( z?+8m${8F`>yh$NHSht~A&b>?&QOmpcmP4j}xs=g^c?*Z*!;n1bsv#^PKJqf=cY8H(2qMx594+giIqdj$KJ!OQ= z)z+xUCPHILdX%xEe|T@|8yt%7^+4~3^h=YP4U!CG6laAno{2h^wC~~G<5LHn$|SU_ z4nMXrq*9y_Qxs7 z&=~~X4WoN1HDKH0x>xhLlo7(L#TGVsghPabcef>A+hZUSh;(BwJtUInyWnlLN(?Cy zO`?onQoY@1F=dU`&_DHA85?^W4>)~cWRlBKw)W@;%S;OeOWWkNNWZ4%T{xCm8MD| zGj&tTBB~tn*>OyNkhu=Mi<(tR-A7XYR|k9kYN;9(5w&8AM@*rPcu_K<$=zm4Nen%r zs2i?)A=1qk0MVy}Y{WuIt}SAamSdOz9LMvm;&($ref97R-*@S*HN+3XDjrDIYau^A z7Of}y^&qEvGuE0aV88@lHmJj3=AL-^4q;+KWxu>txF-yM<(@A7Bu)RJdpK7tx^6YH z>p-vtfsT44K%Kji$JZ|`o+5p6ZJ-O3(#u1N+eBL5|E0xJ?xDG)Cy%Ir#yaN3WSb68 z(AzosEraP~5(`#83#j?DwqevsK(oyaqH2(JGWjN-l#Vn`iXiAbjj^n6@$(&~pC_0z zXsCFp^0Qfg6*PvVU(&;O>OP#nIk^|haTJI^ZU>-xW)WVg zfJrg3y}fgN^U7qcv$~eDQ7F;m83&WHJEeP~`!43M*jw!ug1o9>3m$oC9K#cq&tw6! z;7iXEt)R1!VJp5tIIRx)bC@*w&mCQlv+6KzyX8)Q4q@t5otA-Ijtd9p3Q5#_S~`(m zJ2Dagn-&#CjS6N$(Gg)#^6*)xA`k2{dM9d1d_4Juc<(G=_Dfa~G=x`Zx29E1s3sm3 zz|qbA>3c$vT&SC02YqSN5tS2>D$578-8e^?$%ogyZ8FMefCQAx_$zXiozloHYe^)7 zS3MtpiC7e`z!aAD6YBd^U(dH88CCOWgo^3L?hz-;j)vGc!!0}ZPTRa?nK)f~j8xti z-pmHl8vQCyQ&Aag+NXJhzu`#Y#83HbP#Uxn9EhX1S_2LzM&OjDGZG$El~OE2UF-9I zo*A*&j6JaLHeXnUvV(qx=;Rz=MK`M|YE3wQmj8N)rK^DC(c*yEAlBVP*(dUjApASm zKAG0x8q!$&y(DhafNbk2*Db??ta=Y+Sj_X7N7j7UNfM+?s=Za~&Won0!;I8;3n|^?RNUIwB?*S5D%OPQxYwSFxY<6;wi5PU&u&~#(~dVMN9Dd(}5(}_7|qqDbbL!a(04Wm#J7C?M?> z`O-MqnO}21Z$^A6eK>o??T&1%am`bMqAEVsC0rz$;)kfs+Z*$^+)07(r9DXHb;|mt zetI``&(`WiYazw`MA2*3?<+!ohfskb`|2$?>QJc zse19B;57my#=}%?S1G59U_&5ey`|Pq+y3bp`@U3pg@)5hx$h%c;x1yG6dClSQ$(PV z1E~M@VXq;GXU*=xvG%-+Hx`nYFMVpcl}k+q;KKK#5ix10;TESq`w_+Lb)ZMdP4}>A{P}KnQPfQ@D^`B#CHB1ApUH%r@4%n_pIyc=bZ;q$f zh9@l5&H}6HSAurA6eaWfIwyux|eK)Dncp@&E^ODLOy0pHc0cFfAmSTt=J)*^bdHX5B@n;lqY9yx6 zWSR3}yzhwRd^Ya!eSI0%@-sioyL+XsZSss(JfES;mt2)r*s@*!^7y8Q>$HSMj8HIs zrElYQGU&?8&`2}?PAkfTj_}i`j>T>Ko!i^o)hgG~&s1!>4?Y)CW@J%dYIOm|gmjUi zz}2{3Rz~EGp;GsMcQx&~PuAVnotkS(cdc5RO*^;RY`EjWkn6QGb*Pm=?gV_-EkukN zUq3Y`A*3PgmsqVe-t_QjsnOw<`EdaBZ3uKl@>x^MQ=#aUI)&LB^=4d8IuY6*<=!H&F}StlbQ z{#LrFw!vPSz2ZRhu0DoWXyscIj&jzwP`Gtno1S`^XNSIn(u`~t+>z!EbhVVKLzH+Scm@uTnF0(y2C2S+JMzUi-1I3eWoxtu*3&}a30xSrGjQBI-Rs{)Hhi%Oto-> zftLB~#h-w@Jz?tpY{D6~Er`v~ikAe0)0z%t{pi>}_UzuRzjkLxDw~z`&uF6!ht;}& z<9f}+o1O}u;GexWuPway>}shMly>7*L~wJ1cl2Qo)l<$<4lt8j=N%SWdHsAFDa8B3 ziDWq0;aTRymLAIz!agy6xtI`jXrNSilxbZ?YMNtYXT9#Z-H+@lpQ1P>;ecs2=NeQQ z?p3wY2*5^V(81saXkl!cocPM9%UnW#5iE}hK@$DwvsYUzdYdgu)D+xeDVRE%$%gR8 z*5YEojv7PBh~0g!`1+;pQ37Dxn1Z`cDMj@)C0cEV3hZ0?&8CKuihN|97Mfr9M)t&y zE#=W#tU}JYli*TsdiYcg0dR2U#1`WLQKe4gN^_LbPQ?osx*csi9GgK7|H$%xB~^rm zKrS4u?rsB}=(Y`&be9%&PB7S549@=@FYZy(>>it3!bWPaR)B7fw@;;JG`-(&>JvWV4OyeRm$U zr{luvWX6;fU7xOyqLZcgL()5c%HIT8Jvv$iahZ5%D*>h=5585Fu1=w_8a#P6K5;8O zfa72!2ObxOwjd?LfmSn~#iRrI9gA@Xfx*$cg9?%fbM4B6@HIS|PT>=Z-f;c{yvXbz z-aIU_vWghfTvkSGglap&>@ij93t@7>09Lj55)MB8+xr?ZP6FTIwiq^lYuR$l&kmD3 z0ZY~n0$@w4O!Iqm56AjR!Icy=aEn8RwF!A5LC!k`uQ*7YzUtQw`1oc46}1cD_C&#q(T3+?aD1>E$H@6l3q zwnZG2u*rJeE3k`gZ@d<83#9D*V@!;uLmv@IL3UN~{_wjlGjzOv1)1H+xv5@UR?X^{ zQn#GOuv}d3x$PD?hq*|@y_)8-=}C-1>i(#cM4GK;0jbyoD6LlNlY6UvDgAN? z`5nIkhe`MGHU0B{@Fbr(u>$=+*QQpJDBWPP2dy^y^6U^(9WPFx^?V3j?G@V_K0_FN&z8%?A9j@|LW`)3Wp?;TuD^CmMoc+=c8GQ_3GL$ zE%=$MrfKW;h*AAvN$h*&oky+k5ngU&mS}ctx@C`+E$JhFwDi>*R_}@tkcC_wnb;%j z3Boh9){xtlPb*tH_BeCnazedEGdx{&)s3`*CPBA-6XiQtlElDxqllZ9O=v7qy$Jam z{5nOptPxVlmHCeMre|WSIbzZsf^TL4o%Uu|i1*=IO`_y!>7bHBW&amCk9rh7-pe#0N{?*UC;r$~9`sW93L zqW%S{W`-^&!i08{A>!u9S}KQ8${)QJYrBP|EWl!aiom%VNupU3Fhy1;R5P_vE`L*g zZE5rs3JCF84(1Jm{s+-j2FZkF=o*9*_u7QsByz{e=l`|$q(Rj8`9s;R zpeHxtLqnZc| zYTg-tnrXDULJs1{D#*v^;Z3T_-4{M`xKuae#X1{5%&s3>$C_5A!h0t_%_L-{dvg|KPj_7c_Pe{Ez!Jdb7fvKx0@xdJ!cP-3;Rag)mUhrUoVkY$K8C{+I} z58=C!)+)z`iA~27CYEr1wz35_;$vIwSl^$_g)!VS77)rPL%(K0a)}tH?TZ80iZ`)+ zlqq)V-$V>6RlxT@zq!I|+?*CzZ*--9XT&V$vdPyY=O9e_5~xgWr0{ZSm{mMJvVS9n zQ`?v0G3QLYe97&JDM#`RJ6#`2vOPSATG^t zAr7w9aV~FTPc>_n3c;L^sgW}GDAQBldwLArPd7V*cUGii%-B6k|KL+v$xRJ^SF3B1 zIdF&9e-u60%Qf-c#aSmCu@W={=hLi$6?llnhkJCTZ-MvAxE7t#Y~Q6q2xuEKc-6h< z09z~x;tj34XaSPIEqmHoK1LMmt)R@N2@jt}zk?oPhBPj45%IoPhF1}?G>-`SSHB>G z+kMrFka|?~mz5|RG%1^!knx3ojjKr$htM;K!g4Jxpd+BgGic=By*O*2MN5#B7;vyY$)hFIlqE1M2Lh-}L&8_3}5H z@D(Sr{7lUlc+Vq?@M%7OOX$Pv;2&2k{enKil9(w@FeW)F%n-JvzbIdct~P3 z^sV>LHYer)zhvH__n(w9qq}cV z;e<4-`%V=5p zT7!=0=drH_Pr47)1t646#K^ZS%AdhFKgV(I zKnnG6_G>B%Fz=>ud?(3~17pbdJ@3L=WnTw~GDgBYk~UlC|$`2!0-m@pG)s zAPmayX%=)tU9Tye40^Sl=6hb&>pvq=uiR*BI$IG!Ko((R1!JUB85K5mzj_aYQOmYULsMlUDj;84*f+y&zlGNVL|TcUWYOAY(9t@b*Fi&*sZ0wcGX;~M(y;!u_CD=xz3L4~^9El{SRh-4sd~FKye10K-MO3k1+~=&4)OX)$fe?tNVngJXqQEiS=Znay^o=7&?8fr^Q6o}z+#Vo8>N0|X8$IxN`irxVbwc5z{R(L zx_%~Fuo4`3qgAPluGgUzZ1-7_KP2>vKGm1-OmU#o-tg8QrW>4cR3^bw2kXdOf4S^K zqcu9ERz)tVk@LreRZ)bP5XYi_g$B4r{#C89SyXuXSkYA|j6&dKR<|Fm|G^pb^F?IK zyY!a4g?f~`VrY-TCu4dzowJW{W~Em4z;wqCw#Xj+-cljdd+08)l)B%;Esw>l>So~t z%xWvre7NHLSh__L+5`1_d&}Qv%P}myWbV<0SCp3=P)ZAb&!jRH$W(`a{y55SnIrsk zt6CWo=D0?`H_uKoroewX2TLvLM;B`BgvW&5)@EMCR+}v4lcs9rz8!o9+4Idq#hRy* zEZENhiMP9;r@Zxe@1h>CT&AXHj_*B1xPVqC3)G2Sb&`x) z$YuQ%Zp(UAQ^llmf_ieB0`tgiU9sm$ zXk0vs)YhVv;4iZTldG0nS9CwEnkkwHt6x~6)A~kpNgtZjG54vGTplyep4f?du5;7&csuAc za8stsNm@{q1>g9V#8K6@=EEkY_KbRhs`s1DXWT{lzMC9>vLnZ(}NsdA`$!xTXMtTs< z389f{gl5BvUL_$c9R;#16npRC%@PE&gI)t_ys3lLV{Q?mB-EL}=O-dixf@o49({B^ z#z{$ojK*PqrhJHb^TCqw!r<-j*d%QsF&)xHUf43~2+9|9+^*PA9$VVdk<&Kb37D^Z z(jPnNi3Tpx&5>jhuJ%9%oh7}7#E&{C6IQIc8$c*!fdC&SmQy^8wTvOXAfrll7AC@j zsv!;7w5?K>a(IyUsnhtAr`Aq!RgU;k5E5EXzG51GQP=k&yA4*<&{AK}Y)PpdZ{obT_52fZRI55sh?ovGyQrr$N4 zm}Urn{7kWdlGkR*J{V2c&h5@gFOM#OQtc@v>(9*4CVdH`-r0j6Ihp=NsVU>+!=Gb! z%27FB6l5i$%Ltnd}mhYh8XAQV|VwU^@T&}T02WWF3K2Q+&!G|ks(DhkG+cu2u@?zT^p2}e*= zfAi^obJmFQ6hHBWvZdl>8f1H(_+-a)t_d1g!cwGTk+c+*yUSHY~zi7=Djw zzS63=qsJLfDv6_pFdX|}EP}h11JuiCvW8qS83H472-bcl2`K%m5K$Anuf)YKmtC=Wzq3U^v~;cvxH%Nh#Sf8rS{ zmzb_bTZU98qC%SJZ6!SD72WH&eWJ8e=&x40@tKpNjXBi6VRK}{h0cS2P+hTBp)R=e})cZPz zrj`2VhnbB8@2y>wkZwK4J!!9Re+qWo0{7$5ya)_Y!=@fcsmhT_9NLh8QdmgVL*e)e z*KaPA^4Cutj_9EkyO;SHQ+Jze1+dvsI$S8oL!4&)$Wct$uOfDIQeopO@aXLD^X5avIf06J@X6M(w z2MIk~qZ(RpL9ntm!n)EZV=^_l75=)3(=fW_S(rBh8_#=&?rvg@Tr?o~E{+I-_3t=XI4{2=a zof5A(T(g;M7WbUy6Q|Jj(4pL|^hUv9y)z#M#~~pqF3&qgvIHqRf1&}Z7*V^j6ZH*! zrz!}(yRYa|545$kM`Mhb9uzn4V}kQr+<;L{wX|rJG9`Q2uAJ#bl0=Rw^bb-vsY{nF z!N_kUSU+|+={r#lHNX9V-(UNvWHyENIgR^h%ZUGHIjne(3|oUO@+fY_K*2)ImlN`7 zaQ0EOo04wKj_`A_e+0JG&?oJG3xD)b~C8VP8&1@pIC$j0>ApO&oeS(nzPqu@_hU7rxer3Lqzo3sH4ohP*?sE)w-0 zLlHPFycE~Q7$be$wGTzV-kO4k=~UZGiP;zOO&#^@qmijae}YT$Irz$A7`>A=liXQP zW)=t!p2I7gHg=G-h9+)%T+{WQN@t`MnqAV+gP!GB zTZ`}Y0=Uy{e>aQOQ*j+L*xOj$bmpyi=72lB1l=8Q;XuP=pTlpIRqzDhJ0jfGM{y?a zt@>j8nq^r+uW%0>TL{QrM2U3rJ^tYUac0KDj=G4hAUobP~J; zCqdll8Od~0UK1>rNnIQHT@63q@SYmM%lV|3y|j1Ee!N6j#^N>&uFQdPE@A;e=4T?{Ov*??;~N(Bt(y+EtI~a7S ze|kIJQ~fq}))W-kymLjdb3vF~BKV$6e!C$=4@rKE)o1xRD*sFFY(zPfmQ%&SBB@j< zQz=;V;m5lmb>G3gamzv*>=65U0YbKulMxjMxA4H*u@BFRnjwjdAH(U z2k$5?D71*^@XAAfi0+Rj%C;bLg}A#Nf7`4zil3N%$*#a9OlKFsALnp)435-(q?-4;zFE_>zzPcr`|GAT$OqqK5VO*FBp*< z9GC|}krU!%u_pJU{kCg04Sy0Lh||4%P*CG2<05or(Iz!t`_qM=z+6>tOI#r7PN2?8zqMEc~+ywYP!6e^TKlXoW#x z-Q>Yo#xlxF-J3o=nzUcX3zegG;HQ#S8BP6~mVdnCcPQDeD+zP5`SkG-&IiLoA7apP zQz+*9x8`15n z{ASiq>Mq~KHIF<8FkemfjQoBEDz-~ruuJ}3;h=Ze%G4uvNpS*ue{cVOiKx@oK|g{n zeEfyt1%T1zy>G|xu9S)-VjxaR>s2u^pD0G1uP3AL$rhE8@J`*YDW9j$0f<+nQHHWTW7BTv!s4)v=A5r}go4u@Xm-Bf!j?au4VyPrJ6Xy#C9DSnM-q{PUEKF`a zUIcX7AoMK{CXZlghkjXYFi;cn|3CgvQWL$#U#4JYjLse z=VQsH%xzz4`TV%&UC&h&{?cvpTwJW7ir;()QcwGZP41AL4(p>$6?Ka5q35AI2OF$L zDl(S*_M2YHVn)lb2HOTF)$p1n7liKQFYe;F=2PMH&?`~Qf8n80hy6M4I8zQUkEv_0%Hxs!%GD&R_l-W*IPy%8!p)yP3OKLh%SvQQJVzE~+U zbTe!qJuf6WfB(oq$!|=^RE9hDa$9gjcG=b35n7~wZ(J(DQfOSSVrH`48=o~lxo2?U zhsv9e!Lm^qUAmv0&OM!tcPu38s=uR%<7*y4BbX}~6D#ly8nqWm$B-YL@Fb;@c@t)_ z%*z>TA(q7&SC<9t=_7(SIZ1lz{0yLq<-2O3Yzz7te`n634WN1C*sXqv=KK(fLT=08 zD}{W?v_ZfEQYf01Q`0k(M@!7u=zXD-zJtDO`6kG#_kvB;iEr>|rRa{LJ$kB)K{zdE zwYBAEhyD<#$lmr`F;`x4Jyx5Fa;9BhP~@0K0E?r=>Eh|_T`A*KFI%!tb#A!I|# zn^x1-PqUg(DE32A9{qePf&e?gVn#DGUIHO#$%F#UX(kl-Z5Yj6qJg0xMd|ZNEwe?P zdV+^C>nJ+rE#rIfT|_VWGynvX-t=72%l!WX&!wiqm*H~-69OOj1n42aFbLZ7 zA0gPKplGzS1RtNfyE`w)3B`**f7;1#a0A?7XedAzf`TC3AU1$sEdw+`PLRJ^<0W7N z=tE(sKL$O7E!rJ~gaED;jxaC;j=FYnh1)=ofa~l4JymspmNNwY2dw@Fzzz88asWVH z;J?EC<^3xV4F2001O_9VoI!9;7~BqE3v+}3w3O9((H>}S00?gL3kY&Ve<7~@L2e+J zBgpz1@Vj&nKv`Y~0J`q*ul`VAB+MC&;zhw6fAz@sE6nvZE5U6ZA)K5ba5ReGSAB{w zBm{hY@1A^r4c7sVaEE*SE!o20HnzXouyJ+fGl0WfTp_B8e_^gw1pn6ALC^qUelbx& zF%ba71px5?L-~Fs(D!tPfBZHAf2pr~@bPj+I0J02+kp7MY$4Zw1YRhR8w7wxxb=rY;1){%@w6@eA{VuRp;5Gv9x^{QqeF zE6V@M^#86%+11hUx1IeD;Qz6MoM4Wge<7}^>x#Z!0}aIWGQj^EY6$tWyBZK1n5)x& zTUF7Z>vfQa+g($de+MYU%P;gt4?`)#JRmmOFfOU;ClGi zk}$vvc)g}J5Rc#N2JrF15$J0dz;(|)09yo-;Mbt9X#(K;f35o?3h)E?JpMxj0{A?C zi~q<9c10qu%lb{1>yrMKe?I^ahzA5rFgb<*O9t6j1vUMwkf(L$S?-s@*-80nB*4?3 zZ-I~QP#U)U8mE_;F{M_dJoyo*Y+?UiQ^DnD*4+4k*HSfOji=BL9!BLgJ4Wl5V^=@0 zzr=eT(=m?`f4{@ZF-%fmka&&kz|y9VAZfiVYh%};$42b^u&R9`-u=P7LS@k>!A+Vi ztrdkC>J)V1Pq!9z(e>8d`pd$HR1aS*I>iKji!=*Q)=XnolWI93h;uI|S?KERo+156 z{~^NviCe((E^7#yR7tX%PEiQ2{OL?C(fO;_ZkuUje_qxqx;2GIxghS&AHmQi4bJJD}pa{R@6G7p&K(XXkUzkJfUU=C^%_{5qwbYM?_6}1X zPvR`}E;-(59c*OJVDW~Q6z=;z|0J&$VV_b4HsRql%!Z7S=X@mNbO-a_Ij&a$CQEr_ zb>#1-f3yTk7{G=n<0V;J-&VBKt}PKXHCONGOn|nZeKD)9)&;x-kvTeaB@@^gEX%pP zkmxTKZA6JD;3Xs`P%duAc=K7*$;QV(Z)auP!5>0Vhy7gH*cWwiLzCQ9@LZi=S~aX) z8XhFHU0Aw*C%Ed_AUgSZ%V2w7wCU#0RIvs!fBhr*Fd^IW6@T*jto*)V>Rzf>`_pO> zrqZmTLQ1#Q8!!(x&PMH0N0)6^ug_(=0DC9sXQ)**D;F zno4Xql}??Ub7EoH`yCzV<88TF7_Z5Le;wMmslLcO7%kX<=LOrK@2Hr!pbwMzbGbxG z>3kYHv~!)7{P@IU8o1m(%Y;XMF#}4!(#4|~qY>ajfQMgG8@(=8+^`W8OF%`2A+S$N zu@$Y>%D3$bAHBK8lo@imkq;9x{f3NLo zuTCk_CI)t>lF=6=5AI?c%ub5^xI@OsRo(i`GK#I2pAXu*OxJccW3T(^9&-dqBE%b5 ztE(kq!2T3(R5xYf@vy-DMxG*l`PGzt9!JEj(R*jzW%d|unk;{@rRBEu&NEORyPQv6 zl~c-1!0Y~z7NMav4E}yUHm7y;e=VDSJG2Vbs}E-f%N=uecA4V%Cjz5G0^vkKhHn$B zoizHnZ;EBGmGcI9rrz_L8_cr@~Sz%x)Fo>6^Sci2JtojrP@9%Xwnce}gH6O`VL} zXt7+eH1&k0MEiG^UCH_LdtrDJGd7bksp>x$+g=fgp3`eNs(GnfpTZ=jT zj?=)?wchk9#k*7T7xr1Ff4%GY41{}mN9mXu@urFQ{!;}GdyU4sWTjj;@o}qVkf^AS z?6$KrGgaQ=gn&w@4JVt3{B*r#cq@X9qtrxYm@<9gMa84|kDK;)`e|K(w#P@ z{khIY*}oy;AgE*olObevoM1pDV*R~btUl8co*uS3b7|<{>*fJ9rV7k^o5F~;6uo)F z{_1m=EBTPBe!N7s8~|o(|`H7$ne0!gT>o#gsj89WkLqx z3M9yTm%bSz1b%0bUy*(Q)#&6zbRAA->SnZUX`0GOq33Y@2sL z_l=N(Ixp2_6s`){6wVYy>@sJJ92(Qsp#_```Y^39`-#z+f7tAgnVJyEs>LEQ$`oHL z%l@j6qWC$Em+9O0R*s*WlQq?yJkAYT)7o8{P!`%KW~<-F;QpMyg#(wVSg(`xB`)h^jw=A#I+s1MNGK?kuiteGQ@EXQXm1nU>U}G^$ z=~&f=oU?Owaa%uTlTGT)>Vuj-qt|=rlslO^dcP&%f8L^`o}LtWB39@-RDDS8KAPx6 z&Eh}(1TFh))U$6|HW%`0f8%njPMmr1r}N!VmY+(Cp1RK%b;sL8=PBc9j|x4bxD$jZ zmfLOzb{Y!p3{FYdztN8KFv*PJr5lJlQCNIi(dzX6_9K*T2e!|=$$IE9nDTW_I4SL% zK~u`!f7zHE1%@p34X(1|SH451q`UXj35BQeYu~fA_haJkOC2t3+N&g8sjI11owyxN z8~a3kuJ$WcK2xIZ8#6W@y?yZUDYrMQ|8i+0pi6%WnC(XcG61`ku-^Ra5xC>B636@9 zim^g9s@)*vY$cea0hc|_DA3fzrNH}}x&)>xf3ChX^W8%)Opty=f~wk2c494$IKnVH z5$SZ-+uXRTd8d?D@W`+iIw1Q ztk#$xH3Yj1-q_lvA9N(9Xm*?VzVQ(nf67yLRSL%x2DN9EO9*KyTeK?~Pmq5>4Z}pK zEtaB34e}YxqcGckUm{s3KMB;<>bZ2raIZNu$8?UCwplD~9x0MrpR45yznWtmPRRln z@~5v+%N#+oZ?t5i0^bud*XJN2o0-m6FF#J=(~}y(Y!!R85^?I7{YCWiWq)7_e{UG! z>B#ARaCEiCR=ag~P?SWvp$E@v_=fBKCBi8k{G)zzvgoi!j(r5oV?L#MqH3cXX@K+) z_EghR-{er%IfK*?ttZq+gkubZy{=mq9_W>4WGG0}egC!`<632UE#lo$bh?s^jl{yt zTwH7?C!VctcB0f1S`kv^qOz*mf4$SwagxYBn!BuS7ec}Ucxpb4+gwKpLCYS6*|l7~ zQ}SaZnTz>YxD$tym<0P}8?e(A4_z!+Tl?Zc(V6ribRF!WBcHrP=0 zUj2Aee>^r+q5l)Kt1Y06jN|$5S3-SRgZK6gQMJ&3+}d7G|>9aes%9D zPz~ocS)yutzl=u1_@yb~5=Mh-#mv^`YFSR@pN1Ev!gq!gPbZfvJ@ViK6KmVfX0-vp zArw5J{XG=O6z4{pojKPHbJYi_y-&EduFU-(*YjRxbd9{> z6bz_tw(Xy`qTOtrQ=rWWd#U`L&3B4?lt6X-=;AG?6UZS;P^jd!v_3J1YkR=%$lw_v zaQH+qdEcpVc#3~}O2Ur6+fit(RRgIZk8*u!C3V-Ltcc#Wf2^uEmON@&_c7g!T$rg} zow<39$5YP0kiyS|ZMVKNhrA#RoR!#95ea0_>07vTZyhxh7$G*1Ca8vZrGqo(3UgmS zJ3rRdtj!~XTHOo4_NI-S6S#AHLp?OV=uq8Vii!KnmLQOc!z!c=-mW-P^;pcnrGTDCJ>i5C;B3h2nI}Sn znuq5EEh~x_GG2FV#77IepO7U!de$>m;=3Zj=yIt%e>G&h&dJIcc`;*mWnULu09UI} zrA^#2H>`$qQ69Z|?axBT^r<$Pi#dMD&(RkuTDB5Gbh;yKvCUL~J^RRDxc+vDB~BZ2 z9PI?!mCxOJSyVm!>zw_7FsFZ?d+%f|d)_m7hQ7omlYXU~!w!!Q5Y59S2F3lgck1A! z!g_y0f9H9hA`*-D@(tr7{-?WHY1J5NU73{I-%;pIhGuZ<2qkCbJ6q2$ZxjmhgSznL z*O$d!3d)-@C)wF2yodTxPuhK)O3wc_c;t}_3KfGB`I2rG%m#~y7CZU}mc{Mj;hwPb z!1%selG-2%#OJ%Zzws=KY&r2Nna+Fr$Hw=Nf9nN#G(c;G8}-j=`bU9S|!sEH@1+%uwJ*`YEC2!AXFVzMWvd)rj>3nBRj@Fx4@WO2EcZi2P zAT3%5e=Q@T`Y!vJ<7!>o{&YHPa|c&9T%n#LK!Ig~ZffuY5n?P%+TvoKK64KQB-|m! zf2gbkWTcdk=sesentkzv6!zK%rCOIlWM^GQ^QPCsmhOa9W*5yz^Fu^3yvINvD?G=^ zfM>Fg{pOJ4mE0E!nvkrp;H(cC)yA})dBa_a1VQvSM>|y;SC00xqV&ocHWN&J*~Pv& zJVXVKVquuMjCNf9o@>Z(`Vr-yf1hg){a&wP z7jAv7oS`^a_r^b=1)=U0-fZ@M|XQzS-UIxv7ADn~vX;7A%t&2DagYu2TJw0(=_3hu8&CD#*t zLsrzbHEv|pET(fWkreBSe~pVQGrN4@URoSh=%i8@$>iZX>OxhjitM#^(~BkH047+oLtrr#Th^Tui;fJ-`&2HT+s;cc{P$r z=}sD2^wTaip9j3Fn@0%E0Aa$Kn*reBzde|`s9iTyn3vw|%q&G<+( z=I$2*W&~m@2Owb(pxrq{vDJP;s%l;#OYS1ddd!^Axy4kKcr{@A^Oz>DY4%G1?>B+C zR4m!`%xa_W$;kHw$z`dyH;lE#8ch$^&L8ehscHn}hhr9q6DUz6`je=l8^eYrM!<4C&2$fx*NJ>2HS!kAZzSF4LmXZ?Uq@yZYjo4LQ~CbyFr zY9-4x@R^GbpU0TUU=nL*9u)%#K1+)_b0Tnu{)MM)sXDRQGr<^I81;HK)mNj@Ij7-6 zL7m{3O2K4nrf$>o38Sm;ud=ri0@~=esXiHC#d_gdf0sFX@UU}sK4yA)JmYUu$5iJh zX(N=agPAg6^Xq++AbkOLBq^Mo7S+sp*FAehj9&2lKyxl-jeY+tmIJbtUV8F|i75M4 zNRnI~?9qn9bJIS!K`P<>&K%ZM@^=Ung?G(fNsBRGH#(wai*Ns(rDdKph;c1d(jgsp1H_;}jlP~liio<+f^yttj6=h~T+R~~f2!?Wv&bcE@41tH&Y;?!(j4j6klAyL zO_C%J{ENlrJ<`$J3C#UyLz3tUVV1#GT@No#IE@V#sI4o)SzqG-0) ze=}7yu-f{+-_|I5DjtT6$yT+!vT%!o=nt5x`%8B9eqt7j)wfMU!47qnaO{G$C`{j; z^9KsN&3!oQ!I-}2Jx(_-`lgjOV_e9XVx^CxpCUp*A4Hu})Am)R;B&N^Y}G3sv-HiS zP4|TgiyMHmn7JSyf3?-iC0-{6(P|}6f5|TrKKD-ioF0;7+e)38A6n;_*W!V0GUqQE zV{*XcQMx4<^UplaW6&a(-sCsca_$s_P^?qbq{j-(FwTo(*D;SvO3R78tWW-qkgxdK zC>i<^1EHEwrIC!xy?d+n@CF;UR)cU_?fV1equGjPqcr_+ap2sGW~-;Z{66rHe=aBK zH$Qt>_{+@@gA2ry%GZtV>WOWUd1b~Djb<7bUEDh+}$AN9>Mp5e}(hTJQR0@w1>ATMm|3eZ}8uSD|1mf%ugqrDx6Kk zmiBID=vIDp^c}z?v_w>`vng&cNh+D`X*`|xW*YA+d76>)R0kZ&W4#&nLQA8Cuenh( z**q2I6Sk$Jv&x$JNGH>ITr+rpuhm4Vj;vw*+oQ3lgHEbkl`baJ3-+i_zo#}WuchMz5U_b28ISx z&7a9^qz2fX=?o}rmwMG%Hj>F?JtfrIRzWu2Rv))-iqp&>5q4xEvupY8>{{na;ek9Z zz&)&Aioq8N<+y_5ez|Q{q7(l3bGZ+pCHP>3)7~c~(9Wdxe-Qk1Hra~)=GcqT$Ip9REdMvU)FuFTV zY%Q#)LXpw8sTj~X6xX>Tt+B~HN#V~Gu4nT^ujWGlVtTkPePM`9&9b6rp5)lYS^gI5 zCUVh;7Ln+FM?`&(-AR}qEWz;{3VdJ3iL~Zi%f6a+e>Nga6MqS|I^*?waH9x&RLyyB z@T1M!PpL7)d{n_-af9+db-Rj)9j!g8_52YB4P;Nw`KaPpG_x`z>aw#hNTNsi|V=+2N88UC+619MO${=4UEFWhj^**(|L#kfE@UsSoz094!Xp_e%LYv`& zH7=v*#F@m9u?sJ05BA2^FFvrllVnO&!$_Iox4ii#1il}E;gf;Kn#WbkmSQz-@ARB)R1u|1 z(_7RbAErLQ+c*=rn4Cq{m@zhM=rKxsH6=_E$Q}rNOtz{y|B}UmY@QsH@kM-3uGtgu ze_0-`MMMYAdCXD5!fHAm?;RwpqZMUOrI@|q+Qqt9An}m2!n!Q*9+OGUqIA&qgY4=X zHPEpVfjwtl&L54*T%809KLmD^qVCj8lvJL?eGTeXV{r;N%rS+uE0T=8bK>IL^#YSw z4z{vETptZHRo-7BuD0%xxpS;*3MREk6A zWNUf2+ylQK1$w=P(b;Mx^VM7rQii_qy%geb;FTg6xe*ApblL5(k};Po+asI27b`7I zx)LnwS+NkwpMLd5Mq*cOG5F&_Nt)CD0C~2GCYRxJ1rq`=IhSDM0~ELI1_ZYo0Wp_g z zsWre58_-{7WNIytlQY=fPT*ewl1?BXz0&Hvm z4mLLa{{-4Q2>_&kAHZe+MHaw2dpnRbGPR_=gS!*h!V>aw%zqvMbf)wGc7A?dra#gF z;M zCV(p#VhKn z;bLb7ass>@4p5g<04O_v?EVZ^_%nbB@Yme{*jd>Bru!@VHxbzGk7S^!slBZO(9Ruf zX8|w=+kgPdG72mZHwY5|XlM325NLnnZ2yuE`~U>o08L&3{-_)XkP%k}0ACvXt378^ zC$Iy=nZ+4w^SedX-!w0`ENy2dX>V%_vV%Ay|E^C8>;y7>xpsHfKPPK#XYXp~`4=z; z+nJgFZoo1gaI^98a`JHiK#l;Ao2e!1Z+d?XcL&fP zPWIpCmkzu=9qb(d<}Xcvyus$6mmg$LXW$1A0OI5V^7j0<0 zCm~_)2JmEN2QYJRvjN!IdD(vfye|*l|IMNT1pie9+drvtcINf~cD6sOeYvLpRQ%yD z0nq)m9Q1(yCR4J1Q7s5S_m9Z+*|^zEU%uG?pQZjs%Kx9jf3y7GME<`8$++0q{Nbki z!~g$r18u=J?tcZmh}H%2vH*(qFKb};zoFWoKbKY!WCnJz{a>#f1o(fl2;z1YFJfk9 z=VD>w`qK_}mI1qg%v8V-Q_DXk^QT?&_o~@|?LaE_&fwqgmX|Cxw*T?H?3bza%lpIm zMVEiNfX*+=2Ki%*zcJ`#o&LKHX**MUv)_Bi!Oa5zIynK|kzYptg17;m>@N#y26FpD z*#K4+JA24W3gD$@Z-9Tfy%X~9G4rwkSY>{j{zU8m*0+BneqI18@E^nnU^V#%@dH>* z|3<$%VKw^)a=jps4FveFfEQ-azaR&I)%;(O6ToWmFZgn>^}pcDS+@Vc7nQQw{R_S@ z+y4zYxB;vV;D32vN^$xZd~rMf3%(rW@(<*AVRri$d|`I~1O9*4m7BUaIlau}k4<@* z$A9o2?>!L64P=TuH*Ie!7-Ury)O1rJPVCCOIV=Q!oN}YX!91L2hy>}99yeNxQ_swp zmoJf->tvTPv}#q7aJ>1vJag{3QB7Xs&UM91F0*4nZW25Fd<8uj?|Dr^F^y3Vm7|>` zK_*b>)CHwN8i{||_Da;uqD!3`!;7}+=WM(y4Nj2^@4Mh8rIxmeq6`H*5`L|Nbu~zX zNw3Bx_XPoM*1By>;IAnC@MNVl3VETHTjV&`a?I79{@z8bPSW;B|92k(HczNRAXw6Z zy(Cgxh~-*~x#$mBg&+3QUVECn#g>qz*BhsgFN)nv@6vzXhw}|B@3-BG-g5aO*x_fj zU-FP4z7$kL%7fvMVXQjXy?In!dG5dX?t=Wep8(b$p(&<}^F-`3*+Jf!Y!e$vxlQL+ zbb#hMiLm;e9lO9q+N&9I4^57bZ@$g+mm_ZuHjwr}=O1A4EFRMw>bx;a&@1tY{Am%t zR55;=ACZ4-vH$)_!wg@v#+!j4T;jocqNtZz#BWS;z%+P}IZQlPQE|30j}O5p8mEDk zpI-$&Q>~61#pcxfOC|G#nLz;ht8b4hrP7*R#E+duWB5MiOXQjR40l%7IHk9r(6YmQ zj2r2!KRJu-&>^M8>dJoKDXtA`@!TyIX>*>OEy{n(;;&x59!XZEO`z_`GmJtRDXtBt zEq%QS>-bp%_tm7rrNk%d;0nYr@Ts;9?s2mqQ+J+%P^XF!0B=$lBZ90vWa#!Y8$USI ztE+gYU5A%kMJ-Q&cA^ve09RAp)+&z>jKuZs=|42yl-F_N(o#|v!*K*uf-sj5a}|E)gA*X&z~erjOtilM`j^Gpg(fNNdrzT&4V z)q-QDN|v)}UB~WjW@up+wRF)}3le3oBM%OzB~sPtjR}dLrgs)8A(JH zVF-90CXwbkhkDCTu*H!!554k6d}98p1|*jR#j6SJ%56z9z^G}gv_f=Wd>Si6=IDPp zyU~5?cUJh(|By8)jN~;gTx<|dqWt~iK3}JM|K2Rce79!K(<{dGp2T^9(&ixFTs<67 zs0XYJuRdErp%q2e`DqK_r-NfOd&>;uQ~~V|gEf7N6wlwPFzBsPa>iAgcB3DPCtYjP za^8R%!XpK%5ocvoaCl^^6cM9s-@bp>dFEIB0AuF(w9PB2SIpI$@mbq|BG)9IJtD(Y z=^;Yyk(HYH=rhR*)V&CLbwfJMz}5Gr#tglo_FJ`*RaR}{2DcQhR?(JGmcPCNK**5`YL|Ui6@=a2#dU$ zZq#M#11_aY$WdZL$FGEfWIMItsp*8UP6g0+xBb?s?W`xHpd3tXa^hwVr4E$EdRx3_ zfaiLkE{D_Jpo5HhTe*25D$IX%?j#+0VR;d^30JTnN252@DG5G72Np7{B(5VKuHl3+ z)D*l{jhhkkVgTGqvV(rteExIv$GhOs6LX&4DeHPTj0x$=XzjK6eVD>V_F=b!3%gsp z)KgfUo-bD6SfUlC5)0qfvQsV_k6{T;xRhK!5;U#xLb#aS5|rh=Scrc*-pM9Y52f<3 zSX~Fpg5gRYPjWCc{y+XJpwTbC-qml#i{qN4ghGuwDKX_l@6mW4! zgo&WTbQO&co;!Y{KK1z}R9fmb#AVzsZvS&Q$ELhBQEgTUVI~uwaHsaC>?0#yJ2i7b zd`R+-E3M3NC-lhT9BqFFGdR0qNXAs@+7=OklvObMDk*Gw^S;v)!9tO+9a?2+s@*6H zRZ!%CN|w2659MgxW^+AhFv(ZFI+9G`tW?-B;xN;)5-l&_3y&GC&@* zNm~dm^^QCydPmBsqMW4sS%T9ZH?wZTuit;&Vg%wflEAw*0m zGlC>15&Q{AFV;GGc z!GBW^3Q#wrcc$_{(LsILF9qImw}MiYJjX-A## zVW%y*(wurJqCmYiywJ}{fd~u%`@1-H1ipxA#gy!OFs;NTXEP7vM^5B~@oL?JHG`<3 zx`}W-OdNk+?t1<1C5i)XHrH8GP}Xg5dnV!`J@-k3m!bM5!|f_TT#VGLnWhi zLgz5nXjwCA7`-O~hd<(XfbXn?>wtKdSyZ4G;uF zmw+vqI-M{f8BGf-LK=MZyF*D|q06tFMY4zE+pmgzOi3a)_SxPa%u@a^NsYX7sB|K< z;0%AVB2!8xqxHuTY86b<$edsAj3*BK%si%30D1JCmU$Bu+yXU^Ec$97SC50d+nbSD z1%>?na`!-CfnR2etQ&USTx;p$bzTcsci$NoK*zT=wt~KT^pp|Nf*EdLj$mM}k|Er7 z&6_Sx6FnB8Wkk30lcwQ#p9nHzTmCyT8MA+Qf)VPL>WHtTgWCeay*n1tijf;ol`hY! zaSmGkcn&nYdi;(HSgQ7NM~@G+T1jv*iW~;O&X`+3I~^2x>BE}eqgSQ*9P7GFj8n-i zQUZpW)`y2rh8O2>CuOgouLiw3iW$p^_a!8sVaYp z54}0rW6Itn9s(2sA-6dn1%Cw#5@P48FtXQWBukx4EAjXmz@_TpK0vb5S*omfL zt^!eMWsg`><5#`vT*Ny}`d~wOMazG4nvN1#&36+Yi6*YMxq)^x+%%3m^S`U=fWq4Hp{>sJhBZFte1dD=J)5N4+F<`W zy+H2MvFkCZW+m==<5C9Xql75+S2*Sz!;hgC2INs;LN6x<;(St9&KOn3&E0+2w5($7Hp2tyfpe?RYcEH|TKr2SkT7%TJaEeXG*IH_Q)37P!a zP6}|_(`)5`(|m9_UkM{_%SlK+g*d1zsXEn4c7VU7_Rd-xI7;}C)8q%@gq1yhPSCGY z(a_fSrfuX#@7}`%^vp|Ud1QaafP{|e8kTU|;7OdVbMtoWPZ4YQ-vr&visHBhjU}&3 z*Cy0rmg==a|6Gszd{zHWgl3f@Tq5A~6@j{G+Dya+Az8n-FSnHcrmd7_Qj_K6uDmb1 zBE5C@$t)7R$`ukdGph}j7i1s4KIO@@`5xaleoX__$g*w4vJ(0<+WLPiIkdHD@e}Fy z&_2o9N*ln%Di91uV@=D}e4J97e1IBrT=79S%-))xrhk_6sv4(^n`2g|htKI@$amL( zXPcct8XqPJ_DiUabr9;Og&s2mV`gXVUp1eMcj5HMBWb&zb_Wid->l2jOpT?QSMo{J zPn*vLcPs?_m_k8Ze-mvnls!Ud@ayrqMKw+ft> zWq9Weq%c;SpESyKyD24#Ye}hC zK|)n)#Vca4H0JmwfhS>U!$@c)5(LuI4Z)j6re*MIA2HK8J}ABJwvky**CeN{-*ETZ z>X(N4a)mv|N&G-ssVifjZQNnt;EWuB7M@7mbkVozu^@%k!UG+eH}S16e$onwW4LwF|O z(rj$owr$(CZQEaL+s4GUZ6^~_ZgPJ8pSHcqd?OWQ8PU=8VY1(CyeUr?=hqjhzx~&&Zh3c|o{BF21%!9Q zo1chFFvY=xgu=l^6=m1r1i%D{%O!?zPNJRky6cd)_*8H<2_GwLrm!2%U`Z=tLf)QC zPyhg(`~833JGeNO;i%!~!%N4hR$n6n^8KuiRX3b#tcxz!(OSGa@E?_X^T;YKj>UYT zBq#iAaBH^Myr`1vNq?00Gee4HL;G`S_)^r2&P&zqG8jc@2DpCXXlLWfmlxw_hYA6P zrYP{IWv2iq3cp6m%Ebfn-!kt4Mc#n36B3fbP=D?vOZMq7rUll{*!!Fz_BDb_C3EMs z-grQiM~-IO!RHXP6srX6W+e(fi`DK<&|oo-l_s3$?>upgN&c*BlH#bZ!OGqJp;R^< z62%ucTsDxkIKV!s(=FO|tevXSRm%hX_Pu!7-CPMS7i{RN<8ll0GRTL!#ZCCS`%cOq z8r7C%ST=Z0Npbj>asR}ZuN80dR&Dhg(|9jx-9#!*+q0i7%G0Msrh_H~2Xu9&^t?Ud z<(-?Y2BC97TkT|h&aHpgHLXz?#tTZkdqM7>ED7Ru}h9>lrDs5ft?=DM^dV}s&&s0$Z0;XWmMr^o9GOZwpL!u(Gi%>bPF%rD?sM4QqKbCnuOLBy8@P@z2%vU z9!|YovFXc`Ts!9UH>DlGLFXbBrsP5ua-4*~I=v>*61H{zo_epd^_2mfi)~ zZlo)8NF~HfH_oly^JmHaP~=1-UsiMu`7e6IWW0qB@7>ON2b(Cf2R`gqZq(L9mO8

|qb{oOeniQUGwnz7m9Rf}Zcla$XVT_2s%tMWg{0HPus`79*(O9)n{%H8yrg)~5ng;}+}0a3#I-pGcy}`0_QB&3X4o zd;_al5x@Ii6)lcIw-HGgj$fQT0Z79H$D`-1Q&FOo(9L!|%BlT-HiYD-Q4tJ<)}c|& zyS_L6G!1HdI2-{MX2p$VES|2L0t=q-TpfA$JuerZuGh;z`t=Z@vFW{#!m@sI*N=x% zl=CmDn#H55!N43i7#NTHIt!%z0&CQIU$xV3_9ft-@P{zc_jfBKiyCJ_2d<{08a}5X zGsfmo3z~Z9Bes+6h+B*7WOarYRc2vgt2}e*q0yd~qrU_^dr?B7>`tYFq-oQ@pm?%%J8kn$IzWd0y7!a;BjX{`$b6Iunx*T0k zEPCm)Jsk!}M^&W)3x6mQG7AuPfkjum9wuaGb!=T*KcFofZmHlXo=)r?p<$9#a1wK{ z$Z1fD9QW~nRh>8__h+NHgDK6i{-U(|Lir5fLRgvSkHcR-HX0*Ey=`4-2bm9@(cy)c zM8K;=f@a3Kq=$a)5-2adqwpc#7T#Y4l>VOG&UyssPVah3@@od1-7gP?V++7CVgF18 za6#G*-2OclK>J?7Bo94=aeT0?3Fq=S&-g0e|JGG&qT}L4R1PB(Q%^!#c?~kQzliR> ztQ{!H(d}bMW`Ma=gOv`O#5#)F@Qp4`db`4ELdM0LitW`C3+VBJ78I|x!2jXc<)6D> zdXEO|RQvN<4@nrB#`&L;^lsj+i#}?XkV&b_9Mh^!5>>lnROSV(F@#xB;Z0Qu4+{;| zz|yKdqp?mEXY2a%hlobMr1;-<==>BE?18_8Bw!=lJK1b+EWGIUCaAn1BIie!!DSk- zKynou%s9g-7L?Io_gaS5L*$8r!nt|JrGl0A~M?e=Fofzm(ne=1t^zdolW6w=^T0 z9EZHEa%`#6-Hy6fthiv*-phStAnS+i=EcYwQ$!^WhxShJ5Clq%mgml|t;zeMI$;LD zX54U1GV}QAVyCU}WX;@Gy4!Eh8PE8w?glFanLI71YrLh#)*bt1DS^{F@S(twqU@72 z*Doe)Me9*OXdp5tQmlm(gWiKNR2s%&_eROG^WvyyX%-I2sdMg>1Socjq3P6@JoIXI z-rDIBw#$wnw_28rJA-aUaSjx|bnyU)o?7|Nqs&H!JvkC8PUz^CjVQa1j-w z>@jiuB)s;7^@-;VlAbsQ=8(E^{iJw&aDq$u-JJ0qq}(^DER+w2#<{f-9uEqs8*%5AFe zd!~t=cw}%obdwo>SM?J|Epmk%qybQdgv{B1neibI_%S&^uN=q{r4l7A9+o#CPW7m$B9my9ERA~zgHbKh?H zbf!~Pa`=T1v)a$blXt)K`%n}@fKA%%L)Z6VB-7t!+1ocNxx#Ol^d!JbWS!P#c3bQ{ z!}P4^1+uFf8$!O#w+k?Qb!QPV0f2pDDb)IM#Vhj%d#f$4;4oe-q{8@EZ<#R@q-d+t zzUW54yXFb!`uxI*WZjcNJh|Xty6%g$lzfRkSSaxDPAf*jZwK%Iht#l z*=&%hjI7{(_0}jCpY=g}P`i!qk1kB?IR+}RxWU^U->Ar`hc~*fYSr{8*$#?IeK;NE zdV=LuQtHW&U#~T^x6(pu&Pdj}yY_E;$e3hGFbPcvRTImB%K$!I&-v-w#T{hr+zf_& zd<4vB2?#EwvFt4AB|oVgEBDJ^6iIOVm2l~8G$;+46$`|xo?ihgjNINpAb|)4!F845fx8S^ABK$mFTv(zsRAsHY8TViTp8DKj_JY4mvUfNMgEYK* zm5S3jIysqsvag|6dvDg(1dw3dgSz?Q+AY?)O#W7kg9GxF^NEIkhYQSeuhrx?_qscm z23enpZH!_cllZKb-EKsxR(%yH&w058epWTm&aWn2k)XAcDC%HMq&Q!7TSjj<&}jD7 zj|`-ZO&GHrd5FzHm3+SjzVmK(mm(>_p=TQv34(ejF-NyV!Y)!IrRNrjAHJ-)?g_ zC#_n)etT}v)7nC$X8KEVPG$Y7HuhV7os-CObo1l@oM@;- zV*_~fTY@>S-?jU@_qLjtrsI;VcsfqB3;oGi9EXvvu-+PKVm@(1C$clV>&T&;vXQNc zM~PR%5Tf)d-y+Px5*FgTISqQLNXxZNo0&w>mpV*n4|SI~xMs!i6Qz2bDs=Z&K^s2j zB7SNigLQ<+0TCYutSvC9@X0iIEf*7b$N`?RBgB!UqZt*F54;RYP+DQXby}BvdBkcG zBY?)+4(V2}>D=GG7sckaHSF3MJL8Pz`?KE9JRVX6`pSo?=a8pEY|UZvOP47%%iWxI zc~3ByZx&9m7h8Wt{o`5@isMD}^;f;@myZd7N7azT1#6c0X$D&=U;AGDrGONU(g1z! zx$K{$w;m{fYo4>6KJ}yyZka`EEEvfT_N2B^o1mEm70x1f+RV66gtaBmRxn;LD3c>L zE0fZWSld>5sIgkt5ZJ0%f^LP?nrtkv!##iNPpZx|Y$&j{ zD;@RIR72HwW%6v*Y2zS!LZ$59696i`HCWjW-5%;c*~FYneLobu0u^HV^V+sIq{G5K zAZg<$&kelEAL2RX$0MnqFHvhIb(13KQ^-ZwMK44)9uZP>CGN@a;)2TxqSV$+4S;RE zyhId;EDRn+_dS~k$4L)T=^wnNw!CiX{J+2QL-kBD5w*Z5#hCm6v^;P|7{y?Mx*^ z1-^52lkSD&xTnfi4b#q&%j6am)n#=Ap~3sI70hDWn?dJSx<2_6)@O}D7=p{0vntG# zXO0~ACAX>Xu3=ghECGIQ{E;uiA{C;R8E>CPcUaSk8@@(s1qH?YG-7tUT^ zc!Q$g@pggNOO!3!)hOj!f7jso6A8~z31?|dAZ!6Kw_>pXr%U@CfVwkBWA-CIebyH0}=JGkq6&ux4@11wGfww@Q>{G>JJXbazL!h zvxR5snm$XN;~;=gDvjLNzrSX(dgnt1)imW=_wHtKeULQz7VpGe&VjWZT4}UKBdP9w zO0@5s1WenGbYoA|Sr8}Us=S$YGs6S&LecQKiF5a^d{N-((7b~ic4030#<6w6Fp5mq zxZR4jh;vQ;b2LX5se7{ion(tG#|47Wf%#qVG?$e>+7}>Er)&o>oY;)imRLJoXyV4P zLe}QX<;lw4fPvU2_tEaDP0k+Jw-Ir|Jrx}O#n_Up)ckH2{M_RJ%4m)P$tTN2Hw9pM z3CVdJ(WBL*Q~9O{!u&w1bD6l!1wzjx8eA{zT*PFjMkUY^Z#G?Xjak?vDi$6+6~4+X zx#f~esR!(c*+Q47@;C-BiY^^=E)mvmq3Z2|ko|58;+u zhIiyXV3|2@m+T60C{V|LExTje<3c0MhT3>r5CaV2B}ZLHgOFGdC`bN2JmzpN!-#OY z9KTODb@_(D4W}k)g;^dsRiB*pXev|7e2g_twgF!8F0==;<9v#r z--H@dY5M3d0u{ljA6To+{7Dq%a+5B|y+GBxmF%Z44XB#viKHi#NXk-=P%5U7R2Z*@ z;L5sToymFSr7}k4zed)}E8cRsr>^gRQcuYDAA~Az>G4={93dz`S5+?yETsEzOxJ(q z?E^5ZNhOB8Gx{g2_JNPAbNjE+BPbsbl7{{BiSg)87H?+0|JhjPzBD}3ap-m zBT#X)_gsm)&){^^ez(5lG>dW#x418@+yX`{B)tUZFT_e+OsQG@1ZcT3pt?EaToGT5 zzL{t8F1rwI91A9`D}qBj?(^jE>E)|xI^vz$RB`A^#wB1=$sClis|Rhf%gF+%uF>-WW}UT~e_gh-2O?2ruVXy&ymBG6A43 zx~v;V<&GD3nJiT(YfXQAHgfz}2>ig#nQI++$>M}GH}a?8QUr^irfnhZX+CPkYal%# zX!R%|tU>7&DChaXtlvnbUWd0tVm0CYO1=EutP_$LFfA9C5RQ%RHu&M(+05!G>pT!L z|2gh@8}GRH1~(zlU(-L-;%qrZ^Z{scf?*iU1AJhJ|1ww!L6zNzPos>g%2v{M=8e%C z(6nAj*_yka0AgHiJThH*AV;2YXOUJ+z6TZ60@2-O5aJM_`?Rr@hkD))_G7Q+H(}}%3!Em9W0|oy! ziyVf(AU%W$gx}_Ej}otvxU|chE{`r_nc>k7xeI>bfSr#B2**a`Wc-bQQ7QywbocpAl~Ab{jrjZ*8ojUcOtlI2Ik zZEQ9za=t>-S^Eoe322gC0cns^rt+1uZnY%&2rQUzB?A@mXv@&=8obpT9xaOdy;_!m zwM>C}YNI)zkD5Csxx`hebkDr{28C;zGvyk7N=I`C1)z!!#;a@Q;4kFyq_N`&i=D@n zPjTBg`Uv2KaDXIaqJ;!XXDW%*$MJ3r>lhLF?Qu~D>Dv)+&}Nb!xF^_s9;1TTq2)lp zC&}~~m&KD-gm>UogOP*uhtJ;t?XwjsVbaI!2 zGlY~IHbJWx6}m$*ego6M-VDe!bxex3_>1^m$c$%&%m*gR@h#aUbpJe6y3m97KKMpBo}^*DMmg886L6UC}*vk z%9=V&Tp2u!*MvUC5wlbsgd3+gHeOK+g&{tU<`K#|h-h)tyO|S`v(ZlzY@dcSSU4TZ z;X7Mk$A>p#YnzaKN&4ZQN@}V_l>QmpDG|5}?gx@2uH5ZE@?d86|Iz=Vw-ecbrQw4x z|HrMZeI^2ohy;ZBf2G6d?Vwd)<#@o%?Nwu7eH#A}45POP;Dh(!1OG1?tzDTH{2UjA z<$uv=?Mj;9rFbAL{}mp?xPf1g{#SV14xI_!Li%6Lar;s?cr86JdwbwHxCb=|>wnR3 zs1V$^AgurWTaN)k8vj3N^!9F9h;6+8i>|eT=%xFIwoQX@=K^8-FZyK`0umpD?Z0TW zO9*o~g#TwfN5sy}&hkHga~buo5C{Na|9&-jdHTfAP$32(2i7!5P?&qpv6pp&kH-de=jzpqo8{Ahq+oh6%-apLci3%}8Qz8<`u&|#{$S}6Xg6k_d>jWO|O-c%HLxTWUM!o$# z?@(MwU0B$8;M8=Bac{1el`y)NECkaf00rrU@*&ZJ*OXJvJU%rf>>Oot& zp0Mf|-W_xbE=?~)O|P?kJ&_?kKFVAwsGc#9wibgSb#w(#iogokK(M{*U^npwpry(@ zAYJTrFyWkE(Lnmp6X0(VBhi53NC*V%AS@xUGoZ9kO(F9EDH|dgFdu0~b>yH#p{xc} ze7Cz5WGQ&E$PNr294TUOyTT*`l>re_xEnanKmvgfd&u?P`6CD5FrGtLGHO=svx1EePI)z)L50P z0aS7z0;57B1QTfdFn|c7R3tL$*`77pT+lL_lgTl^3L1}c;a*@NED$J}22N(<;~z)f zk|OSE0Fj~-zjBSc(% zVaTMy4+fGt;Io#hAbjYtv|=DOu}i2qvx^F+m_TB`>Jz21;H1#1R6v1<6rLN%wdJNw}HPdS^>(`rFE5D#xI$_RchBIW)i)* zci598(QgtTCx9&>`d{P1=IXt$7aIO_@>9tlAmrbanT75d&^q5uauZMm%PfcRnI`re zj}#fk)eAOd+-3@0O?l0yePr>pWH0?RQLZ1)6W$6p&u$lKZVks0HOA5m+n4Nn`K6rI z9-ji?-F&(74i#8J^w`38OJ3d@`STEm?`W9%0gxDZX@G?4`r+w|C#Qa@0?e2V`)9yZ zU;5Yh&>JuA4@SFg_TB#KXn(b=!1^Pub|%~PJ3K^LPA5c4pfaT3UcS2ijrP4PwSw%C z>tU*IOn4o4D{FQ7=Sr?3H)c9tcLm8hx_E;wb#UBIPU#Hu{6u!=5`k~(G7D+rn3-{0 z*1S4!FhKazs3=Z1Nslss+U4{igF2u9?$m5HGsT%05rw+Rz>y+w0?`C#E1Iv{P&VH+ z`FLp4R7W?}a5^X5&tfVWS)iRjka37sIp(pyZuBe)Zf)8|HrJKHOnW77QZse=a{kA? zfzpE>|HY_&;O4gfF=Sf!@1DzoPav&Yvq-DPFMtKO0Fe+}+=-m!8s=z$?7!UmF-pFh zg0TrjUcly_rzmpp*0Xq|1*WShq<<~ColV(RTCe?r3+9qNla9tA4&!y5tbH~z+7&_L z%z;yQ(_1XDR@6eU*xQbHZr%r2!3h?!hpCPC_*Z2cSO1Rvvh?jzIe&Ay@v*Dd2ySl- zJAf9xLWWBhHki<8MSEo3H?D+D5wbW!1c!(~!Mo5dazmkowq6lQ4Qx{@f=>#`i=vhJ zK;S(x1&q4HRv`_Kl0Y~gc{klNYG=C94?dpdG*i^CE|;ODAXzq^{Cx4*=JZZ(jCd4o z36yL;(2fg>bY}=Pl{=G^?uO>zUqU)r8sK-3$huJ>yTM*O69Q|i@I<(|(v3-SxLP|A zIui&UlTkj&4Fd0g->oP7fV-4&j}PQy%_x4YbN4TJ9;j3*8~I2n&-D%A0N`%gEpXqj zBTJpFvTtTEP&W3;W90h#ugEY=D&`%c>-(oOZc^!#a_vY?C0#2WXvHAP!sR55bAXSa zLDq`~2(@{-?;#!CJM?}!C&mb!q}PV1$mGNbm;`7LI?9X;33mem)KpC%sSH?%$t_cnJQ!@{`ugRz1}LdYA* zrnT-X{Ml`q)esVp*DJ9)*$RLMe6+5V2;gO^;jO@OMN6)0NVjT;V{W7#=>XnjO()oG z)%FU4hl?MzZQQ1@VtL2uW{C78dcwqf)*WhQYor8nl6tjh+B^&J)X6$QY$@M3j7j(T zRF%?y=&OiTP|nWRZHnhghMElPJQsp`RMco$7W*2)opMYcSnc~P3vRTBMkJ5KkgVSM zwcqxXS$YtUc+sVkA?1Q4EdV$}8^Pq9XSTvJO4+4KYy(R~kqbvvArecFK}o5sGl4>b zazYSFuwzMuUQZ?p$!1iG2W0K`UD#}8S3h*`Oc6p0heV1KelmQi=x4@Rx0^|f>aEn^ zx1jl$M+PZ;SWAe3VN-JuX)mw8_|Nc}FN6-GE5sCMc_hb(lchDd8~{Q*XjA$gFS*|{ znD+AYC5SWk7`x!-+^u{=c&{4DTjDRlrc4K9J`%A)Nf3Ohs(i+A1Gw{9L#z)Wsyzn12Flhrmedq==QlQf|s`D=?rn>sEyvaGx{WoLTbs} zvnP*uq|{I#tU(ZDMu5FwVSccjpC8{lLX}K34O)o<6m5AeioYt=OrQ10m zdDubFn%+L)INouXL|z*X(Kr%g0@yf)g=RyYM}}mfW&??fN<2#AC<$NN@K$<%kzSYO zhL12mn1PDT6=A!CR5L12-zhcQnuW+}bTZM#B??$I*h*Z-7BJE2Lz^L~4=~Pm%|X4k z-1M6lur{$Iq#I>Hkartc$JGlW2F0S%FZH6l<0{JuKER19ASLR{-wHzG6E_kfpn80W z_OljS0;8mw8`K)|7WK9x!nB_7Oiqc)E~bRxx?`rK?^C=2 zog){8`?#eP2#9D~QjHvDKo(Vviu7{XPJfV=y^m2(b+URW9Z?x}PNaN1H^;D6LAc}& zVn$Of*GN`8X=4nB&0eqIbTy`HDot6sLWH3NQ<2qF$4VtS4Xlnz&i zmD<{ZMzTU5JU2Re5)9VTm9fAaj(m6pWyBBi0ONHnukJQOgHbU_!Iq7DAvJUX$`sR# z2vovL*e0lePUSs)3pInDgsRz?Qizt6yfq$8afxlh(@4nZ;RI&qoem=k#VfZ7kt|Nf=SfE=rr;;2Ty7xBo>l z(KA`VQrn?OFO4+{6aUYecXljsdia3p3i2b;x~{}5dtNjM2wfo=6^*QQv2^3Nsqvo* zA)s+4@KY4@V|SQGz_=H+%pd%;2vSIdRJLKCJQ{#__|n%Fo9l2qQ70&I+sCo(UzdpT zh(UR|L7nJ7`HQpmE$=#q;1G^EG&qUZ>f4Y8NMegzF;U;hGA-sCuTZkZdAoV`hw z*+>UWtwvug4n}MWB)#btowEb|p`iodMiVg`q^2^iv!NQ6iX{Wdjxxz7F0v%IjyeXj z_u3E%UIGT-3-~v-P@runcKtW-Im#^lTEW+o7HnI4ueW+sku=A$`UdmUytu5(($5pA zq4)M3aPX3eiaOd>p5Rb<4%-FW!E-CubbAAu63$$yQ;UD!3nbne6GW65_$VStCHjf! zo|E)f7Kh-d1xPwGIP6I+f~s%a^^%1wQC}~lO8uo;nw3tUS(4FJ71WGqQ{H=y+f+r9 zAD7)2F4$j!gx5?c*Zzo1vVbT|^xOxUPe+a}YsBH@< zvq=t7m-1_1uzF%tJBL&*G$cbDtW7tAja6VIvU8lSr-{tVXK~hvs*IIiHH-pbC|k7d z*~yto6{d*f%lVwGIXY~@-awe%IYHeiljpUdB!z2{D>E8}#@W9xEd@(b5cL-D$@@Sj zfgr_tNk-2|Vk-3^E89DR#|v9zBVGW|3j2jvs|s4tIT7*t71DIGvL!6RLx0R|KLt~< z^@wnBv%ADLOb}SBs&Mx_#5~0Ib8Q~@l(r`~?ZedS&K;kQsZ?$og-x|%6B3lPT6+TG}6R2VGLYhgKWKi8V(-zCsSwI z9zCBDmi;`QXX73!?tFpzn59b=QMlTIhXiqLURBxrA_kv2b0^r@57@I&Sgd5e*;k&b zpKq!DHsOXI{BKy{8)&!$DzAa|Bth) zB$v?=sUKTuT0g=k>x!)$!vjuBq1?O&BPM?h`1*dj2CW`d5#F;X`^sMzrT{)wHCvZ=nl%WRn#;t(J zjYmvE1Vch%3&Ibi=D1R0da z)er98(Ys9|dZ@>b zOLNnoo`7>r-CcMuRbJ}J?I{mo&OSXe zGGkos%{A1I4+@}>p9smU733S5bdw%ezi~-UQw*ThAts`JAk_dkup}4iqKeBZ{7J~D zE?opBI0cI;)4A!G&4cFZ{)e zd+=hNLdt#h1Hu3)nupczNYdNs5WR71d;$00+k?pqPPAs!A(d!Ik{ zXMYc_KOY72S$chAv(njn(|n11c>l=W&R3t9(MEW7y*?eE+loxojY@uo#&g^UEkqS# z<~if0)#A;LA9{`x&OxKMW1wrhO6&uy0Z3{hf|ljO7z{47w19wztAt+uq0xHGW*p3O zLO9Hg7+8SKBhmY?9{*3(VKg!I)^#+~RBg>hPDTWwAOY%c;}BcYmNG9YQw*O)0t(Qj zHY^v~nEQ*#oRVS6(B*)FsBrugBbis$d&O{cr9Ms&6NM(~vc%H39gUa6yR(F~+YO?d z2ts4bBT-|^1B$lN~TQ6jQ(wH4QaA3jf`b1JrXRR&zU@ z5bBDd)OtYqR5QGBd_8-L4EE0lW~Hu;2HHyduRkvqyYtPRZJ6{(xtAwjs8c(F&l&}K zD<{GBT#8`6rlE1h``sUwVJ%dgdNW)VdvosHf2TTkcg&6T^TN1u941hR!@U87iOBiV za!&vq(OQlnUF_LqOUHsc+uW&L(~lh603Ni-$LbeSk7s8#kxq`abTi-jHUGtP^-O-7~`g>?gzx4}ax&a1BCU z+Sv%1@i?rnbo?d69jdRYsvOL%Uln%x_{RZ(*Dd3&XI(2KJziMF9q{2VEXao+3aN!) zC8Xy*w6f11Z-4KRB_J%v{qx5v%hbM7YXqY`kz#n)knI=e9HwtvE(Y6CpptWWYp>zBu2hI!rym~8jiu=v^@Y8 zm?7BTMk=aLdj{Fwu)6e9)%$Dv=pEb2?x2+7QMdv4u~qlx>X!fPnz_FD@DMR~sYj2C za`v%~;&qY-a{eruaN+wij;}r&G3Um<6J4uN?I={=uiia)fKiTw^(a@$KMI_hibjhT2MI3HX2cQc=txXX+XSBHd9IxV%-bG&>=bdkw^YitdB= zfrnGkW4@~6AZ3xgRW_%?WZ3D@d)8rUklcSgkZ585ZQM5dx|@steR*VeTN-gw|{*s<$Pla1G{>) z7U&T`W?vv5qrVeJFREuT%(ROvG|3g7?zgM22R#jd+zO}Fi&E^DV#1$%e9!W-{V_kH7pQZ9$8&HV zeSi5>jO~Q=lDJTr+fD)qzFr1+%WfF%)RSQ8_o{#c5R-H(r9B7hC-k1^%g4j-UI%)0 zS#N|iO-P?If%_xM&Qm?R8`_y%UzzUn4$Ls$q9?NS)=W%~dwL^^+b=@(7id8u-X~C6 zW?Q}ptlDjT^cRd-&&IkweAiz*_G>|P>ZP)6qdFZM`V^@aX&mLeMwTr785eMu4^)ex1Wn&`x--MaG6n)2F zCbaO|PujU&%xh};)R9a%GuHq)d^%Tck3kCMWOJ;6n7^N`qg1MGqxyOI^{@M3L+DJ2 zFp022gdJu?d`^6rN^964l1`nlOOT4M$}V?)sQ60BNe&qcZ>~8Yy>o&zA|>0l=Blb< zBA?P(*$4|xSn=tH3QTeNXpMm7kQP7MCi^tZz~IaAjMK zb$c158HE=g%!Z8SMKTyR-ahf)Aea?SZrN_}kX;cO%ZCw6UAWjjTQZ)C=Lb2S3<*1< z$4}ZFT4J1e)^60037--jH=c?=0wcw959TUM7qpG ztVGQJ9#tG2-TpnY5-|~}z%WWXSUCQx*#29I5$W==GqW=>v$3TVR2lj-@4Yu=8~pO%DAMB>^QVBaYbUHCg#E>B@!^G@Nx7ma~%C& zx1N?1DOt7_Z5Wwpw?w>?3?L>skwgZyX3(oOS6bI9bt5i$AG@gC%gkv zMMkuxK(vY_6bXpiC*=)_H{e->-6BHDcv_id>XPv`g!pP&b-PU)?ptUOMlRKGrQta4 zbRCgE>Z}H)*{>Zaast;_FPjymXWNqL2R<2f5FR-K;(||`V#xx-%&!%a$Tq_F&QWKl zCOyC&Ut722X(kAoGOkEJrO7KvAf*88+)@Zh!(`$%QuLLik`u}*it$N@M_|@OaYtm< zB6m0SJ7w5|DsrpA4Oc}MXhVaJRT`o1+^g21giTefP#OKzb0lA{67C2L8znX&wvMW0 z`!2Lqk4_0R>eo*5vIUi(4$oN^AjKn~tKwqM%~f#4J4?oAVr)4o?!?)jB^Lq`YJSxh z!YwKv)fsysJyn=}7u8jW0=>U3A_@YE{_&7iPnz`u06Qi4fuET(rn@&ZlRLp|xbKYS cpHNJN#SA|*NPIYUmVa(UFy!RoiV`sY2hyZFBme*a diff --git a/spec/spec-collated.tex b/spec/spec-collated.tex index b669b55..e2ccd0e 100644 --- a/spec/spec-collated.tex +++ b/spec/spec-collated.tex @@ -41,164 +41,167 @@ \section{Complex numbers} - \[\mathbb{C}=\{a+bi:a,b\in\mathbb{R}\}\] + \[\mathbb{C}=\{a+bi:a,b\in\mathbb{R}\}\] - \begin{align*} - \text{Cartesian form: } & a+bi\\ - \text{Polar form: } & r\operatorname{cis}\theta - \end{align*} + \begin{align*} + \text{Cartesian form: } & a+bi\\ + \text{Polar form: } & r\operatorname{cis}\theta + \end{align*} - \subsection*{Operations} + \subsection*{Operations} -\definecolor{shade1}{HTML}{ffffff} -\definecolor{shade2}{HTML}{e6f2ff} + \definecolor{shade1}{HTML}{ffffff} + \definecolor{shade2}{HTML}{e6f2ff} \definecolor{shade3}{HTML}{cce2ff} - \begin{tabularx}{\columnwidth}{r|X|X} - & \textbf{Cartesian} & \textbf{Polar} \\ - \hline - \(z_1 \pm z_2\) & \((a \pm c)(b \pm d)i\) & convert to \(a+bi\)\\ - \hline - \(+k \times z\) & \multirow{2}{*}{\(ka \pm kbi\)} & \(kr\operatorname{cis} \theta\)\\ - \cline{1-1}\cline{3-3} - \(-k \times z\) & & \(kr \operatorname{cis}(\theta\pm \pi)\)\\ - \hline - \(z_1 \cdot z_2\) & \(ac-bd+(ad+bc)i\) & \(r_1r_2 \operatorname{cis}(\theta_1 + \theta_2)\)\\ - \hline - \(z_1 \div z_2\) & \((z_1 \overline{z_2}) \div |z_2|^2\) & \(\left(\frac{r_1}{r_2}\right) \operatorname{cis}(\theta_1 - \theta_2)\) - \end{tabularx} - - \subsubsection*{Scalar multiplication in polar form} - - For \(k \in \mathbb{R}^+\): - \[k\left(r \operatorname{cis}\theta\right)=kr \operatorname{cis}\theta\] - - \noindent For \(k \in \mathbb{R}^-\): - \[k\left(r \operatorname{cis}\theta\right)=kr \operatorname{cis}\left(\begin{cases}\theta - \pi & |0<\operatorname{Arg}(z)\le \pi \\ \theta + \pi & |-\pi<\operatorname{Arg}(z)\le 0\end{cases}\right)\] + \begin{tabularx}{\columnwidth}{r|X|X} + & \textbf{Cartesian} & \textbf{Polar} \\ + \hline + \(z_1 \pm z_2\) & \((a \pm c)(b \pm d)i\) & convert to \(a+bi\)\\ + \hline + \(+k \times z\) & \multirow{2}{*}{\(ka \pm kbi\)} & \(kr\operatorname{cis} \theta\)\\ + \cline{1-1}\cline{3-3} + \(-k \times z\) & & \(kr \operatorname{cis}(\theta\pm \pi)\)\\ + \hline + \(z_1 \cdot z_2\) & \(ac-bd+(ad+bc)i\) & \(r_1r_2 \operatorname{cis}(\theta_1 + \theta_2)\)\\ + \hline + \(z_1 \div z_2\) & \((z_1 \overline{z_2}) \div |z_2|^2\) & \(\left(\frac{r_1}{r_2}\right) \operatorname{cis}(\theta_1 - \theta_2)\) + \end{tabularx} + + \subsubsection*{Scalar multiplication in polar form} + + For \(k \in \mathbb{R}^+\): + \[k\left(r \operatorname{cis}\theta\right)=kr \operatorname{cis}\theta\] + + \noindent For \(k \in \mathbb{R}^-\): + \[k\left(r \operatorname{cis}\theta\right)=kr \operatorname{cis}\left(\begin{cases}\theta - \pi & |0<\operatorname{Arg}(z)\le \pi \\ \theta + \pi & |-\pi<\operatorname{Arg}(z)\le 0\end{cases}\right)\] \subsection*{Conjugate} - \begin{align*} - \overline{z} &= a \mp bi\\ - &= r \operatorname{cis}(-\theta) - \end{align*} + \begin{align*} + \overline{z} &= a \mp bi\\ + &= r \operatorname{cis}(-\theta) + \end{align*} - \noindent \colorbox{cas}{On CAS: \texttt{conjg(a+bi)}} + \noindent \colorbox{cas}{On CAS: \texttt{conjg(a+bi)}} - \subsubsection*{Properties} + \subsubsection*{Properties} - \begin{align*} - \overline{z_1 \pm z_2} &= \overline{z_1}\pm\overline{z_2}\\ - \overline{z_1 \cdot z_2} &= \overline{z_1}\cdot\overline{z_2}\\ - \overline{kz} &= k\overline{z} \quad | \quad k \in \mathbb{R}\\ - z\overline{z} &= (a+bi)(a-bi)\\ - &= a^2 + b^2\\ - &= |z|^2 - \end{align*} + \begin{align*} + \overline{z_1 \pm z_2} &= \overline{z_1}\pm\overline{z_2}\\ + \overline{z_1 \cdot z_2} &= \overline{z_1}\cdot\overline{z_2}\\ + \overline{kz} &= k\overline{z} \quad | \quad k \in \mathbb{R}\\ + z\overline{z} &= (a+bi)(a-bi)\\ + &= a^2 + b^2\\ + &= |z|^2 + \end{align*} \subsection*{Modulus} - \[|z|=|\vec{Oz}|=\sqrt{a^2 + b^2}\] + \[|z|=|\vec{Oz}|=\sqrt{a^2 + b^2}\] - \subsubsection*{Properties} + \subsubsection*{Properties} - \begin{align*} - |z_1z_2|&=|z_1||z_2|\\ - \left|\frac{z_1}{z_2}\right|&=\frac{|z_1|}{|z_2|}\\ - |z_1+z_2|&\le|z_1|+|z_2| - \end{align*} + \begin{align*} + |z_1z_2|&=|z_1||z_2|\\ + \left|\frac{z_1}{z_2}\right|&=\frac{|z_1|}{|z_2|}\\ + |z_1+z_2|&\le|z_1|+|z_2| + \end{align*} \subsection*{Multiplicative inverse} - \begin{align*} - z^{-1}&=\frac{a-bi}{a^2+b^2}\\ - &=\frac{\overline{z}}{|z|^2}a\\ - &=r \operatorname{cis}(-\theta) - \end{align*} + \begin{align*} + z^{-1}&=\frac{a-bi}{a^2+b^2}\\ + &=\frac{\overline{z}}{|z|^2}a\\ + &=r \operatorname{cis}(-\theta) + \end{align*} \subsection*{Dividing over \(\mathbb{C}\)} - \begin{align*} - \frac{z_1}{z_2}&=z_1z_2^{-1}\\ - &=\frac{z_1\overline{z_2}}{|z_2|^2}\\ - &=\frac{(a+bi)(c-di)}{c^2+d^2}\\ - & \qquad \text{(rationalise denominator)} - \end{align*} + \begin{align*} + \frac{z_1}{z_2}&=z_1z_2^{-1}\\ + &=\frac{z_1\overline{z_2}}{|z_2|^2}\\ + &=\frac{(a+bi)(c-di)}{c^2+d^2}\\ + & \qquad \text{(rationalise denominator)} + \end{align*} \subsection*{Polar form} - \begin{align*} - z&=r\operatorname{cis}\theta\\ - &=r(\cos \theta + i \sin \theta) - \end{align*} + \begin{align*} + z&=r\operatorname{cis}\theta\\ + &=r(\cos \theta + i \sin \theta) + \end{align*} - \begin{itemize} - \item{\(r=|z|=\sqrt{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2}\)} - \item{\(\theta = \operatorname{arg}(z)\) \quad \colorbox{cas}{On CAS: \texttt{arg(a+bi)}}} - \item{\(\operatorname{Arg}(z) \in (-\pi,\pi)\) \quad \bf{(principal argument)}} - \item{\colorbox{cas}{Convert on CAS:}\\ \verb|compToTrig(a+bi)| \(\iff\) \verb|cExpand{r·cisX}|} - \item{Multiple representations:\\\(r\operatorname{cis}\theta=r\operatorname{cis}(\theta+2n\pi)\) with \(n \in \mathbb{Z}\) revolutions} - \item{\(\operatorname{cis}\pi=-1,\qquad \operatorname{cis}0=1\)} - \end{itemize} + \begin{itemize} + \item{\(r=|z|=\sqrt{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2}\)} + \item{\(\theta = \operatorname{arg}(z)\) \quad \colorbox{cas}{On CAS: \texttt{arg(a+bi)}}} + \item{\(\operatorname{Arg}(z) \in (-\pi,\pi)\) \quad \bf{(principal argument)}} + \item{\colorbox{cas}{Convert on CAS:}\\ \verb|compToTrig(a+bi)| \(\iff\) \verb|cExpand{r·cisX}|} + \item{Multiple representations:\\\(r\operatorname{cis}\theta=r\operatorname{cis}(\theta+2n\pi)\) with \(n \in \mathbb{Z}\) revolutions} + \item{\(\operatorname{cis}\pi=-1,\qquad \operatorname{cis}0=1\)} + \end{itemize} \subsection*{de Moivres' theorem} \[(r \operatorname{cis} \theta)^n = r^n \operatorname{cis}(n\theta) \text{ where } n \in \mathbb{Z}\] \subsection*{Complex polynomials} - - Include \(\pm\) for all solutions, incl. imaginary - \begin{tabularx}{\columnwidth}{ R{0.55} X } - \hline - Sum of squares & \(\begin{aligned} + Include \(\pm\) for all solutions, incl. imaginary + + \begin{tabularx}{\columnwidth}{ R{0.55} X } + \hline + Sum of squares & \(\begin{aligned} z^2 + a^2 &= z^2-(ai)^2\\ - &= (z+ai)(z-ai) \end{aligned}\) \\ - \hline - Sum of cubes & \(a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)\)\\ - \hline - Division & \(P(z)=D(z)Q(z)+R(z)\) \\ - \hline - Remainder theorem & Let \(\alpha \in \mathbb{C}\). Remainder of \(P(z) \div (z-\alpha)\) is \(P(\alpha)\)\\ - \hline - Factor theorem & \(z-\alpha\) is a factor of \(P(z) \iff P(\alpha)=0\) for \(\alpha \in \mathbb{C}\)\\ - \hline - Conjugate root theorem & \(P(z)=0 \text{ at } z=a\pm bi\) (\(\implies\) both \(z_1\) and \(\overline{z_1}\) are solutions) - \end{tabularx} + &= (z+ai)(z-ai) \end{aligned}\) \\ + \hline + Sum of cubes & \(a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)\)\\ + \hline + Division & \(P(z)=D(z)Q(z)+R(z)\) \\ + \hline + Remainder theorem & Let \(\alpha \in \mathbb{C}\). Remainder of \(P(z) \div (z-\alpha)\) is \(P(\alpha)\)\\ + \hline + Factor theorem & \(z-\alpha\) is a factor of \(P(z) \iff P(\alpha)=0\) for \(\alpha \in \mathbb{C}\)\\ + \hline + Conjugate root theorem & \(P(z)=0 \text{ at } z=a\pm bi\) (\(\implies\) both \(z_1\) and \(\overline{z_1}\) are solutions)\\ + \hline + \end{tabularx} - \subsection*{Roots} + \subsection*{\(n\)th roots} - \(n\)th roots of \(z=r\operatorname{cis}\theta\) are: + \(n\)th roots of \(z=r\operatorname{cis}\theta\) are: - \[z = r^{\frac{1}{n}} \operatorname{cis}\left(\frac{\theta+2k\pi}{n}\right)\] + \[z = r^{\frac{1}{n}} \operatorname{cis}\left(\frac{\theta+2k\pi}{n}\right)\] - \begin{itemize} + \begin{itemize} - \item{Same modulus for all solutions} - \item{Arguments are separated by \(\frac{2\pi}{n}\)} - \item{Solutions of \(z^n=a\) where \(a \in \mathbb{C}\) lie on the circle \(x^2+y^2=\left(|a|^{\frac{1}{n}}\right)^2\) \quad (intervals of \(\frac{2\pi}{n}\))} - \end{itemize} + \item{Same modulus for all solutions} + \item{Arguments separated by \(\frac{2\pi}{n} \therefore\) there are \(n\) roots} + \item{If one square root is \(a+bi\), the other is \(-a-bi\)} + \item{Give one implicit \(n\)th root \(z_1\), function is \(z=z_1^n\)} + \item{Solutions of \(z^n=a\) where \(a \in \mathbb{C}\) lie on the circle \(x^2+y^2=\left(|a|^{\frac{1}{n}}\right)^2\) \quad (intervals of \(\frac{2\pi}{n}\))} + \end{itemize} - \noindent For \(0=az^2+bz+c\), use quadratic formula: + \noindent For \(0=az^2+bz+c\), use quadratic formula: - \[z=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\] + \[z=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\] \subsection*{Fundamental theorem of algebra} - A polynomial of degree \(n\) can be factorised into \(n\) linear factors in \(\mathbb{C}\): + A polynomial of degree \(n\) can be factorised into \(n\) linear factors in \(\mathbb{C}\): - \[\implies P(z)=a_n(z-\alpha_1)(z-\alpha_2)(z-\alpha_3)\dots(z-\alpha_n)\] - \[\text{ where } \alpha_1,\alpha_2,\alpha_3,\dots,\alpha_n \in \mathbb{C}\] + \[\implies P(z)=a_n(z-\alpha_1)(z-\alpha_2)(z-\alpha_3)\dots(z-\alpha_n)\] + \[\text{ where } \alpha_1,\alpha_2,\alpha_3,\dots,\alpha_n \in \mathbb{C}\] \subsection*{Argand planes} - - \begin{center}\begin{tikzpicture}[scale=2] - \draw [->] (-0.2,0) -- (1.5,0) node [right] {$\operatorname{Re}(z)$}; - \draw [->] (0,-0.2) -- (0,1.5) node [above] {$\operatorname{Im}(z)$}; - \coordinate (P) at (1,1); - \coordinate (a) at (1,0); - \coordinate (b) at (0,1); - \coordinate (O) at (0,0); - \draw (0,0) -- (P) node[pos=0.5, above left]{\(r\)} node[pos=1, right]{\(\begin{aligned}z&=a+bi\\&=r\operatorname{cis}\theta\end{aligned}\)}; + + \begin{center}\begin{tikzpicture}[scale=2] + \draw [->] (-0.2,0) -- (1.5,0) node [right] {$\operatorname{Re}(z)$}; + \draw [->] (0,-0.2) -- (0,1.5) node [above] {$\operatorname{Im}(z)$}; + \coordinate (P) at (1,1); + \coordinate (a) at (1,0); + \coordinate (b) at (0,1); + \coordinate (O) at (0,0); + \draw (0,0) -- (P) node[pos=0.5, above left]{\(r\)} node[pos=1, right]{\(\begin{aligned}z&=a+bi\\&=r\operatorname{cis}\theta\end{aligned}\)}; \draw [gray, dashed] (1,1) -- (1,0) node[black, pos=1, below]{\(a\)}; \draw [gray, dashed] (1,1) -- (0,1) node[black, pos=1, left]{\(b\)}; \begin{scope} @@ -207,880 +210,901 @@ \node at ($(O)+(20:3mm)$) {$\theta$}; \end{scope} \filldraw (P) circle (0.5pt); - \end{tikzpicture}\end{center} + \end{tikzpicture}\end{center} - \begin{itemize} - \item{Multiplication by \(i \implies\) CCW rotation of \(\frac{\pi}{2}\)} - \item{Addition: \(z_1 + z_2 \equiv\) \overrightharp{\(Oz_1\)} + \overrightharp{\(Oz_2\)}} - \end{itemize} + \begin{itemize} + \item{Multiplication by \(i \implies\) CCW rotation of \(\frac{\pi}{2}\)} + \item{Addition: \(z_1 + z_2 \equiv\) \overrightharp{\(Oz_1\)} + \overrightharp{\(Oz_2\)}} + \end{itemize} \subsection*{Sketching complex graphs} - - \subsubsection*{Linear} - \begin{itemize} - \item{\(\operatorname{Re}(z)=c\) or \(\operatorname{Im}(z)=c\) (perpendicular bisector)} - \item{\(\operatorname{Im}(z)=m\operatorname{Re}(z)\)} - \item{\(|z+a|=|z+b| \implies 2(a-b)x=b^2-a^2\)\\Geometric: equidistant from \(a,b\)} - \end{itemize} - - \subsubsection*{Circles} - - \begin{itemize} - \item \(|z-z_1|^2=c^2|z_2+2|^2\) - \item \(|z-(a+bi)|=c \implies (x-a)^2+_(y-b)^2=c^2\) - \end{itemize} - - \noindent \textbf{Loci} \qquad \(\operatorname{Arg}(z)<\theta\) - - \begin{center}\begin{tikzpicture}[scale=2,mydot/.style={circle, fill=white, draw, outer sep=0pt, inner sep=1.5pt}] - \draw [->] (0,0) -- (1,0) node [right] {$\operatorname{Re}(z)$}; - \draw [->] (0,-0.5) -- (0,1) node [above] {$\operatorname{Im}(z)$}; - \draw [<-, dashed, thick, blue] (-1,0) -- (0,0); - \draw [->, thick, blue] (0,0) -- (1,1); - \fill [gray, opacity=0.2, domain=-1:1, variable=\x] (-1,-0.5) -- (-1,0) -- (0, 0) -- (1,1) -- (1,-0.5) -- cycle; - \begin{scope} - \path[clip] (0,0) -- (1,1) -- (1,0); - \fill[red, opacity=0.5, draw=black] (0,0) circle (2mm); - \node at ($(0,0)+(20:3mm)$) {$\frac{\pi}{4}$}; - \end{scope} - \node [font=\footnotesize] at (0.5,-0.25) {\(\operatorname{Arg}(z)\le\frac{\pi}{4}\)}; - \node [blue, mydot] {}; - \end{tikzpicture}\end{center} - - \noindent \textbf{Rays} \qquad \(\operatorname{Arg}(z-b)=\theta\) - - \begin{center}\begin{tikzpicture}[scale=2,mydot/.style={circle, fill=white, draw, outer sep=0pt, inner sep=1.5pt}] - \draw [->] (-0.75,0) -- (1.5,0) node [right] {$\operatorname{Re}(z)$}; - \draw [->] (0,-1) -- (0,1) node [above] {$\operatorname{Im}(z)$}; - \draw [->, thick, brown] (-0.25,0) -- (-0.75,-1); - \node [above, font=\footnotesize] at (-0.25,0) {\(\frac{1}{4}\)}; - \begin{scope} - \path[clip] (-0.25,0) -- (-0.75,-1) -- (0,0); - \fill[orange, opacity=0.5, draw=black] (-0.25,0) circle (2mm); - \end{scope} - \node at (-0.08,-0.3) {\(\frac{\pi}{8}\)}; - \node [font=\footnotesize, left] at (-0.75,-1) {\(\operatorname{Arg}(z+\frac{1}{4})=\frac{\pi}{8}\)}; - \node [brown, mydot] at (-0.25,0) {}; - \draw [<->, thick, green] (0,-1) -- (1.5,0.5) node [pos=0.25, black, font=\footnotesize, right] {\(|z-2|=|z-(1+i)|\)}; - \node [left, font=\footnotesize] at (0,-1) {\(-1\)}; - \node [below, font=\footnotesize] at (1,0) {\(1\)}; - \end{tikzpicture}\end{center} + \subsubsection*{Linear} + + \begin{itemize} + \item{\(\operatorname{Re}(z)=c\) or \(\operatorname{Im}(z)=c\) (perpendicular bisector)} + \item{\(\operatorname{Im}(z)=m\operatorname{Re}(z)\)} + \item{\(|z+a|=|z+b| \implies 2(a-b)x=b^2-a^2\)\\Geometric: equidistant from \(a,b\)} + \end{itemize} + + \subsubsection*{Circles} + + \begin{itemize} + \item \(|z-z_1|^2=c^2|z_2+2|^2\) + \item \(|z-(a+bi)|=c \implies (x-a)^2+_(y-b)^2=c^2\) + \end{itemize} + + \noindent \textbf{Loci} \qquad \(\operatorname{Arg}(z)<\theta\) + + \begin{center}\begin{tikzpicture}[scale=2,mydot/.style={circle, fill=white, draw, outer sep=0pt, inner sep=1.5pt}] + \draw [->] (0,0) -- (1,0) node [right] {$\operatorname{Re}(z)$}; + \draw [->] (0,-0.5) -- (0,1) node [above] {$\operatorname{Im}(z)$}; + \draw [<-, dashed, thick, blue] (-1,0) -- (0,0); + \draw [->, thick, blue] (0,0) -- (1,1); + \fill [gray, opacity=0.2, domain=-1:1, variable=\x] (-1,-0.5) -- (-1,0) -- (0, 0) -- (1,1) -- (1,-0.5) -- cycle; + \begin{scope} + \path[clip] (0,0) -- (1,1) -- (1,0); + \fill[red, opacity=0.5, draw=black] (0,0) circle (2mm); + \node at ($(0,0)+(20:3mm)$) {$\frac{\pi}{4}$}; + \end{scope} + \node [font=\footnotesize] at (0.5,-0.25) {\(\operatorname{Arg}(z)\le\frac{\pi}{4}\)}; + \node [blue, mydot] {}; + \end{tikzpicture}\end{center} + + \noindent \textbf{Rays} \qquad \(\operatorname{Arg}(z-b)=\theta\) + + \begin{center}\begin{tikzpicture}[scale=2,mydot/.style={circle, fill=white, draw, outer sep=0pt, inner sep=1.5pt}] + \draw [->] (-0.75,0) -- (1.5,0) node [right] {$\operatorname{Re}(z)$}; + \draw [->] (0,-1) -- (0,1) node [above] {$\operatorname{Im}(z)$}; + \draw [->, thick, brown] (-0.25,0) -- (-0.75,-1); + \node [above, font=\footnotesize] at (-0.25,0) {\(\frac{1}{4}\)}; + \begin{scope} + \path[clip] (-0.25,0) -- (-0.75,-1) -- (0,0); + \fill[orange, opacity=0.5, draw=black] (-0.25,0) circle (2mm); + \end{scope} + \node at (-0.08,-0.3) {\(\frac{\pi}{8}\)}; + \node [font=\footnotesize, left] at (-0.75,-1) {\(\operatorname{Arg}(z+\frac{1}{4})=\frac{\pi}{8}\)}; + \node [brown, mydot] at (-0.25,0) {}; + \draw [<->, thick, green] (0,-1) -- (1.5,0.5) node [pos=0.25, black, font=\footnotesize, right] {\(|z-2|=|z-(1+i)|\)}; + \node [left, font=\footnotesize] at (0,-1) {\(-1\)}; + \node [below, font=\footnotesize] at (1,0) {\(1\)}; + \end{tikzpicture}\end{center} \section{Vectors} -\begin{center}\begin{tikzpicture} - \draw [->] (-0.5,0) -- (3,0) node [right] {\(x\)}; - \draw [->] (0,-0.5) -- (0,3) node [above] {\(y\)}; - \draw [orange, ->, thick] (0.5,0.5) -- (2.5,2.5) node [pos=0.5, above] {\(\vec{u}\)}; - \begin{scope}[very thick, every node/.style={sloped,allow upside down}] + \begin{center}\begin{tikzpicture} + \draw [->] (-0.5,0) -- (3,0) node [right] {\(x\)}; + \draw [->] (0,-0.5) -- (0,3) node [above] {\(y\)}; + \draw [orange, ->, thick] (0.5,0.5) -- (2.5,2.5) node [pos=0.5, above] {\(\vec{u}\)}; + \begin{scope}[very thick, every node/.style={sloped,allow upside down}] \draw [gray, dashed, thick] (0.5,0.5) -- (2.5,0.5) node [pos=0.5] {\midarrow} node[black, pos=0.5, below]{\(x\vec{i}\)}; \draw [gray, dashed, thick] (2.5,0.5) -- (2.5,2.5) node [pos=0.5] {\midarrow}; - \end{scope} - \node[black, right] at (2.5,1.5) {\(y\vec{j}\)}; -\end{tikzpicture}\end{center} -\subsection*{Column notation} + \end{scope} + \node[black, right] at (2.5,1.5) {\(y\vec{j}\)}; + \end{tikzpicture}\end{center} + \subsection*{Column notation} -\[\begin{bmatrix}x\\ y \end{bmatrix} \iff x\boldsymbol{i} + y\boldsymbol{j}\] -\(\begin{bmatrix}x_2-x_1\\ y_2-y_1 \end{bmatrix}\) \quad between \(A(x_1,y_1), \> B(x_2,y_2)\) + \[\begin{bmatrix}x\\ y \end{bmatrix} \iff x\boldsymbol{i} + y\boldsymbol{j}\] + \(\begin{bmatrix}x_2-x_1\\ y_2-y_1 \end{bmatrix}\) \quad between \(A(x_1,y_1), \> B(x_2,y_2)\) -\subsection*{Scalar multiplication} + \subsection*{Scalar multiplication} -\[k\cdot (x\boldsymbol{i}+y\boldsymbol{j})=kx\boldsymbol{i}+ky\boldsymbol{j}\] + \[k\cdot (x\boldsymbol{i}+y\boldsymbol{j})=kx\boldsymbol{i}+ky\boldsymbol{j}\] -\noindent For \(k \in \mathbb{R}^-\), direction is reversed + \noindent For \(k \in \mathbb{R}^-\), direction is reversed -\subsection*{Vector addition} -\begin{center}\begin{tikzpicture}[scale=1] + \subsection*{Vector addition} + \begin{center}\begin{tikzpicture}[scale=1] \coordinate (A) at (0,0); \coordinate (B) at (2,2); \draw [->, thick, red] (0,0) -- (2,2) node [pos=0.5, below right] {\(\vec{u}=2\vec{i}+2\vec{j}\)}; \draw [->, thick, blue] (2,2) -- (1,4) node [pos=0.5, above right] {\(\vec{v}=-\vec{i}+2\vec{j}\)}; \draw [->, thick, orange] (0,0) -- (1,4) node [pos=0.5, left] {\(\vec{u}+\vec{v}=\vec{i}+4\vec{j}\)}; -\end{tikzpicture}\end{center} - -\[(x\boldsymbol{i}+y\boldsymbol{j}) \pm (a\boldsymbol{i}+b\boldsymbol{j})=(x \pm a)\boldsymbol{i}+(y \pm b)\boldsymbol{j}\] - -\begin{itemize} - \item Draw each vector head to tail then join lines - \item Addition is commutative (parallelogram) - \item \(\boldsymbol{u}-\boldsymbol{v}=\boldsymbol{u}+(-\boldsymbol{v}) \implies \overrightharp{AB}=\boldsymbol{b}-\boldsymbol{a}\) -\end{itemize} - -\subsection*{Magnitude} - -\[|(x\boldsymbol{i} + y\boldsymbol{j})|=\sqrt{x^2+y^2}\] - -\subsection*{Parallel vectors} - -\[\boldsymbol{u} || \boldsymbol{v} \iff \boldsymbol{u} = k \boldsymbol{v} \text{ where } k \in \mathbb{R} \setminus \{0\}\] - -For parallel vectors \(\boldsymbol{a}\) and \(\boldsymbol{b}\):\\ -\[\boldsymbol{a \cdot b}=\begin{cases} -|\boldsymbol{a}||\boldsymbol{b}| \hspace{2.8em} \text{if same direction}\\ --|\boldsymbol{a}||\boldsymbol{b}| \hspace{2em} \text{if opposite directions} -\end{cases}\] -%\includegraphics[width=0.2,height=\textheight]{graphics/parallelogram-vectors.jpg} -%\includegraphics[width=1]{graphics/vector-subtraction.jpg} - -\subsection*{Perpendicular vectors} - -\[\boldsymbol{a} \perp \boldsymbol{b} \iff \boldsymbol{a} \cdot \boldsymbol{b} = 0\ \quad \text{(since \(\cos 90 = 0\))}\] - -\subsection*{Unit vector \(|\hat{\boldsymbol{a}}|=1\)} -\[\begin{split}\hat{\boldsymbol{a}} & = {\frac{1}{|\boldsymbol{a}|}}\boldsymbol{a} \\ & = \boldsymbol{a} \cdot {|\boldsymbol{a}|}\end{split}\] - - \subsection*{Scalar product \(\boldsymbol{a} \cdot \boldsymbol{b}\)} - - -\begin{center}\begin{tikzpicture}[scale=2] - \draw [->] (0,0) -- (1,0.5) node [pos=0.5, above left] {\(\boldsymbol{b}\)}; - \draw [->] (0,0) -- (1,0) node [pos=0.5, below] {\(\boldsymbol{a}\)}; - \begin{scope} - \path[clip] (1,0.5) -- (1,0) -- (0,0); - \fill[orange, opacity=0.5, draw=black] (0,0) circle (2mm); - \node at ($(0,0)+(15:4mm)$) {\(\theta\)}; - \end{scope} -\end{tikzpicture}\end{center} -\begin{align*}\boldsymbol{a} \cdot \boldsymbol{b} &= a_1 b_1 + a_2 b_2 \\ &= |\boldsymbol{a}| |\boldsymbol{b}| \cos \theta \\ &\quad (\> 0 \le \theta \le \pi) \text{ - from cosine rule}\end{align*} -\noindent\colorbox{cas}{On CAS: \texttt{dotP({[}a\ b\ c{]},\ {[}d\ e\ f{]})}} - -\subsubsection*{Properties} - -\begin{enumerate} -\item - \(k(\boldsymbol{a\cdot b})=(k\boldsymbol{a})\cdot \boldsymbol{b}=\boldsymbol{a}\cdot (k\boldsymbol{b})\) -\item - \(\boldsymbol{a \cdot 0}=0\) -\item - \(\boldsymbol{a} \cdot (\boldsymbol{b} + \boldsymbol{c})=\boldsymbol{a} \cdot \boldsymbol{b} + \boldsymbol{a} \cdot \boldsymbol{c}\) -\item - \(\boldsymbol{i \cdot i} = \boldsymbol{j \cdot j} = \boldsymbol{k \cdot k}= 1\) -\item - \(\boldsymbol{a} \cdot \boldsymbol{b} = 0 \quad \implies \quad \boldsymbol{a} \perp \boldsymbol{b}\) -\item - \(\boldsymbol{a \cdot a} = |\boldsymbol{a}|^2 = a^2\) -\end{enumerate} - -\subsection*{Angle between vectors} - -\[\cos \theta = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}| |\boldsymbol{b}|} = \frac{a_1 b_1 + a_2 b_2}{|\boldsymbol{a}| |\boldsymbol{b}|}\] - -\noindent \colorbox{cas}{On CAS:} \texttt{angle([a b c], [a b c])} - -(Action \(\rightarrow\) Vector \(\rightarrow\)Angle) - -\subsection*{Angle between vector and axis} - -\noindent For\(\boldsymbol{a} = a_1 \boldsymbol{i} + a_2 \boldsymbol{j} + a_3 \boldsymbol{k}\) -which makes angles \(\alpha, \beta, \gamma\) with positive side of -\(x, y, z\) axes: -\[\cos \alpha = \frac{a_1}{|\boldsymbol{a}|}, \quad \cos \beta = \frac{a_2}{|\boldsymbol{a}|}, \quad \cos \gamma = \frac{a_3}{|\boldsymbol{a}|}\] - -\noindent \colorbox{cas}{On CAS:} \texttt{angle({[}a\ b\ c{]},\ {[}1\ 0\ 0{]})}\\for angle -between \(a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}\) and -\(x\)-axis - -\subsection*{Projections \& resolutes} - -\begin{tikzpicture}[scale=3] - \draw [->, purple] (0,0) -- (1,0.5) node [pos=0.5, above left] {\(\boldsymbol{a}\)}; - \draw [->, orange] (0,0) -- (1,0) node [pos=0.5, below] {\(\boldsymbol{u}\)}; - \draw [->, blue] (1,0) -- (2,0) node [pos=0.5, below] {\(\boldsymbol{b}\)}; - \begin{scope} - \path[clip] (1,0.5) -- (1,0) -- (0,0); - \fill[orange, opacity=0.5, draw=black] (0,0) circle (2mm); - \node at ($(0,0)+(15:4mm)$) {\(\theta\)}; - \end{scope} - \begin{scope}[very thick, every node/.style={sloped,allow upside down}] - \draw [gray, dashed, thick] (1,0) -- (1,0.5) node [pos=0.5] {\midarrow} node[black, pos=0.5, right, rotate=-90]{\(\boldsymbol{w}\)}; - \end{scope} -\draw (0,0) coordinate (O) - (1,0) coordinate (A) - (1,0.5) coordinate (B) - pic [draw,red,angle radius=2mm] {right angle = O--A--B}; -\end{tikzpicture} - -\subsubsection*{\(\parallel\boldsymbol{b}\) (vector projection/resolute)} - -\begin{align*} - \boldsymbol{u} & = \frac{\boldsymbol{a}\cdot\boldsymbol{b}}{|\boldsymbol{b}|^2}\boldsymbol{b} \\ - & = \left(\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{|\boldsymbol{b}|}\right)\left(\frac{\boldsymbol{b}}{|\boldsymbol{b}|}\right) \\ - & = (\boldsymbol{a} \cdot \hat{\boldsymbol{b}})\hat{\boldsymbol{b}} -\end{align*} - -\subsubsection*{\(\perp\boldsymbol{b}\) (perpendicular projection)} -\[\boldsymbol{w} = \boldsymbol{a} - \boldsymbol{u}\] + \end{tikzpicture}\end{center} -\subsubsection*{\(|\boldsymbol{u}|\) (scalar resolute)} -\begin{align*} - r_s &= |\boldsymbol{u}|\\ - &= \boldsymbol{a} \cdot \hat{\boldsymbol{b}}\\ - &=\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{|\boldsymbol{b}|} -\end{align*} + \[(x\boldsymbol{i}+y\boldsymbol{j}) \pm (a\boldsymbol{i}+b\boldsymbol{j})=(x \pm a)\boldsymbol{i}+(y \pm b)\boldsymbol{j}\] -\subsubsection*{Rectangular (\(\parallel,\perp\)) components} + \begin{itemize} + \item Draw each vector head to tail then join lines + \item Addition is commutative (parallelogram) + \item \(\boldsymbol{u}-\boldsymbol{v}=\boldsymbol{u}+(-\boldsymbol{v}) \implies \overrightharp{AB}=\boldsymbol{b}-\boldsymbol{a}\) + \end{itemize} -\[\boldsymbol{a}=\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{\boldsymbol{b}\cdot\boldsymbol{b}}\boldsymbol{b}+\left(\boldsymbol{a}-\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{\boldsymbol{b}\cdot\boldsymbol{b}}\boldsymbol{b}\right)\] + \subsection*{Magnitude} + \[|(x\boldsymbol{i} + y\boldsymbol{j})|=\sqrt{x^2+y^2}\] + + \subsection*{Parallel vectors} -\subsection*{Vector proofs} + \[\boldsymbol{u} || \boldsymbol{v} \iff \boldsymbol{u} = k \boldsymbol{v} \text{ where } k \in \mathbb{R} \setminus \{0\}\] + + For parallel vectors \(\boldsymbol{a}\) and \(\boldsymbol{b}\):\\ + \[\boldsymbol{a \cdot b}=\begin{cases} + |\boldsymbol{a}||\boldsymbol{b}| \hspace{2.8em} \text{if same direction}\\ + -|\boldsymbol{a}||\boldsymbol{b}| \hspace{2em} \text{if opposite directions} + \end{cases}\] + %\includegraphics[width=0.2,height=\textheight]{graphics/parallelogram-vectors.jpg} + %\includegraphics[width=1]{graphics/vector-subtraction.jpg} + + \subsection*{Perpendicular vectors} -\textbf{Concurrent:} intersection of \(\ge\) 3 lines + \[\boldsymbol{a} \perp \boldsymbol{b} \iff \boldsymbol{a} \cdot \boldsymbol{b} = 0\ \quad \text{(since \(\cos 90 = 0\))}\] -\begin{tikzpicture} - \draw [blue] (0,0) -- (1,1); - \draw [red] (1,0) -- (0,1); - \draw [brown] (0.4,0) -- (0.6,1); - \filldraw (0.5,0.5) circle (2pt); -\end{tikzpicture} + \subsection*{Unit vector \(|\hat{\boldsymbol{a}}|=1\)} + \[\begin{split}\hat{\boldsymbol{a}} & = {\frac{1}{|\boldsymbol{a}|}}\boldsymbol{a} \\ & = \boldsymbol{a} \cdot {|\boldsymbol{a}|}\end{split}\] -\subsubsection*{Collinear points} + \subsection*{Scalar product \(\boldsymbol{a} \cdot \boldsymbol{b}\)} -\(\ge\) 3 points lie on the same line -\begin{tikzpicture} - \draw [purple] (0,0) -- (4,1); - \filldraw (2,0.5) circle (2pt) node [above] {\(C\)}; - \filldraw (1,0.25) circle (2pt) node [above] {\(A\)}; - \filldraw (3,0.75) circle (2pt) node [above] {\(B\)}; - \coordinate (O) at (2.8,-0.2); - \node at (O) [below] {\(O\)}; - \begin{scope}[->, orange, thick] - \draw (O) -- (2,0.5) node [pos=0.5, above, font=\footnotesize, black] {\(\boldsymbol{c}\)}; - \draw (O) -- (1,0.25) node [pos=0.5, below, font=\footnotesize, black] {\(\boldsymbol{a}\)}; - \draw (O) -- (3,0.75) node [pos=0.5, right, font=\footnotesize, black] {\(\boldsymbol{b}\)}; - \end{scope} -\end{tikzpicture} + \begin{center}\begin{tikzpicture}[scale=2] + \draw [->] (0,0) -- (1,0.5) node [pos=0.5, above left] {\(\boldsymbol{b}\)}; + \draw [->] (0,0) -- (1,0) node [pos=0.5, below] {\(\boldsymbol{a}\)}; + \begin{scope} + \path[clip] (1,0.5) -- (1,0) -- (0,0); + \fill[orange, opacity=0.5, draw=black] (0,0) circle (2mm); + \node at ($(0,0)+(15:4mm)$) {\(\theta\)}; + \end{scope} + \end{tikzpicture}\end{center} + \begin{align*}\boldsymbol{a} \cdot \boldsymbol{b} &= a_1 b_1 + a_2 b_2 \\ &= |\boldsymbol{a}| |\boldsymbol{b}| \cos \theta \\ &\quad (\> 0 \le \theta \le \pi) \text{ - from cosine rule}\end{align*} + \noindent\colorbox{cas}{On CAS: \texttt{dotP({[}a\ b\ c{]},\ {[}d\ e\ f{]})}} -\begin{align*} - \text{e.g. Prove that}\\ - \overrightharp{AC}=m\overrightharp{AB} \iff \boldsymbol{c}&=(1-m)\boldsymbol{a}+m\boldsymbol{b}\\ - \implies \boldsymbol{c} &= \overrightharp{OA} + \overrightharp{AC}\\ - &= \overrightharp{OA} + m\overrightharp{AB}\\ - &=\boldsymbol{a}+m(\boldsymbol{b}-\boldsymbol{a})\\ - &=\boldsymbol{a}+m\boldsymbol{b}-m\boldsymbol{a}\\ - &=(1-m)\boldsymbol{a}+m{b} -\end{align*} -\begin{align*} - \text{Also, } \implies \overrightharp{OC} &= \lambda \vec{OA} + \mu \overrightharp{OB} \\ - \text{where } \lambda + \mu &= 1\\ - \text{If } C \text{ lies along } \overrightharp{AB}, & \implies 0 < \mu < 1 -\end{align*} - - -\subsubsection*{Parallelograms} - -\begin{center}\begin{tikzpicture} - \coordinate (O) at (0,0) node [below left] {\(O\)}; - \coordinate (A) at (4,0); - \coordinate (B) at (6,2); - \coordinate (C) at (2,2); - \coordinate (D) at (6,0); - - \draw[postaction={decorate}, decoration={markings, mark=at position 0.6 with {\arrow{>>}}}] (O)--(A) node [below left] {\(A\)}; - \draw[postaction={decorate}, decoration={markings,mark=at position 0.5 with {\arrow{>}}}] (A)--(B) node [above right] {\(B\)}; - \draw[postaction={decorate}, decoration={markings, mark=at position 0.6 with {\arrow{>>}}}] (B)--(C) node [above left] {\(C\)}; - \draw[postaction={decorate}, decoration={markings,mark=at position 0.5 with {\arrow{>}}}] (C)--(O); - - \draw [gray, dashed] (O) -- (B) node [pos=0.75] {\(\diagdown\diagdown\)} node [pos=0.25] {\(\diagdown\diagdown\)}; - \draw [gray, dashed] (A) -- (C) node [pos=0.75] {\(\diagup\)} node [pos=0.25] {\(\diagup\)}; - \begin{scope} - \path[clip] (C) -- (A) -- (O); - \fill[orange, opacity=0.5, draw=black] (0,0) circle (4mm); - \node at ($(0,0)+(20:8mm)$) {\(\theta\)}; - \end{scope} - \draw [gray, thick, dotted] (B) -- (D) node [pos=0.5, right, black, font=\footnotesize] {\(|\boldsymbol{c}|\sin\theta\)} (A) -- (D) node [pos=0.5, below, black, font=\footnotesize] {\(|\boldsymbol{c}|\cos\theta\)}; - \draw pic [draw,thick,red,angle radius=2mm] {right angle=O--D--B}; -\end{tikzpicture}\end{center} + \subsubsection*{Properties} -\begin{itemize} - \item - Diagonals \(\overrightharp{OB}, \overrightharp{AC}\) bisect each other - \item - If diagonals are equal length, it is a rectangle - \item - \(|\overrightharp{OB}|^2 + |\overrightharp{CA}|^2 = |\overrightharp{OA}|^2 + |\overrightharp{AB}|^2 + |\overrightharp{CB}|^2 + |\overrightharp{OC}|^2\) - \item - Area \(=\boldsymbol{c} \cdot \boldsymbol{a}\) -\end{itemize} - - \subsubsection*{Useful vector properties} + \begin{enumerate} + \item + \(k(\boldsymbol{a\cdot b})=(k\boldsymbol{a})\cdot \boldsymbol{b}=\boldsymbol{a}\cdot (k\boldsymbol{b})\) + \item + \(\boldsymbol{a \cdot 0}=0\) + \item + \(\boldsymbol{a} \cdot (\boldsymbol{b} + \boldsymbol{c})=\boldsymbol{a} \cdot \boldsymbol{b} + \boldsymbol{a} \cdot \boldsymbol{c}\) + \item + \(\boldsymbol{i \cdot i} = \boldsymbol{j \cdot j} = \boldsymbol{k \cdot k}= 1\) + \item + \(\boldsymbol{a} \cdot \boldsymbol{b} = 0 \quad \implies \quad \boldsymbol{a} \perp \boldsymbol{b}\) + \item + \(\boldsymbol{a \cdot a} = |\boldsymbol{a}|^2 = a^2\) + \end{enumerate} + + \subsection*{Angle between vectors} + + \[\cos \theta = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}| |\boldsymbol{b}|} = \frac{a_1 b_1 + a_2 b_2}{|\boldsymbol{a}| |\boldsymbol{b}|}\] + + \noindent \colorbox{cas}{On CAS:} \texttt{angle([a b c], [a b c])} + + (Action \(\rightarrow\) Vector \(\rightarrow\)Angle) + + \subsection*{Angle between vector and axis} + + \noindent For\(\boldsymbol{a} = a_1 \boldsymbol{i} + a_2 \boldsymbol{j} + a_3 \boldsymbol{k}\) + which makes angles \(\alpha, \beta, \gamma\) with positive side of + \(x, y, z\) axes: + \[\cos \alpha = \frac{a_1}{|\boldsymbol{a}|}, \quad \cos \beta = \frac{a_2}{|\boldsymbol{a}|}, \quad \cos \gamma = \frac{a_3}{|\boldsymbol{a}|}\] + + \noindent \colorbox{cas}{On CAS:} \texttt{angle({[}a\ b\ c{]},\ {[}1\ 0\ 0{]})}\\for angle + between \(a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}\) and + \(x\)-axis + + \subsection*{Projections \& resolutes} + + \begin{tikzpicture}[scale=3] + \draw [->, purple] (0,0) -- (1,0.5) node [pos=0.5, above left] {\(\boldsymbol{a}\)}; + \draw [->, orange] (0,0) -- (1,0) node [pos=0.5, below] {\(\boldsymbol{u}\)}; + \draw [->, blue] (1,0) -- (2,0) node [pos=0.5, below] {\(\boldsymbol{b}\)}; + \begin{scope} + \path[clip] (1,0.5) -- (1,0) -- (0,0); + \fill[orange, opacity=0.5, draw=black] (0,0) circle (2mm); + \node at ($(0,0)+(15:4mm)$) {\(\theta\)}; + \end{scope} + \begin{scope}[very thick, every node/.style={sloped,allow upside down}] + \draw [gray, dashed, thick] (1,0) -- (1,0.5) node [pos=0.5] {\midarrow} node[black, pos=0.5, right, rotate=-90]{\(\boldsymbol{w}\)}; + \end{scope} + \draw (0,0) coordinate (O) + (1,0) coordinate (A) + (1,0.5) coordinate (B) + pic [draw,red,angle radius=2mm] {right angle = O--A--B}; + \end{tikzpicture} + + \subsubsection*{\(\parallel\boldsymbol{b}\) (vector projection/resolute)} + + \begin{align*} + \boldsymbol{u} & = \frac{\boldsymbol{a}\cdot\boldsymbol{b}}{|\boldsymbol{b}|^2}\boldsymbol{b} \\ + & = \left(\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{|\boldsymbol{b}|}\right)\left(\frac{\boldsymbol{b}}{|\boldsymbol{b}|}\right) \\ + & = (\boldsymbol{a} \cdot \hat{\boldsymbol{b}})\hat{\boldsymbol{b}} + \end{align*} + + \subsubsection*{\(\perp\boldsymbol{b}\) (perpendicular projection)} + \[\boldsymbol{w} = \boldsymbol{a} - \boldsymbol{u}\] + + \subsubsection*{\(|\boldsymbol{u}|\) (scalar projection/resolute)} + \begin{align*} + s &= |\boldsymbol{u}|\\ + &= \boldsymbol{a} \cdot \hat{\boldsymbol{b}}\\ + &=\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{|\boldsymbol{b}|}\\ + &= |\boldsymbol{a}| \cos \theta + \end{align*} + + \subsubsection*{Rectangular (\(\parallel,\perp\)) components} + + \[\boldsymbol{a}=\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{\boldsymbol{b}\cdot\boldsymbol{b}}\boldsymbol{b}+\left(\boldsymbol{a}-\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{\boldsymbol{b}\cdot\boldsymbol{b}}\boldsymbol{b}\right)\] + + + \subsection*{Vector proofs} + + \textbf{Concurrent:} intersection of \(\ge\) 3 lines + + \begin{tikzpicture} + \draw [blue] (0,0) -- (1,1); + \draw [red] (1,0) -- (0,1); + \draw [brown] (0.4,0) -- (0.6,1); + \filldraw (0.5,0.5) circle (2pt); + \end{tikzpicture} + + \subsubsection*{Collinear points} + + \(\ge\) 3 points lie on the same line + + \begin{tikzpicture} + \draw [purple] (0,0) -- (4,1); + \filldraw (2,0.5) circle (2pt) node [above] {\(C\)}; + \filldraw (1,0.25) circle (2pt) node [above] {\(A\)}; + \filldraw (3,0.75) circle (2pt) node [above] {\(B\)}; + \coordinate (O) at (2.8,-0.2); + \node at (O) [below] {\(O\)}; + \begin{scope}[->, orange, thick] + \draw (O) -- (2,0.5) node [pos=0.5, above, font=\footnotesize, black] {\(\boldsymbol{c}\)}; + \draw (O) -- (1,0.25) node [pos=0.5, below, font=\footnotesize, black] {\(\boldsymbol{a}\)}; + \draw (O) -- (3,0.75) node [pos=0.5, right, font=\footnotesize, black] {\(\boldsymbol{b}\)}; + \end{scope} + \end{tikzpicture} + + \begin{align*} + \text{e.g. Prove that}\\ + \overrightharp{AC}=m\overrightharp{AB} \iff \boldsymbol{c}&=(1-m)\boldsymbol{a}+m\boldsymbol{b}\\ + \implies \boldsymbol{c} &= \overrightharp{OA} + \overrightharp{AC}\\ + &= \overrightharp{OA} + m\overrightharp{AB}\\ + &=\boldsymbol{a}+m(\boldsymbol{b}-\boldsymbol{a})\\ + &=\boldsymbol{a}+m\boldsymbol{b}-m\boldsymbol{a}\\ + &=(1-m)\boldsymbol{a}+m{b} + \end{align*} + \begin{align*} + \text{Also, } \implies \overrightharp{OC} &= \lambda \vec{OA} + \mu \overrightharp{OB} \\ + \text{where } \lambda + \mu &= 1\\ + \text{If } C \text{ lies along } \overrightharp{AB}, & \implies 0 < \mu < 1 + \end{align*} + + + \subsubsection*{Parallelograms} + + \begin{center}\begin{tikzpicture} + \coordinate (O) at (0,0) node [below left] {\(O\)}; + \coordinate (A) at (4,0); + \coordinate (B) at (6,2); + \coordinate (C) at (2,2); + \coordinate (D) at (6,0); + + \draw[postaction={decorate}, decoration={markings, mark=at position 0.6 with {\arrow{>>}}}] (O)--(A) node [below left] {\(A\)}; + \draw[postaction={decorate}, decoration={markings,mark=at position 0.5 with {\arrow{>}}}] (A)--(B) node [above right] {\(B\)}; + \draw[postaction={decorate}, decoration={markings, mark=at position 0.6 with {\arrow{>>}}}] (B)--(C) node [above left] {\(C\)}; + \draw[postaction={decorate}, decoration={markings,mark=at position 0.5 with {\arrow{>}}}] (C)--(O); + + \draw [gray, dashed] (O) -- (B) node [pos=0.75] {\(\diagdown\diagdown\)} node [pos=0.25] {\(\diagdown\diagdown\)}; + \draw [gray, dashed] (A) -- (C) node [pos=0.75] {\(\diagup\)} node [pos=0.25] {\(\diagup\)}; + \begin{scope} + \path[clip] (C) -- (A) -- (O); + \fill[orange, opacity=0.5, draw=black] (0,0) circle (4mm); + \node at ($(0,0)+(20:8mm)$) {\(\theta\)}; + \end{scope} + \draw [gray, thick, dotted] (B) -- (D) node [pos=0.5, right, black, font=\footnotesize] {\(|\boldsymbol{c}|\sin\theta\)} (A) -- (D) node [pos=0.5, below, black, font=\footnotesize] {\(|\boldsymbol{c}|\cos\theta\)}; + \draw pic [draw,thick,red,angle radius=2mm] {right angle=O--D--B}; + \end{tikzpicture}\end{center} + + \begin{itemize} + \item + Diagonals \(\overrightharp{OB}, \overrightharp{AC}\) bisect each other + \item + If diagonals are equal length, it is a rectangle + \item + \(|\overrightharp{OB}|^2 + |\overrightharp{CA}|^2 = |\overrightharp{OA}|^2 + |\overrightharp{AB}|^2 + |\overrightharp{CB}|^2 + |\overrightharp{OC}|^2\) + \item + Area \(=\boldsymbol{c} \cdot \boldsymbol{a}\) + \end{itemize} + + \subsubsection*{Useful vector properties} + + \begin{itemize} + \item + \(\boldsymbol{a} \parallel \boldsymbol{b} \implies \boldsymbol{b}=k\boldsymbol{a}\) for some + \(k \in \mathbb{R} \setminus \{0\}\) + \item + If \(\boldsymbol{a}\) and \(\boldsymbol{b}\) are parallel with at + least one point in common, then they lie on the same straight line + \item + \(\boldsymbol{a} \perp \boldsymbol{b} \iff \boldsymbol{a} \cdot \boldsymbol{b}=0\) + \item + \(\boldsymbol{a} \cdot \boldsymbol{a} = |\boldsymbol{a}|^2\) + \end{itemize} + + \subsection*{Linear dependence} + + \(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\) are linearly dependent if they are \(\nparallel\) and: + \begin{align*} + 0&=k\boldsymbol{a}+l\boldsymbol{b}+m\boldsymbol{c}\\ + \therefore \boldsymbol{c} &= m\boldsymbol{a} + n\boldsymbol{b} \quad \text{(simultaneous)} + \end{align*} + + \noindent \(\boldsymbol{a}, \boldsymbol{b},\) and \(\boldsymbol{c}\) are linearly + independent if no vector in the set is expressible as a linear + combination of other vectors in set, or if they are parallel. + + \subsection*{Three-dimensional vectors} + + Right-hand rule for axes: \(z\) is up or out of page. + + \tdplotsetmaincoords{60}{120} + \begin{center}\begin{tikzpicture} [scale=3, tdplot_main_coords, axis/.style={->,thick}, + vector/.style={-stealth,red,very thick}, + vector guide/.style={dashed,gray,thick}] + + %standard tikz coordinate definition using x, y, z coords + \coordinate (O) at (0,0,0); + + %tikz-3dplot coordinate definition using x, y, z coords + + \pgfmathsetmacro{\ax}{1} + \pgfmathsetmacro{\ay}{1} + \pgfmathsetmacro{\az}{1} + + \coordinate (P) at (\ax,\ay,\az); + + %draw axes + \draw[axis] (0,0,0) -- (1,0,0) node[anchor=north east]{$x$}; + \draw[axis] (0,0,0) -- (0,1,0) node[anchor=north west]{$y$}; + \draw[axis] (0,0,0) -- (0,0,1) node[anchor=south]{$z$}; + + %draw a vector from O to P + \draw[vector] (O) -- (P); + + %draw guide lines to components + \draw[vector guide] (O) -- (\ax,\ay,0); + \draw[vector guide] (\ax,\ay,0) -- (P); + \draw[vector guide] (P) -- (0,0,\az); + \draw[vector guide] (\ax,\ay,0) -- (0,\ay,0); + \draw[vector guide] (\ax,\ay,0) -- (0,\ay,0); + \draw[vector guide] (\ax,\ay,0) -- (\ax,0,0); + \node[tdplot_main_coords,above right] + at (\ax,\ay,\az){(\ax, \ay, \az)}; + \end{tikzpicture}\end{center} + + \subsection*{Parametric vectors} + + Parametric equation of line through point \((x_0, y_0, z_0)\) and + parallel to \(a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}\) is: + + \[\begin{cases}x = x_o + a \cdot t \\ y = y_0 + b \cdot t \\ z = z_0 + c \cdot t\end{cases}\] + + \section{Circular functions} + + \(\sin(bx)\) or \(\cos(bx)\): period \(=\frac{2\pi}{b}\) + + \noindent \(\tan(nx)\): period \(=\frac{\pi}{n}\)\\ + \indent\indent\indent asymptotes at \(x=\frac{(2k+1)\pi}{2n} \> \vert \> k \in \mathbb{Z}\) + + \subsection*{Reciprocal functions} + + \subsubsection*{Cosecant} + + \[\operatorname{cosec} \theta = \frac{1}{\sin \theta} \> \vert \> \sin \theta \ne 0\] + + \begin{itemize} + \item + \textbf{Domain} \(= \mathbb{R} \setminus {n\pi : n \in \mathbb{Z}}\) + \item + \textbf{Range} \(= \mathbb{R} \setminus (-1, 1)\) + \item + \textbf{Turning points} at + \(\theta = \frac{(2n + 1)\pi}{2} \> \vert \> n \in \mathbb{Z}\) + \item + \textbf{Asymptotes} at \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\) + \end{itemize} -\begin{itemize} -\item - \(\boldsymbol{a} \parallel \boldsymbol{b} \implies \boldsymbol{b}=k\boldsymbol{a}\) for some - \(k \in \mathbb{R} \setminus \{0\}\) -\item - If \(\boldsymbol{a}\) and \(\boldsymbol{b}\) are parallel with at - least one point in common, then they lie on the same straight line -\item - \(\boldsymbol{a} \perp \boldsymbol{b} \iff \boldsymbol{a} \cdot \boldsymbol{b}=0\) -\item - \(\boldsymbol{a} \cdot \boldsymbol{a} = |\boldsymbol{a}|^2\) -\end{itemize} - -\subsection*{Linear dependence} + \subsubsection*{Secant} + \begin{center}\includegraphics[width=0.7\columnwidth]{graphics/sec.png}\end{center} -\(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\) are linearly dependent if they are \(\nparallel\) and: -\begin{align*} - 0&=k\boldsymbol{a}+l\boldsymbol{b}+m\boldsymbol{c}\\ - \therefore \boldsymbol{c} &= m\boldsymbol{a} + n\boldsymbol{b} \quad \text{(simultaneous)} -\end{align*} + \[\operatorname{sec} \theta = \frac{1}{\cos \theta} \> \vert \> \cos \theta \ne 0\] -\noindent \(\boldsymbol{a}, \boldsymbol{b},\) and \(\boldsymbol{c}\) are linearly -independent if no vector in the set is expressible as a linear -combination of other vectors in set, or if they are parallel. + \begin{itemize} -\subsection*{Three-dimensional vectors} + \item + \textbf{Domain} + \(= \mathbb{R} \setminus \frac{(2n + 1) \pi}{2} : n \in \mathbb{Z}\}\) + \item + \textbf{Range} \(= \mathbb{R} \setminus (-1, 1)\) + \item + \textbf{Turning points} at + \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\) + \item + \textbf{Asymptotes} at + \(\theta = \frac{(2n + 1) \pi}{2} \> \vert \> n \in \mathbb{Z}\) + \end{itemize} -Right-hand rule for axes: \(z\) is up or out of page. + \subsubsection*{Cotangent} -\tdplotsetmaincoords{60}{120} -\begin{center}\begin{tikzpicture} [scale=3, tdplot_main_coords, axis/.style={->,thick}, -vector/.style={-stealth,red,very thick}, -vector guide/.style={dashed,gray,thick}] + \begin{center}\includegraphics[width=0.7\columnwidth]{graphics/cot.png}\end{center} -%standard tikz coordinate definition using x, y, z coords -\coordinate (O) at (0,0,0); + \[\operatorname{cot} \theta = {{\cos \theta} \over {\sin \theta}} \> \vert \> \sin \theta \ne 0\] -%tikz-3dplot coordinate definition using x, y, z coords + \begin{itemize} -\pgfmathsetmacro{\ax}{1} -\pgfmathsetmacro{\ay}{1} -\pgfmathsetmacro{\az}{1} + \item + \textbf{Domain} \(= \mathbb{R} \setminus \{n \pi: n \in \mathbb{Z}\}\) + \item + \textbf{Range} \(= \mathbb{R}\) + \item + \textbf{Asymptotes} at \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\) + \end{itemize} -\coordinate (P) at (\ax,\ay,\az); + \subsubsection*{Symmetry properties} -%draw axes -\draw[axis] (0,0,0) -- (1,0,0) node[anchor=north east]{$x$}; -\draw[axis] (0,0,0) -- (0,1,0) node[anchor=north west]{$y$}; -\draw[axis] (0,0,0) -- (0,0,1) node[anchor=south]{$z$}; + \[\begin{split} + \operatorname{sec} (\pi \pm x) & = -\operatorname{sec} x \\ + \operatorname{sec} (-x) & = \operatorname{sec} x \\ + \operatorname{cosec} (\pi \pm x) & = \mp \operatorname{cosec} x \\ + \operatorname{cosec} (-x) & = - \operatorname{cosec} x \\ + \operatorname{cot} (\pi \pm x) & = \pm \operatorname{cot} x \\ + \operatorname{cot} (-x) & = - \operatorname{cot} x + \end{split}\] -%draw a vector from O to P -\draw[vector] (O) -- (P); + \subsubsection*{Complementary properties} -%draw guide lines to components -\draw[vector guide] (O) -- (\ax,\ay,0); -\draw[vector guide] (\ax,\ay,0) -- (P); -\draw[vector guide] (P) -- (0,0,\az); -\draw[vector guide] (\ax,\ay,0) -- (0,\ay,0); -\draw[vector guide] (\ax,\ay,0) -- (0,\ay,0); -\draw[vector guide] (\ax,\ay,0) -- (\ax,0,0); -\node[tdplot_main_coords,above right] -at (\ax,\ay,\az){(\ax, \ay, \az)}; -\end{tikzpicture}\end{center} + \[\begin{split} + \operatorname{sec} \left({\pi \over 2} - x\right) & = \operatorname{cosec} x \\ + \operatorname{cosec} \left({\pi \over 2} - x\right) & = \operatorname{sec} x \\ + \operatorname{cot} \left({\pi \over 2} - x\right) & = \tan x \\ + \tan \left({\pi \over 2} - x\right) & = \operatorname{cot} x + \end{split}\] -\subsection*{Parametric vectors} + \subsubsection*{Pythagorean identities} -Parametric equation of line through point \((x_0, y_0, z_0)\) and -parallel to \(a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}\) is: + \[\begin{split} + 1 + \operatorname{cot}^2 x & = \operatorname{cosec}^2 x, \quad \text{where } \sin x \ne 0 \\ + 1 + \tan^2 x & = \operatorname{sec}^2 x, \quad \text{where } \cos x \ne 0 + \end{split}\] -\[\begin{cases}x = x_o + a \cdot t \\ y = y_0 + b \cdot t \\ z = z_0 + c \cdot t\end{cases}\] + \subsection*{Compound angle formulas} -\section{Circular functions} + \[\cos(x \pm y) = \cos x + \cos y \mp \sin x \sin y\] + \[\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y\] + \[\tan(x \pm y) = {{\tan x \pm \tan y} \over {1 \mp \tan x \tan y}}\] -\(\sin(bx)\) or \(\cos(bx)\): period \(=\frac{2\pi}{b}\) + \subsection*{Double angle formulas} -\noindent \(\tan(nx)\): period \(=\frac{\pi}{n}\)\\ -\indent\indent\indent asymptotes at \(x=\frac{(2k+1)\pi}{2n} \> \vert \> k \in \mathbb{Z}\) + \[\begin{split} + \cos 2x &= \cos^2 x - \sin^2 x \\ + & = 1 - 2\sin^2 x \\ + & = 2 \cos^2 x -1 + \end{split}\] -\subsection*{Reciprocal functions} + \[\sin 2x = 2 \sin x \cos x\] -\subsubsection*{Cosecant} + \[\tan 2x = {{2 \tan x} \over {1 - \tan^2 x}}\] -\[\operatorname{cosec} \theta = \frac{1}{\sin \theta} \> \vert \> \sin \theta \ne 0\] - -\begin{itemize} -\item - \textbf{Domain} \(= \mathbb{R} \setminus {n\pi : n \in \mathbb{Z}}\) -\item - \textbf{Range} \(= \mathbb{R} \setminus (-1, 1)\) -\item - \textbf{Turning points} at - \(\theta = \frac{(2n + 1)\pi}{2} \> \vert \> n \in \mathbb{Z}\) -\item - \textbf{Asymptotes} at \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\) -\end{itemize} + \subsection*{Inverse circular functions} -\subsubsection*{Secant} + \pgfplotsset{every axis/.append style={ + axis x line=middle, % put the x axis in the middle + axis y line=middle, % put the y axis in the middle + axis line style={<->}, % arrows on the axis + xlabel={$x$}, % default put x on x-axis + ylabel={$y$}, % default put y on y-axis + }} + +% arrows as stealth fighters +\tikzset{>=stealth} +\begin{tikzpicture} + \begin{axis}[domain = -1:1, samples = 500] + \addplot[color = red] {rad(asin(x))} node [pos=0.25, below right] {\(\sin^{-1}x\)}; + \addplot[color = blue] {rad(acos(x))} node [pos=0.25, below left] {\(\cos^{-1}x\)}; + \end{axis} +\end{tikzpicture} -\begin{center}\includegraphics[width=0.7\columnwidth]{graphics/sec.png}\end{center} - -\[\operatorname{sec} \theta = \frac{1}{\cos \theta} \> \vert \> \cos \theta \ne 0\] - -\begin{itemize} + Inverse functions: \(f(f^{-1}(x)) = x\) (restrict domain) + + \[\sin^{-1}: [-1, 1] \rightarrow \mathbb{R}, \quad \sin^{-1} x = y\] + \hfill where \(\sin y = x, \> y \in [{-\pi \over 2}, {\pi \over 2}]\) + + \[\cos^{-1}: [-1,1] \rightarrow \mathbb{R}, \quad \cos^{-1} x = y\] + \hfill where \(\cos y = x, \> y \in [0, \pi]\) + + \[\tan^{-1}: \mathbb{R} \rightarrow \mathbb{R}, \quad \tan^{-1} x = y\] + \hfill where \(\tan y = x, \> y \in \left(-{\pi \over 2}, {\pi \over 2}\right)\) -\item - \textbf{Domain} - \(= \mathbb{R} \setminus \frac{(2n + 1) \pi}{2} : n \in \mathbb{Z}\}\) -\item - \textbf{Range} \(= \mathbb{R} \setminus (-1, 1)\) -\item - \textbf{Turning points} at - \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\) -\item - \textbf{Asymptotes} at - \(\theta = \frac{(2n + 1) \pi}{2} \> \vert \> n \in \mathbb{Z}\) -\end{itemize} -\subsubsection*{Cotangent} + \section{Differential calculus} -\begin{center}\includegraphics[width=0.7\columnwidth]{graphics/cot.png}\end{center} + \subsection*{Limits} + + \[\lim_{x \rightarrow a}f(x)\] + \(L^-,\quad L^+\) \qquad limit from below/above\\ + \(\lim_{x \to a} f(x)\) \quad limit of a point\\ + + \noindent For solving \(x\rightarrow\infty\), put all \(x\) terms in denominators\\ + e.g. \[\lim_{x \rightarrow \infty}{{2x+3} \over {x-2}}={{2+{3 \over x}} \over {1-{2 \over x}}}={2 \over 1} = 2\] + + \subsubsection*{Limit theorems} + + \begin{enumerate} + \item + For constant function \(f(x)=k\), \(\lim_{x \rightarrow a} f(x) = k\) + \item + \(\lim_{x \rightarrow a} (f(x) \pm g(x)) = F \pm G\) + \item + \(\lim_{x \rightarrow a} (f(x) \times g(x)) = F \times G\) + \item + \(\therefore \lim_{x \rightarrow a} c \times f(x)=cF\) where \(c=\) constant + \item + \({\lim_{x \rightarrow a} {f(x) \over g(x)}} = {F \over G}, G \ne 0\) + \item + \(f(x)\) is continuous \(\iff L^-=L^+=f(x) \> \forall x\) + \end{enumerate} + + \subsection*{Gradients of secants and tangents} + + \textbf{Secant (chord)} - line joining two points on curve\\ + \textbf{Tangent} - line that intersects curve at one point + + \subsection*{First principles derivative} + + \[f^\prime(x) = \lim_{\delta x \rightarrow 0}{\delta y \over \delta x}={\frac{dy}{dx}}\] + + \subsubsection*{Logarithmic identities} + + \(\log_b (xy)=\log_b x + \log_b y\)\\ + \(\log_b x^n = n \log_b x\)\\ + \(\log_b y^{x^n} = x^n \log_b y\) + + \subsubsection*{Index identities} + + \(b^{m+n}=b^m \cdot b^n\)\\ + \((b^m)^n=b^{m \cdot n}\)\\ + \((b \cdot c)^n = b^n \cdot c^n\)\\ + \({a^m \div a^n} = {a^{m-n}}\) + + \subsection*{Derivative rules} + + \renewcommand{\arraystretch}{1.4} + \begin{tabularx}{\columnwidth}{rX} + \hline + \(f(x)\) & \(f^\prime(x)\)\\ + \hline + \(\sin x\) & \(\cos x\)\\ + \(\sin ax\) & \(a\cos ax\)\\ + \(\cos x\) & \(-\sin x\)\\ + \(\cos ax\) & \(-a \sin ax\)\\ + \(\tan f(x)\) & \(f^2(x) \sec^2f(x)\)\\ + \(e^x\) & \(e^x\)\\ + \(e^{ax}\) & \(ae^{ax}\)\\ + \(ax^{nx}\) & \(an \cdot e^{nx}\)\\ + \(\log_e x\) & \(\dfrac{1}{x}\)\\ + \(\log_e {ax}\) & \(\dfrac{1}{x}\)\\ + \(\log_e f(x)\) & \(\dfrac{f^\prime (x)}{f(x)}\)\\ + \(\sin(f(x))\) & \(f^\prime(x) \cdot \cos(f(x))\)\\ + \(\sin^{-1} x\) & \(\dfrac{1}{\sqrt{1-x^2}}\)\\ + \(\cos^{-1} x\) & \(\dfrac{-1}{sqrt{1-x^2}}\)\\ + \(\tan^{-1} x\) & \(\dfrac{1}{1 + x^2}\)\\ + \(\frac{d}{dy}f(y)\) & \(\dfrac{1}{\frac{dx}{dy}}\) (reciprocal)\\ + \(uv\) & \(u \frac{dv}{dx}+v\frac{du}{dx} (product rule)\)\\ + \(\dfrac{u}{v}\) & \(\dfrac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^2}\) (quotient rule)\\ + \(f(g(x))\) & \(f^\prime(g(x))\cdot g^\prime(x)\)\\ + \hline + \end{tabularx} + + \subsection*{Reciprocal derivatives} + + \[\frac{1}{\frac{dy}{dx}} = \frac{dx}{dy}\] + + \subsection*{Differentiating \(x=f(y)\)} + \begin{align*} + \text{Find }& \frac{dx}{dy}\\ + \text{Then, }\frac{dx}{dy} &= \frac{1}{\frac{dy}{dx}} \\ + \implies {\frac{dy}{dx}} &= \frac{1}{\frac{dx}{dy}}\\ + \therefore {\frac{dy}{dx}} &= \frac{1}{\frac{dx}{dy}} + \end{align*} + + \subsubsection*{Second derivative} + \begin{align*}f(x) \longrightarrow &f^\prime (x) \longrightarrow f^{\prime\prime}(x)\\ + \implies y \longrightarrow &\frac{dy}{dx} \longrightarrow \frac{d^2 y}{dx^2}\end{align*} + + \noindent Order of polynomial \(n\)th derivative decrements each time the derivative is taken + + \subsubsection*{Points of Inflection} + + \emph{Stationary point} - i.e. + \(f^\prime(x)=0\)\\ + \emph{Point of inflection} - max \(|\)gradient\(|\) (i.e. + \(f^{\prime\prime} = 0\)) + %\begin{table*}[ht] + %\centering + % \begin{tabularx}{\textwidth}{XXXX} + %\hline + % \rowcolor{shade2} + % & \(\dfrac{d^2 y}{dx^2} > 0\) & \(\dfrac{d^2y}{dx^2}<0\) & \(\dfrac{d^2y}{dx^2}=0\) (inflection) \\ + %\hline + % \(\frac{dy}{dx}>0\) & \begin{tikzpicture} \draw[domain=1:2,smooth,variable=\x,blue] plot ({\x},{(1/10)*\x*\x*\x}) plot ({\x},{0.675*\x-0.677}); \end{tikzpicture} & cell 3\\ + %cell 1 & cell 2 & cell 3\\ + %\hline + %\end{tabularx} + %\end{table*} -\[\operatorname{cot} \theta = {{\cos \theta} \over {\sin \theta}} \> \vert \> \sin \theta \ne 0\] \begin{itemize} + \item + if \(f^\prime (a) = 0\) and \(f^{\prime\prime}(a) > 0\), then point + \((a, f(a))\) is a local min (curve is concave up) + \item + if \(f^\prime (a) = 0\) and \(f^{\prime\prime} (a) < 0\), then point + \((a, f(a))\) is local max (curve is concave down) + \item + if \(f^{\prime\prime}(a) = 0\), then point \((a, f(a))\) is a point of + inflection + \item + if also \(f^\prime(a)=0\), then it is a stationary point of inflection + \end{itemize} -\item - \textbf{Domain} \(= \mathbb{R} \setminus \{n \pi: n \in \mathbb{Z}\}\) -\item - \textbf{Range} \(= \mathbb{R}\) -\item - \textbf{Asymptotes} at \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\) -\end{itemize} - -\subsubsection*{Symmetry properties} - -\[\begin{split} - \operatorname{sec} (\pi \pm x) & = -\operatorname{sec} x \\ - \operatorname{sec} (-x) & = \operatorname{sec} x \\ - \operatorname{cosec} (\pi \pm x) & = \mp \operatorname{cosec} x \\ - \operatorname{cosec} (-x) & = - \operatorname{cosec} x \\ - \operatorname{cot} (\pi \pm x) & = \pm \operatorname{cot} x \\ - \operatorname{cot} (-x) & = - \operatorname{cot} x -\end{split}\] - -\subsubsection*{Complementary properties} - -\[\begin{split} - \operatorname{sec} \left({\pi \over 2} - x\right) & = \operatorname{cosec} x \\ - \operatorname{cosec} \left({\pi \over 2} - x\right) & = \operatorname{sec} x \\ - \operatorname{cot} \left({\pi \over 2} - x\right) & = \tan x \\ - \tan \left({\pi \over 2} - x\right) & = \operatorname{cot} x -\end{split}\] - -\subsubsection*{Pythagorean identities} + \subsection*{Implicit Differentiation} -\[\begin{split} - 1 + \operatorname{cot}^2 x & = \operatorname{cosec}^2 x, \quad \text{where } \sin x \ne 0 \\ - 1 + \tan^2 x & = \operatorname{sec}^2 x, \quad \text{where } \cos x \ne 0 -\end{split}\] + \noindent Used for differentiating circles etc. -\subsection*{Compound angle formulas} + If \(p\) and \(q\) are expressions in \(x\) and \(y\) such that \(p=q\), + for all \(x\) and \(y\), then: -\[\cos(x \pm y) = \cos x + \cos y \mp \sin x \sin y\] -\[\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y\] -\[\tan(x \pm y) = {{\tan x \pm \tan y} \over {1 \mp \tan x \tan y}}\] + \[{\frac{dp}{dx}} = {\frac{dq}{dx}} \quad \text{and} \quad {\frac{dp}{dy}} = {\frac{dq}{dy}}\] -\subsection*{Double angle formulas} - -\[\begin{split} - \cos 2x &= \cos^2 x - \sin^2 x \\ - & = 1 - 2\sin^2 x \\ - & = 2 \cos^2 x -1 -\end{split}\] + \noindent \colorbox{cas}{\textbf{On CAS:}}\\ + Action \(\rightarrow\) Calculation \(\rightarrow\) \texttt{impDiff(y\^{}2+ax=5,\ x,\ y)}\\ + Returns \(y^\prime= \dots\). -\[\sin 2x = 2 \sin x \cos x\] + \subsection*{Integration} -\[\tan 2x = {{2 \tan x} \over {1 - \tan^2 x}}\] + \[\int f(x) \cdot dx = F(x) + c \quad \text{where } F^\prime(x) = f(x)\] -\subsection*{Inverse circular functions} - -Inverse functions: \(f(f^{-1}(x)) = x, \quad f(f^{-1}(x)) = x\)\\ -Must be 1:1 to find inverse (reflection in \(y=x\)).\\ -Domain is restricted to make functions 1:1. - -\[\sin^{-1}: [-1, 1] \rightarrow \mathbb{R}, \quad \sin^{-1} x = y\] -\hfill where \(\sin y = x, \> y \in [{-\pi \over 2}, {\pi \over 2}]\) + \subsection*{Integral laws} -\[\cos^{-1}: [-1,1] \rightarrow \mathbb{R}, \quad \cos^{-1} x = y\] -\hfill where \(\cos y = x, \> y \in [0, \pi]\) + \renewcommand{\arraystretch}{1.4} + \begin{tabularx}{\columnwidth}{rX} + \hline + \(f(x)\) & \(\int f(x) \cdot dx\) \\ + \hline + \(k\) (constant) & \(kx + c\)\\ + \(x^n\) & \(\dfrac{1}{n+1} x^{n+1}\) \\ + \(a x^{-n}\) &\(a \cdot \log_e |x| + c\)\\ + \(\dfrac{1}{ax+b}\) &\(\dfrac{1}{a} \log_e (ax+b) + c\)\\ + \((ax+b)^n\) & \(\dfrac{1}{a(n+1)}(ax+b)^{n-1} + c\>|\>n\ne 1\)\\ + \((ax+b)^{-1}\) & \(\dfrac{1}{a}\log_e |ax+b|+c\)\\ + \(e^{kx}\) & \(\dfrac{1}{k} e^{kx} + c\)\\ + \(e^k\) & \(e^kx + c\)\\ + \(\sin kx\) & \(\dfrac{-1}{k} \cos (kx) + c\)\\ + \(\cos kx\) & \(\dfrac{1}{k} \sin (kx) + c\)\\ + \(\sec^2 kx\) & \(\dfrac{1}{k} \tan(kx) + c\)\\ + \(\dfrac{1}{\sqrt{a^2-x^2}}\) & \(\sin^{-1} \dfrac{x}{a} + c \>\vert\> a>0\)\\ + \(\dfrac{-1}{\sqrt{a^2-x^2}}\) & \(\cos^{-1} \dfrac{x}{a} + c \>\vert\> a>0\)\\ + \(\frac{a}{a^2-x^2}\) & \(\tan^{-1} \frac{x}{a} + c\)\\ + \(\frac{f^\prime (x)}{f(x)}\) & \(\log_e f(x) + c\)\\ + \(\int f(u) \cdot \frac{du}{dx} \cdot dx\) & \(\int f(u) \cdot du\) (substitution)\\ + \(f(x) \cdot g(x)\) & \(\int [f^\prime(x) \cdot g(x)] dx + \int [g^\prime(x) f(x)] dx\)\\ + \hline + \end{tabularx} -\[\tan^{-1}: \mathbb{R} \rightarrow \mathbb{R}, \quad \tan^{-1} x = y\] -\hfill where \(\tan y = x, \> y \in \left(-{\pi \over 2}, {\pi \over 2}\right)\) + Note \(\sin^{-1} {x \over a} + \cos^{-1} {x \over a}\) is constant \(\forall x \in (-a, a)\) + \subsection*{Definite integrals} -\section{Differential calculus} - -\subsection*{Limits} - -\[\lim_{x \rightarrow a}f(x)\] -\(L^-,\quad L^+\) \qquad limit from below/above\\ -\(\lim_{x \to a} f(x)\) \quad limit of a point\\ - -\noindent For solving \(x\rightarrow\infty\), put all \(x\) terms in denominators\\ - e.g. \[\lim_{x \rightarrow \infty}{{2x+3} \over {x-2}}={{2+{3 \over x}} \over {1-{2 \over x}}}={2 \over 1} = 2\] - -\subsubsection*{Limit theorems} - -\begin{enumerate} -\item - For constant function \(f(x)=k\), \(\lim_{x \rightarrow a} f(x) = k\) -\item - \(\lim_{x \rightarrow a} (f(x) \pm g(x)) = F \pm G\) -\item - \(\lim_{x \rightarrow a} (f(x) \times g(x)) = F \times G\) - \item -\(\therefore \lim_{x \rightarrow a} c \times f(x)=cF\) where \(c=\) constant -\item - \({\lim_{x \rightarrow a} {f(x) \over g(x)}} = {F \over G}, G \ne 0\) -\item - \(f(x)\) is continuous \(\iff L^-=L^+=f(x) \> \forall x\) -\end{enumerate} - -\subsection*{Gradients of secants and tangents} - -\textbf{Secant (chord)} - line joining two points on curve\\ -\textbf{Tangent} - line that intersects curve at one point - -\subsection*{First principles derivative} - -\[f^\prime(x) = \lim_{\delta x \rightarrow 0}{\delta y \over \delta x}={\frac{dy}{dx}}\] - -\subsubsection*{Logarithmic identities} - -\(\log_b (xy)=\log_b x + \log_b y\)\\ -\(\log_b x^n = n \log_b x\)\\ -\(\log_b y^{x^n} = x^n \log_b y\) - -\subsubsection*{Index identities} - -\(b^{m+n}=b^m \cdot b^n\)\\ -\((b^m)^n=b^{m \cdot n}\)\\ -\((b \cdot c)^n = b^n \cdot c^n\)\\ -\({a^m \div a^n} = {a^{m-n}}\) - -\subsection*{Derivative rules} - -\renewcommand{\arraystretch}{1.4} -\begin{tabularx}{\columnwidth}{rX} - \hline -\(f(x)\) & \(f^\prime(x)\)\\ -\hline -\(\sin x\) & \(\cos x\)\\ -\(\sin ax\) & \(a\cos ax\)\\ -\(\cos x\) & \(-\sin x\)\\ -\(\cos ax\) & \(-a \sin ax\)\\ -\(\tan f(x)\) & \(f^2(x) \sec^2f(x)\)\\ -\(e^x\) & \(e^x\)\\ -\(e^{ax}\) & \(ae^{ax}\)\\ -\(ax^{nx}\) & \(an \cdot e^{nx}\)\\ - \(\log_e x\) & \(\dfrac{1}{x}\)\\ - \(\log_e {ax}\) & \(\dfrac{1}{x}\)\\ - \(\log_e f(x)\) & \(\dfrac{f^\prime (x)}{f(x)}\)\\ -\(\sin(f(x))\) & \(f^\prime(x) \cdot \cos(f(x))\)\\ - \(\sin^{-1} x\) & \(\dfrac{1}{\sqrt{1-x^2}}\)\\ - \(\cos^{-1} x\) & \(\dfrac{-1}{sqrt{1-x^2}}\)\\ - \(\tan^{-1} x\) & \(\dfrac{1}{1 + x^2}\)\\ - \hline -\end{tabularx} - -\subsection*{Reciprocal derivatives} - -\[\frac{1}{\frac{dy}{dx}} = \frac{dx}{dy}\] - -\subsection*{Differentiating \(x=f(y)\)} -\begin{align*} - \text{Find }& \frac{dx}{dy}\\ - \text{Then, }\frac{dx}{dy} &= \frac{1}{\frac{dy}{dx}} \\ - \implies {\frac{dy}{dx}} &= \frac{1}{\frac{dx}{dy}}\\ - \therefore {\frac{dy}{dx}} &= \frac{1}{\frac{dx}{dy}} -\end{align*} - -\subsection*{Second derivative} -\begin{align*}f(x) \longrightarrow &f^\prime (x) \longrightarrow f^{\prime\prime}(x)\\ -\implies y \longrightarrow &\frac{dy}{dx} \longrightarrow \frac{d^2 y}{dx^2}\end{align*} - -\noindent Order of polynomial \(n\)th derivative decrements each time the derivative is taken - -\subsubsection*{Points of Inflection} - -\emph{Stationary point} - i.e. -\(f^\prime(x)=0\)\\ -\emph{Point of inflection} - max \(|\)gradient\(|\) (i.e. -\(f^{\prime\prime} = 0\)) -%\begin{table*}[ht] -%\centering -% \begin{tabularx}{\textwidth}{XXXX} -%\hline -% \rowcolor{shade2} -% & \(\dfrac{d^2 y}{dx^2} > 0\) & \(\dfrac{d^2y}{dx^2}<0\) & \(\dfrac{d^2y}{dx^2}=0\) (inflection) \\ -%\hline -% \(\frac{dy}{dx}>0\) & \begin{tikzpicture} \draw[domain=1:2,smooth,variable=\x,blue] plot ({\x},{(1/10)*\x*\x*\x}) plot ({\x},{0.675*\x-0.677}); \end{tikzpicture} & cell 3\\ -%cell 1 & cell 2 & cell 3\\ -%\hline -%\end{tabularx} -%\end{table*} -\begin{itemize} + \[\int_a^b f(x) \cdot dx = [F(x)]_a^b=F(b)-F(a)\] -\item - if \(f^\prime (a) = 0\) and \(f^{\prime\prime}(a) > 0\), then point - \((a, f(a))\) is a local min (curve is concave up) -\item - if \(f^\prime (a) = 0\) and \(f^{\prime\prime} (a) < 0\), then point - \((a, f(a))\) is local max (curve is concave down) -\item - if \(f^{\prime\prime}(a) = 0\), then point \((a, f(a))\) is a point of - inflection -\item - if also \(f^\prime(a)=0\), then it is a stationary point of inflection -\end{itemize} - -\begin{table*}[ht] - \centering - \includegraphics[width=0.7\textwidth]{graphics/second-derivatives.png} -\end{table*} - -\subsection*{Implicit Differentiation} - -\noindent Used for differentiating circles etc. - -If \(p\) and \(q\) are expressions in \(x\) and \(y\) such that \(p=q\), -for all \(x\) and \(y\), then: - -\[{\frac{dp}{dx}} = {\frac{dq}{dx}} \quad \text{and} \quad {\frac{dp}{dy}} = {\frac{dq}{dy}}\] - -\noindent \colorbox{cas}{\textbf{On CAS:}}\\ -Action \(\rightarrow\) Calculation \(\rightarrow\) \texttt{impDiff(y\^{}2+ax=5,\ x,\ y)}\\ -Returns \(y^\prime= \dots\). - -\subsection*{Integration} - -\[\int f(x) \cdot dx = F(x) + c \quad \text{where } F^\prime(x) = f(x)\] - -\subsection*{Integral laws} - -\renewcommand{\arraystretch}{1.4} -\begin{tabularx}{\columnwidth}{rX} -\hline - \(f(x)\) & \(\int f(x) \cdot dx\) \\ - \hline - \(k\) (constant) & \(kx + c\)\\ - \(x^n\) & \(\dfrac{1}{n+1} x^{n+1}\) \\ - \(a x^{-n}\) &\(a \cdot \log_e x + c\)\\ - \(\dfrac{1}{ax+b}\) &\(\dfrac{1}{a} \log_e (ax+b) + c\)\\ - \((ax+b)^n\) & \(\dfrac{1}{a(n+1)}(ax+b)^{n-1} + c\)\\ - \(e^{kx}\) & \(\dfrac{1}{k} e^{kx} + c\)\\ - \(e^k\) & \(e^kx + c\)\\ - \(\sin kx\) & \(\dfrac{-1}{k} \cos (kx) + c\)\\ - \(\cos kx\) & \(\frac{1}{k} \sin (kx) + c\)\\ - \(\sec^2 kx\) & \(\frac{1}{k} \tan(kx) + c\)\\ - \(\dfrac{1}{\sqrt{a^2-x^2}}\) & \(\sin^{-1} \dfrac{x}{a} + c \>\vert\> a>0\)\\ - \(\dfrac{-1}{\sqrt{a^2-x^2}}\) & \(\cos^{-1} \dfrac{x}{a} + c \>\vert\> a>0\)\\ - \(\frac{a}{a^2-x^2}\) & \(\tan^{-1} \frac{x}{a} + c\)\\ - \(\frac{f^\prime (x)}{f(x)}\) & \(\log_e f(x) + c\)\\ - \(g^\prime(x)\cdot f^\prime(g(x)\) & \(f(g(x))\) (chain rule)\\ - \(f(x) \cdot g(x)\) & \(\int [f^\prime(x) \cdot g(x)] dx + \int [g^\prime(x) f(x)] dx\)\\ - \hline -\end{tabularx} - -Note \(\sin^{-1} {x \over a} + \cos^{-1} {x \over a}\) is constant \(\forall x \in (-a, a)\) - -\subsection*{Definite integrals} - -\[\int_a^b f(x) \cdot dx = [F(x)]_a^b=F(b)-F(a)\] + \begin{itemize} -\begin{itemize} + \item + Signed area enclosed by\\ + \(\> y=f(x), \quad y=0, \quad x=a, \quad x=b\). + \item + \emph{Integrand} is \(f\). + \end{itemize} -\item - Signed area enclosed by\\ - \(\> y=f(x), \quad y=0, \quad x=a, \quad x=b\). -\item - \emph{Integrand} is \(f\). -\end{itemize} + \subsubsection*{Properties} -\subsubsection*{Properties} + \[\int^b_a f(x) \> dx = \int^c_a f(x) \> dx + \int^b_c f(x) \> dx\] -\[\int^b_a f(x) \> dx = \int^c_a f(x) \> dx + \int^b_c f(x) \> dx\] + \[\int^a_a f(x) \> dx = 0\] -\[\int^a_a f(x) \> dx = 0\] + \[\int^b_a k \cdot f(x) \> dx = k \int^b_a f(x) \> dx\] -\[\int^b_a k \cdot f(x) \> dx = k \int^b_a f(x) \> dx\] + \[\int^b_a f(x) \pm g(x) \> dx = \int^b_a f(x) \> dx \pm \int^b_a g(x) \> dx\] -\[\int^b_a f(x) \pm g(x) \> dx = \int^b_a f(x) \> dx \pm \int^b_a g(x) \> dx\] + \[\int^b_a f(x) \> dx = - \int^a_b f(x) \> dx\] -\[\int^b_a f(x) \> dx = - \int^a_b f(x) \> dx\] + \subsection*{Integration by substitution} -\subsection*{Integration by substitution} + \[\int f(u) {\frac{du}{dx}} \cdot dx = \int f(u) \cdot du\] -\[\int f(u) {\frac{du}{dx}} \cdot dx = \int f(u) \cdot du\] + \noindent Note \(f(u)\) must be 1:1 \(\implies\) one \(x\) for each \(y\) + \begin{align*}\text{e.g. for } y&=\int(2x+1)\sqrt{x+4} \cdot dx\\ + \text{let } u&=x+4\\ + \implies& {\frac{du}{dx}} = 1\\ + \implies& x = u - 4\\ + \text{then } &y=\int (2(u-4)+1)u^{\frac{1}{2}} \cdot du\\ + &\text{(solve as normal integral)} + \end{align*} -\noindent Note \(f(u)\) must be 1:1 \(\implies\) one \(x\) for each \(y\) -\begin{align*}\text{e.g. for } y&=\int(2x+1)\sqrt{x+4} \cdot dx\\ - \text{let } u&=x+4\\ - \implies& {\frac{du}{dx}} = 1\\ - \implies& x = u - 4\\ - \text{then } &y=\int (2(u-4)+1)u^{\frac{1}{2}} \cdot du\\ - &\text{(solve as normal integral)} -\end{align*} + \subsubsection*{Definite integrals by substitution} -\subsubsection*{Definite integrals by substitution} + For \(\int^b_a f(x) {\frac{du}{dx}} \cdot dx\), evaluate new \(a\) and + \(b\) for \(f(u) \cdot du\). -For \(\int^b_a f(x) {\frac{du}{dx}} \cdot dx\), evaluate new \(a\) and -\(b\) for \(f(u) \cdot du\). + \subsubsection*{Trigonometric integration} -\subsubsection*{Trigonometric integration} + \[\sin^m x \cos^n x \cdot dx\] -\[\sin^m x \cos^n x \cdot dx\] + \paragraph{\textbf{\(m\) is odd:}} + \(m=2k+1\) where \(k \in \mathbb{Z}\)\\ + \(\implies \sin^{2k+1} x = (\sin^2 z)^k \sin x = (1 - \cos^2 x)^k \sin x\)\\ + Substitute \(u=\cos x\) -\paragraph{\textbf{\(m\) is odd:}} -\(m=2k+1\) where \(k \in \mathbb{Z}\)\\ -\(\implies \sin^{2k+1} x = (\sin^2 z)^k \sin x = (1 - \cos^2 x)^k \sin x\)\\ -Substitute \(u=\cos x\) + \paragraph{\textbf{\(n\) is odd:}} + \(n=2k+1\) where \(k \in \mathbb{Z}\)\\ + \(\implies \cos^{2k+1} x = (\cos^2 x)^k \cos x = (1-\sin^2 x)^k \cos x\)\\ + Substitute \(u=\sin x\) -\paragraph{\textbf{\(n\) is odd:}} -\(n=2k+1\) where \(k \in \mathbb{Z}\)\\ -\(\implies \cos^{2k+1} x = (\cos^2 x)^k \cos x = (1-\sin^2 x)^k \cos x\)\\ -Substitute \(u=\sin x\) + \paragraph{\textbf{\(m\) and \(n\) are even:}} + use identities... -\paragraph{\textbf{\(m\) and \(n\) are even:}} -use identities... + \begin{itemize} -\begin{itemize} + \item + \(\sin^2x={1 \over 2}(1-\cos 2x)\) + \item + \(\cos^2x={1 \over 2}(1+\cos 2x)\) + \item + \(\sin 2x = 2 \sin x \cos x\) + \end{itemize} -\item - \(\sin^2x={1 \over 2}(1-\cos 2x)\) -\item - \(\cos^2x={1 \over 2}(1+\cos 2x)\) -\item - \(\sin 2x = 2 \sin x \cos x\) -\end{itemize} + \subsection*{Partial fractions} -\subsection*{Partial fractions} + \colorbox{cas}{On CAS:}\\ + \indent Action \(\rightarrow\) Transformation \(\rightarrow\) + \texttt{expand/combine}\\ + \indent Interactive \(\rightarrow\) Transformation \(\rightarrow\) + Expand \(\rightarrow\) Partial -\colorbox{cas}{On CAS:}\\ -\indent Action \(\rightarrow\) Transformation \(\rightarrow\) -\texttt{expand/combine}\\ -\indent Interactive \(\rightarrow\) Transformation \(\rightarrow\) -Expand \(\rightarrow\) Partial + \subsection*{Graphing integrals on CAS} -\subsection*{Graphing integrals on CAS} + \colorbox{cas}{In main:} Interactive \(\rightarrow\) Calculation \(\rightarrow\) + \(\int\) (\(\rightarrow\) Definite)\\ + Restrictions: \texttt{Define\ f(x)=..} then \texttt{f(x)\textbar{}x\textgreater{}..} -\colorbox{cas}{In main:} Interactive \(\rightarrow\) Calculation \(\rightarrow\) -\(\int\) (\(\rightarrow\) Definite)\\ -Restrictions: \texttt{Define\ f(x)=..} then \texttt{f(x)\textbar{}x\textgreater{}..} + \subsection*{Applications of antidifferentiation} -\subsection*{Applications of antidifferentiation} + \begin{itemize} -\begin{itemize} + \item + \(x\)-intercepts of \(y=f(x)\) identify \(x\)-coordinates of + stationary points on \(y=F(x)\) + \item + nature of stationary points is determined by sign of \(y=f(x)\) on + either side of its \(x\)-intercepts + \item + if \(f(x)\) is a polynomial of degree \(n\), then \(F(x)\) has degree + \(n+1\) + \end{itemize} -\item - \(x\)-intercepts of \(y=f(x)\) identify \(x\)-coordinates of - stationary points on \(y=F(x)\) -\item - nature of stationary points is determined by sign of \(y=f(x)\) on - either side of its \(x\)-intercepts -\item - if \(f(x)\) is a polynomial of degree \(n\), then \(F(x)\) has degree - \(n+1\) -\end{itemize} + To find stationary points of a function, substitute \(x\) value of given + point into derivative. Solve for \({\frac{dy}{dx}}=0\). Integrate to find + original function. -To find stationary points of a function, substitute \(x\) value of given -point into derivative. Solve for \({\frac{dy}{dx}}=0\). Integrate to find -original function. + \subsection*{Solids of revolution} -\subsection*{Solids of revolution} + Approximate as sum of infinitesimally-thick cylinders -Approximate as sum of infinitesimally-thick cylinders + \subsubsection*{Rotation about \(x\)-axis} -\subsubsection*{Rotation about \(x\)-axis} + \begin{align*} + V &= \int^{x=b}_{x-a} \pi y^2 \> dx \\ + &= \pi \int^b_a (f(x))^2 \> dx + \end{align*} -\begin{align*} - V &= \int^{x=b}_{x-a} \pi y^2 \> dx \\ - &= \pi \int^b_a (f(x))^2 \> dx -\end{align*} + \subsubsection*{Rotation about \(y\)-axis} -\subsubsection*{Rotation about \(y\)-axis} + \begin{align*} + V &= \int^{y=b}_{y=a} \pi x^2 \> dy \\ + &= \pi \int^b_a (f(y))^2 \> dy + \end{align*} -\begin{align*} - V &= \int^{y=b}_{y=a} \pi x^2 \> dy \\ - &= \pi \int^b_a (f(y))^2 \> dy -\end{align*} + \subsubsection*{Regions not bound by \(y=0\)} -\subsubsection*{Regions not bound by \(y=0\)} + \[V = \pi \int^b_a f(x)^2 - g(x)^2 \> dx\] + \hfill where \(f(x) > g(x)\) -\[V = \pi \int^b_a f(x)^2 - g(x)^2 \> dx\] -\hfill where \(f(x) > g(x)\) + \subsection*{Length of a curve} -\subsection*{Length of a curve} + \[L = \int^b_a \sqrt{1 + ({\frac{dy}{dx}})^2} \> dx \quad \text{(Cartesian)}\] -\[L = \int^b_a \sqrt{1 + ({\frac{dy}{dx}})^2} \> dx \quad \text{(Cartesian)}\] + \[L = \int^b_a \sqrt{{\frac{dx}{dt}} + ({\frac{dy}{dt}})^2} \> dt \quad \text{(parametric)}\] -\[L = \int^b_a \sqrt{{\frac{dx}{dt}} + ({\frac{dy}{dt}})^2} \> dt \quad \text{(parametric)}\] + \noindent \colorbox{cas}{On CAS:}\\ + \indent Evaluate formula,\\ + \indent or Interactive \(\rightarrow\) Calculation + \(\rightarrow\) Line \(\rightarrow\) \texttt{arcLen} -\noindent \colorbox{cas}{On CAS:}\\ -\indent Evaluate formula,\\ -\indent or Interactive \(\rightarrow\) Calculation -\(\rightarrow\) Line \(\rightarrow\) \texttt{arcLen} + \subsection*{Rates} -\subsection*{Rates} + \subsubsection*{Gradient at a point on parametric curve} -\subsubsection*{Gradient at a point on parametric curve} + \[{\frac{dy}{dx}} = {{\frac{dy}{dt}} \div {\frac{dx}{dt}}} \> \vert \> {\frac{dx}{dt}} \ne 0\] -\[{\frac{dy}{dx}} = {{\frac{dy}{dt}} \div {\frac{dx}{dt}}} \> \vert \> {\frac{dx}{dt}} \ne 0\] + \[\frac{d^2}{dx^2} = \frac{d(y^\prime)}{dx} = {\frac{dy^\prime}{dt} \div {\frac{dx}{dt}}} \> \vert \> y^\prime = {\frac{dy}{dx}}\] -\[\frac{d^2}{dx^2} = \frac{d(y^\prime)}{dx} = {\frac{dy^\prime}{dt} \div {\frac{dx}{dt}}} \> \vert \> y^\prime = {\frac{dy}{dx}}\] + \subsection*{Rational functions} -\subsection*{Rational functions} + \[f(x) = \frac{P(x)}{Q(x)} \quad \text{where } P, Q \text{ are polynomial functions}\] -\[f(x) = \frac{P(x)}{Q(x)} \quad \text{where } P, Q \text{ are polynomial functions}\] + \subsubsection*{Addition of ordinates} -\subsubsection*{Addition of ordinates} + \begin{itemize} -\begin{itemize} + \item + when two graphs have the same ordinate, \(y\)-coordinate is double the + ordinate + \item + when two graphs have opposite ordinates, \(y\)-coordinate is 0 i.e. + (\(x\)-intercept) + \item + when one of the ordinates is 0, the resulting ordinate is equal to the + other ordinate + \end{itemize} -\item - when two graphs have the same ordinate, \(y\)-coordinate is double the - ordinate -\item - when two graphs have opposite ordinates, \(y\)-coordinate is 0 i.e. - (\(x\)-intercept) -\item - when one of the ordinates is 0, the resulting ordinate is equal to the - other ordinate -\end{itemize} + \subsection*{Fundamental theorem of calculus} -\subsection*{Fundamental theorem of calculus} + If \(f\) is continuous on \([a, b]\), then -If \(f\) is continuous on \([a, b]\), then + \[\int^b_a f(x) \> dx = F(b) - F(a)\] + \hfill where \(F = \int f \> dx\) -\[\int^b_a f(x) \> dx = F(b) - F(a)\] -\hfill where \(F = \int f \> dx\) + \subsection*{Differential equations} -\subsection*{Differential equations} + \noindent\textbf{Order} - highest power inside derivative\\ + \textbf{Degree} - highest power of highest derivative\\ + e.g. \({\left(\dfrac{dy^2}{d^2} x\right)}^3\) \qquad order 2, degree 3 -\noindent\textbf{Order} - highest power inside derivative\\ -\textbf{Degree} - highest power of highest derivative\\ -e.g. \({\left(\dfrac{dy^2}{d^2} x\right)}^3\) \qquad order 2, degree 3 + \subsubsection*{Verifying solutions} -\subsubsection*{Verifying solutions} + Start with \(y=\dots\), and differentiate. Substitute into original + equation. -Start with \(y=\dots\), and differentiate. Substitute into original -equation. + \subsubsection*{Function of the dependent + variable} -\subsubsection*{Function of the dependent -variable} + If \({\frac{dy}{dx}}=g(y)\), then + \(\frac{dx}{dy} = 1 \div \frac{dy}{dx} = \frac{1}{g(y)}\). Integrate both sides to solve equation. Only add \(c\) on one side. Express + \(e^c\) as \(A\). -If \({\frac{dy}{dx}}=g(y)\), then -\(\frac{dx}{dy} = 1 \div \frac{dy}{dx} = \frac{1}{g(y)}\). Integrate both sides to solve equation. Only add \(c\) on one side. Express -\(e^c\) as \(A\). + \begin{table*}[ht] + \centering + \includegraphics[width=0.7\textwidth]{graphics/second-derivatives.png} + \end{table*} -\subsubsection*{Mixing problems} + \subsubsection*{Mixing problems} -\[\left(\frac{dm}{dt}\right)_\Sigma = \left(\frac{dm}{dt}\right)_{\text{in}} - \left(\frac{dm}{dt}_{\text{out}}\right)\] + \[\left(\frac{dm}{dt}\right)_\Sigma = \left(\frac{dm}{dt}\right)_{\text{in}} - \left(\frac{dm}{dt}_{\text{out}}\right)\] -\subsubsection*{Separation of variables} + \subsubsection*{Separation of variables} -If \({\frac{dy}{dx}}=f(x)g(y)\), then: + If \({\frac{dy}{dx}}=f(x)g(y)\), then: -\[\int f(x) \> dx = \int \frac{1}{g(y)} \> dy\] + \[\int f(x) \> dx = \int \frac{1}{g(y)} \> dy\] -\subsubsection*{Euler's method for solving DEs} + \subsubsection*{Euler's method for solving DEs} -\[\frac{f(x+h) - f(x)}{h} \approx f^\prime (x) \quad \text{for small } h\] + \[\frac{f(x+h) - f(x)}{h} \approx f^\prime (x) \quad \text{for small } h\] -\[\implies f(x+h) \approx f(x) + hf^\prime(x)\] + \[\implies f(x+h) \approx f(x) + hf^\prime(x)\] - \end{multicols} -\end{document} + \end{multicols} + \end{document} -- 2.43.2