MATHEMATICS

SUPPORT CENTRE

Title: Differentiation 1

Target: On completion of this worksheet you should be able to differentiate functions involving powers of x.

Differentiation is the technique used to find the rate of change of a function,
the gradient of a curve
the derivative of a function.

First, some vocabulary:
\mathcal{A} variable is a quantity that varies, as opposed to a constant, such as 3 or k.

A function relates one variable to one or more other variables,
e.g. $y=3 x$ is a function
y is described as being a function of x.

If $y=z^{2}$ we say y is a function of z;
if $t=\sin \theta$ we say t is a function of θ.

If you look at the graph below you will notice that the gradient (slope) of the curve is different at different points.

Part of the graph of $y=x^{2}$

The gradient measures the rate of change of y with respect to χ-the greater the gradient the more rapidly y is changing.

Differentiation enables us to find the gradient at any point.

What we get when we differentiate is called the derivative and is written as $\frac{d y}{d x}$.

The derivative of functions of the form

$$
\begin{array}{rlrl}
y=x^{n} & \text { is } & \frac{d y}{d x} & =n x^{n-1} \\
\text { eg } y=x^{3} & \frac{d y}{d x} & =3 x^{2} \\
y & =x^{4} & \frac{d y}{d x} & =4 x^{3} \\
y & =x^{2} & \frac{d y}{d x} & =2 x^{1}=2 x \\
\text { Lookagain at } y=x^{2} & \frac{d y}{d x} & =2 x
\end{array}
$$

This tells us that the gradient of the curve at any point, x, is equal to $2 x$.

At $x=0$ the gradient is 0
at $x=1$ the gradient is 2
at $x=10$ the gradient is 20

Exercise $\mathcal{D i f f e r e n t i a t e ~ t h e ~ f o l l o w i n g ~ a n d ~ f i n d ~}$ the gradient of the curve at the given point:

1. $y=x^{5} \quad x=2$
2. $y=x^{10} \quad x=1$
3. $y=x^{3} \quad x=4$
4. $y=x^{7} \quad x=1$
5. $y=x^{6} \quad x=1$
(Answers : $5 x^{4}, 80 ; 10 x^{9}, 10 ; 3 x^{2}, 48 ; 7 x^{6}, 7 ; 6 x^{5}, 6$)
n can take negative values
e.g.if $y=x^{-2} \quad \frac{d y}{d x}=-2 x^{-2-1}=-2 x^{-3}$

Exercise $\mathcal{D i f f e r e n t i a t e ~ t h e ~ f o l l o w i n g : ~}_{\text {the }}$

1. $y=x^{-1}$
2. $y=x^{-3}$
3. $y=x^{-10}$
4. $y=x^{-5}$
5. $y=x^{-7}$
6. $y=x^{-4}$
(Answers : $-x^{-2},-3 x^{-4},-10 x^{-11},-5 x^{-6}$ $-7 x^{-8},-4 x^{-5}$)
ncan be a fraction
e.g. if $y=x^{1 / 2} \quad \frac{d y}{d x}=\frac{1}{2} x^{1 / 2-1}=\frac{1}{2} x^{-1 / 2}$

Exercise \mathcal{D} ifferentiate the following:

1. $y=x^{1 / 3}$
2. $y=x^{1 / 5}$
3. $y=x^{2 / 3}$
4. $y=x^{3 / 4}$
5. $y=x^{5 / 4}$
6. $y=x^{7 / 5}$
(Answers: $\frac{1}{3} x^{-2 / 3}, \frac{1}{5} x^{-4 / 5}, \frac{2}{3} x^{-1 / 3}, \frac{3}{4} x^{-1 / 4}, \frac{5}{4} x^{1 / 4}, \frac{7}{5} x^{2 / 5}$)

Two special cases:

1. If $y=a$ where a is a constant then $\frac{d y}{d x}=0$
2. If $y=x$ then $\frac{d y}{d x}=1$

Examples

1. $y=6 \quad \frac{d y}{d x}=0$
2. $y=\frac{4}{7} \quad \frac{d y}{d x}=0$

Exercise $\operatorname{Differentiate~the~following:~}$

1. $y=4$
2. $y=x$
3. $y=7 \cdot 894$
(Answers:0,1,0)

Another special case:
If $y=k x^{n}$ where k is a constant then $\frac{d y}{d x}=k n x^{n-1}$ e.g.if $y=2 x^{3} \quad \frac{d y}{d x}=2 \times 3 x^{2}=6 x^{2}$

$$
y=4 x^{1 / 2} \quad \frac{d y}{d x}=4 \times \frac{1}{2} x^{-1 / 2}=2 x^{-1 / 2}
$$

Exercise Differentiate the following:

1. $y=10 x^{5}$
2. $y=2 x^{4}$
3. $y=8 x^{-3}$
4. $y=-4 x^{2}$
5. $y=3 x^{-4}$
6. $y=\frac{2}{3} x^{3}$
(Answers: $50 x^{4}, 8 x^{3},-24 x^{-4},-8 x,-12 x^{-5}, 2 x^{2}$)

Examples $\mathcal{D i f f e r e n t i a t e ~ t h e ~ f o l l o w i n g : ~}$

1. $y=4 x^{2}+3 x$

Differentiate term by term
$\frac{d y}{d x}=4 \times 2 x+3 \times 1=8 x+3$
2. $y=5-2 x$
$\frac{d y}{d x}=0-2 \times 1=-2$
3. $y=x^{3}+2 x^{2}+4 x$
$\frac{d y}{d x}=3 x^{2}+2 \times 2 x+4 \times 1=3 x^{2}+4 x+4$

Exercise $\operatorname{Differentiate~the~following:~}$

1. $y=x^{5}$
2. $y=x^{10}$
3. $y=x$
4. $y=2 x^{3}$
5. $y=4 x$
6. $y=15$
7. $y=2 x+4$
8. $y=3 x^{5}+2 x^{7}+x^{6}$
9. $y=9+x$
10. $y=\frac{1}{2} x^{2}+4 x$
11. $y=x^{2}-3 x$
12. $y=10-2 x^{2}$
(Answers: $5 x^{4}, 10 x^{9}, 1,6 x^{2}, 4,0,2$,
$\left.15 x^{4}+14 x^{6}+6 x^{5}, 1, x+4,2 x-3,-4 x\right)$

Remember:

$\frac{1}{x}=x^{-1} \quad \frac{1}{x^{2}}=x^{-2} \quad \frac{3}{x}=3 x^{-1} \quad \frac{5}{x^{3}}=5 x^{-3}$

Exercise $\operatorname{Differentiate~the~following:~}$

1. $y=x^{-1}$
2. $y=\frac{1}{x}$
3. $y=x^{-3}$
4. $y=x+\frac{1}{x}$
5. $y=\frac{1}{x^{2}}$
6. $y=\frac{3}{x^{2}}$
7. $y=x^{1 / 2}$
8. $y=x^{-1 / 2}$
9. $y=2 x^{1 / 2}$
10. $y=x^{1 / 3}$
11. $y=4 x^{-1 / 2}$
12. $y=9 x+x^{-1 / 3}$
13. $y=\frac{4}{x^{2}}+\frac{3}{x}+5 x$
14. $y=10 x^{2}-15+x$
15. $y=2-3 x^{2}+x^{-4}$
(Answers : $-x^{-2},-x^{-2},-3 x^{-4}, 1-x^{-2},-2 x^{-3},-6 x^{-3}$
$\frac{1}{2} x^{-1 / 2},-\frac{1}{2} x^{-3 / 2}, x^{-1 / 2}, \frac{1}{3} x^{-2 / 3},-2 x^{-3 / 2}, 9-\frac{1}{3} x^{-1 / 3}$
$\left.-8 x^{-3}-3 x^{-2}+5,20 x+1,-6 x-4 x^{-5}\right)$
