
C1

MATHEMATICS

SUPPORT CENTRE

Title: Differentiation 1

Target: On completion of this worksheet you should be able to differentiate functions involving powers of x.

Differentiation enables us to find the gradient at any point.

What we get when we differentiate is called the derivative and is written as $\frac{dy}{dx}$.

The derivative of functions of the form

 $\frac{dy}{dx} = nx^{n-1}$ is $y = x^n$ $\frac{dy}{dx} = 3x^2$ $y = x^3$ eg $\frac{dy}{dx} = 4x^3$ $y = x^4$ $\frac{dy}{dx} = 2x^1 = 2x$ $y = x^2$ $\frac{dy}{dx} = 2x$ Look again at $y = x^2$ This tells us that the gradient of the curve at any point, x_i is equal to $2x_i$. At x = 0 the gradient is 0 (2×0) at x = 1 the gradient is 2 (2×1) at x = 10 the gradient is 20 (2×10)

Exercise Differentiate the following and find

the gradient of the curve at the given point: 1. $y = x^5$ x = 22. $y = x^{10}$ x = 13. $y = x^3$ x = 44. $y = x^7$ x = 15. $y = x^6$ x = 1(Answers : $5x^4$,80;10 x^9 ,10; $3x^2$,48;7 x^6 ,7;6 x^5 ,6)

n can take negative values e.g. if $y = x^{-2}$ $\frac{dy}{dx} = -2x^{-2-1} = -2x^{-3}$ Exercise Differentiate the following: 1. $y = x^{-1}$ 2. $y = x^{-3}$ 3. $y = x^{-10}$ 4. $y = x^{-5}$ 1. $v = 4x^2 + 3x$ 5. $y = x^{-7}$ 6. $y = x^{-4}$ $\frac{dy}{dx} = 4 \times 2x + 3 \times 1 = 8x + 3$ (Answers: $-x^{-2}$, $-3x^{-4}$, $-10x^{-11}$, $-5x^{-6}$ $-7x^{-8}, -4x^{-5}$) 3. $v = x^3 + 2x^2 + 4x$ n can be a fraction e.g. if $y = x^{\frac{1}{2}}$ $\frac{dy}{dx} = \frac{1}{2}x^{\frac{1}{2}-1} = \frac{1}{2}x^{-\frac{1}{2}}$ Exercise Differentiate the following: 1. $v = x^{\frac{1}{3}}$ 2. $v = x^{\frac{1}{5}}$ 3. $y = x^{\frac{2}{3}}$ 4. $y = x^{\frac{3}{4}}$ 5. $v = x^{\frac{5}{4}}$ 6. $v = x^{\frac{1}{5}}$ (Answers: $\frac{1}{2}x^{-\frac{2}{3}}, \frac{1}{5}x^{-\frac{4}{5}}, \frac{2}{3}x^{-\frac{1}{3}}, \frac{3}{4}x^{-\frac{1}{4}}, \frac{5}{4}x^{\frac{1}{4}}, \frac{7}{5}x^{\frac{2}{5}}$) Two special cases: 1. If y = a where a is a constant then $\frac{dy}{dt} = 0$ Remember: 2. If y = x then $\frac{dy}{dx} = 1$ Examples 1. y = 6 $\frac{dy}{dx} = 0$ 2. $y = \frac{4}{7}$ $\frac{dy}{dx} = 0$ Exercise Differentiate the following: 1. y = 42. y = x 3. $y = 7 \cdot 894$ 13. $y = \frac{4}{x^2} + \frac{3}{x} + 5x$ (Answers: 0,1,0) 14. $y = 10x^2 - 15 + x$ Another special case: 15. $v = 2 - 3x^2 + x^{-4}$ If $y = kx^n$ where k is a constant then $\frac{dy}{dt} = knx^{n-1}$ e.g. if $y = 2x^3$ $\frac{dy}{dt} = 2 \times 3x^2 = 6x^2$ $\frac{1}{2}x^{-\frac{1}{2}}, -\frac{1}{2}x^{-\frac{3}{2}}, x^{-\frac{1}{2}}, \frac{1}{3}x^{-\frac{2}{3}}, -2x^{-\frac{3}{2}}, 9-\frac{1}{2}x^{-\frac{4}{3}}$ $y = 4x^{\frac{1}{2}}$ $\frac{dy}{dt} = 4 \times \frac{1}{2}x^{-\frac{1}{2}} = 2x^{-\frac{1}{2}}$ $-8x^{-3} - 3x^{-2} + 520x + 1 - 6x - 4x^{-5}$

Exercise Differentiate the following: 1. $y = 10x^5$ 2. $y = 2x^4$ 3. $y = 8x^{-3}$ 4. $y = -4x^2$ 5. $y = 3x^{-4}$ 6. $y = \frac{2}{3}x^3$ (Answers: $50x^4$, $8x^3$, $-24x^{-4}$, -8x, $-12x^{-5}$, $2x^2$) Examples Differentiate the following: Differentiate term by term 2. y = 5 - 2x $\frac{dy}{dx} = 0 - 2 \times 1 = -2$ $\frac{dy}{dx} = 3x^2 + 2 \times 2x + 4 \times 1 = 3x^2 + 4x + 4$ Exercise Differentiate the following: 1. $y = x^5$ 2. $y = x^{10}$ 3. y = x4. $y = 2x^3$ 5. y = 4x 6. y = 157. y = 2x + 4 8. $y = 3x^5 + 2x^7 + x^6$ 9. y = 9 + x 10. $y = \frac{1}{2}x^2 + 4x$ 11. $y = x^2 - 3x$ 12. $y = 10 - 2x^2$ (Answers: $5x^4$. $10x^9$. $1.6x^2$. 4.0.2. $15x^{4} + 14x^{6} + 6x^{5}$, 1, x + 4, 2x - 3, -4x $\frac{1}{x} = x^{-1}$ $\frac{1}{x^2} = x^{-2}$ $\frac{3}{x} = 3x^{-1}$ $\frac{5}{x^3} = 5x^{-3}$ Exercise Differentiate the following: 1. $y = x^{-1}$ 2. $y = \frac{1}{2}$ 3. $y = x^{-3}$ 4. $y = x + \frac{1}{x}$ 5. $y = \frac{1}{x^2}$ 6. $y = \frac{3}{x^2}$ 7. $y = x^{\frac{1}{2}}$ 10. $y = x^{\frac{1}{2}}$ 11. $y = 4x^{-\frac{1}{2}}$ 12. $y = 9x + x^{-\frac{1}{3}}$ (Answers: $-x^{-2}$, $-x^{-2}$, $-3x^{-4}$, $1-x^{-2}$, $-2x^{-3}$, $-6x^{-3}$