refs / refs-internal.hon commit Merge branch 'pw/sequencer-recover-from-unlockable-index' into maint (0175b6e)
   1#ifndef REFS_REFS_INTERNAL_H
   2#define REFS_REFS_INTERNAL_H
   3
   4/*
   5 * Data structures and functions for the internal use of the refs
   6 * module. Code outside of the refs module should use only the public
   7 * functions defined in "refs.h", and should *not* include this file.
   8 */
   9
  10/*
  11 * Flag passed to lock_ref_sha1_basic() telling it to tolerate broken
  12 * refs (i.e., because the reference is about to be deleted anyway).
  13 */
  14#define REF_DELETING    0x02
  15
  16/*
  17 * Used as a flag in ref_update::flags when a loose ref is being
  18 * pruned. This flag must only be used when REF_NODEREF is set.
  19 */
  20#define REF_ISPRUNING   0x04
  21
  22/*
  23 * Used as a flag in ref_update::flags when the reference should be
  24 * updated to new_sha1.
  25 */
  26#define REF_HAVE_NEW    0x08
  27
  28/*
  29 * Used as a flag in ref_update::flags when old_sha1 should be
  30 * checked.
  31 */
  32#define REF_HAVE_OLD    0x10
  33
  34/*
  35 * Used as a flag in ref_update::flags when the lockfile needs to be
  36 * committed.
  37 */
  38#define REF_NEEDS_COMMIT 0x20
  39
  40/*
  41 * 0x40 is REF_FORCE_CREATE_REFLOG, so skip it if you're adding a
  42 * value to ref_update::flags
  43 */
  44
  45/*
  46 * Used as a flag in ref_update::flags when we want to log a ref
  47 * update but not actually perform it.  This is used when a symbolic
  48 * ref update is split up.
  49 */
  50#define REF_LOG_ONLY 0x80
  51
  52/*
  53 * Internal flag, meaning that the containing ref_update was via an
  54 * update to HEAD.
  55 */
  56#define REF_UPDATE_VIA_HEAD 0x100
  57
  58/*
  59 * Used as a flag in ref_update::flags when the loose reference has
  60 * been deleted.
  61 */
  62#define REF_DELETED_LOOSE 0x200
  63
  64/*
  65 * Return the length of time to retry acquiring a loose reference lock
  66 * before giving up, in milliseconds:
  67 */
  68long get_files_ref_lock_timeout_ms(void);
  69
  70/*
  71 * Return true iff refname is minimally safe. "Safe" here means that
  72 * deleting a loose reference by this name will not do any damage, for
  73 * example by causing a file that is not a reference to be deleted.
  74 * This function does not check that the reference name is legal; for
  75 * that, use check_refname_format().
  76 *
  77 * A refname that starts with "refs/" is considered safe iff it
  78 * doesn't contain any "." or ".." components or consecutive '/'
  79 * characters, end with '/', or (on Windows) contain any '\'
  80 * characters. Names that do not start with "refs/" are considered
  81 * safe iff they consist entirely of upper case characters and '_'
  82 * (like "HEAD" and "MERGE_HEAD" but not "config" or "FOO/BAR").
  83 */
  84int refname_is_safe(const char *refname);
  85
  86/*
  87 * Helper function: return true if refname, which has the specified
  88 * oid and flags, can be resolved to an object in the database. If the
  89 * referred-to object does not exist, emit a warning and return false.
  90 */
  91int ref_resolves_to_object(const char *refname,
  92                           const struct object_id *oid,
  93                           unsigned int flags);
  94
  95enum peel_status {
  96        /* object was peeled successfully: */
  97        PEEL_PEELED = 0,
  98
  99        /*
 100         * object cannot be peeled because the named object (or an
 101         * object referred to by a tag in the peel chain), does not
 102         * exist.
 103         */
 104        PEEL_INVALID = -1,
 105
 106        /* object cannot be peeled because it is not a tag: */
 107        PEEL_NON_TAG = -2,
 108
 109        /* ref_entry contains no peeled value because it is a symref: */
 110        PEEL_IS_SYMREF = -3,
 111
 112        /*
 113         * ref_entry cannot be peeled because it is broken (i.e., the
 114         * symbolic reference cannot even be resolved to an object
 115         * name):
 116         */
 117        PEEL_BROKEN = -4
 118};
 119
 120/*
 121 * Peel the named object; i.e., if the object is a tag, resolve the
 122 * tag recursively until a non-tag is found.  If successful, store the
 123 * result to sha1 and return PEEL_PEELED.  If the object is not a tag
 124 * or is not valid, return PEEL_NON_TAG or PEEL_INVALID, respectively,
 125 * and leave sha1 unchanged.
 126 */
 127enum peel_status peel_object(const unsigned char *name, unsigned char *sha1);
 128
 129/*
 130 * Copy the reflog message msg to buf, which has been allocated sufficiently
 131 * large, while cleaning up the whitespaces.  Especially, convert LF to space,
 132 * because reflog file is one line per entry.
 133 */
 134int copy_reflog_msg(char *buf, const char *msg);
 135
 136/**
 137 * Information needed for a single ref update. Set new_sha1 to the new
 138 * value or to null_sha1 to delete the ref. To check the old value
 139 * while the ref is locked, set (flags & REF_HAVE_OLD) and set
 140 * old_sha1 to the old value, or to null_sha1 to ensure the ref does
 141 * not exist before update.
 142 */
 143struct ref_update {
 144
 145        /*
 146         * If (flags & REF_HAVE_NEW), set the reference to this value:
 147         */
 148        struct object_id new_oid;
 149
 150        /*
 151         * If (flags & REF_HAVE_OLD), check that the reference
 152         * previously had this value:
 153         */
 154        struct object_id old_oid;
 155
 156        /*
 157         * One or more of REF_HAVE_NEW, REF_HAVE_OLD, REF_NODEREF,
 158         * REF_DELETING, REF_ISPRUNING, REF_LOG_ONLY,
 159         * REF_UPDATE_VIA_HEAD, REF_NEEDS_COMMIT, and
 160         * REF_DELETED_LOOSE:
 161         */
 162        unsigned int flags;
 163
 164        void *backend_data;
 165        unsigned int type;
 166        char *msg;
 167
 168        /*
 169         * If this ref_update was split off of a symref update via
 170         * split_symref_update(), then this member points at that
 171         * update. This is used for two purposes:
 172         * 1. When reporting errors, we report the refname under which
 173         *    the update was originally requested.
 174         * 2. When we read the old value of this reference, we
 175         *    propagate it back to its parent update for recording in
 176         *    the latter's reflog.
 177         */
 178        struct ref_update *parent_update;
 179
 180        const char refname[FLEX_ARRAY];
 181};
 182
 183int refs_read_raw_ref(struct ref_store *ref_store,
 184                      const char *refname, unsigned char *sha1,
 185                      struct strbuf *referent, unsigned int *type);
 186
 187/*
 188 * Write an error to `err` and return a nonzero value iff the same
 189 * refname appears multiple times in `refnames`. `refnames` must be
 190 * sorted on entry to this function.
 191 */
 192int ref_update_reject_duplicates(struct string_list *refnames,
 193                                 struct strbuf *err);
 194
 195/*
 196 * Add a ref_update with the specified properties to transaction, and
 197 * return a pointer to the new object. This function does not verify
 198 * that refname is well-formed. new_sha1 and old_sha1 are only
 199 * dereferenced if the REF_HAVE_NEW and REF_HAVE_OLD bits,
 200 * respectively, are set in flags.
 201 */
 202struct ref_update *ref_transaction_add_update(
 203                struct ref_transaction *transaction,
 204                const char *refname, unsigned int flags,
 205                const unsigned char *new_sha1,
 206                const unsigned char *old_sha1,
 207                const char *msg);
 208
 209/*
 210 * Transaction states.
 211 *
 212 * OPEN:   The transaction is initialized and new updates can still be
 213 *         added to it. An OPEN transaction can be prepared,
 214 *         committed, freed, or aborted (freeing and aborting an open
 215 *         transaction are equivalent).
 216 *
 217 * PREPARED: ref_transaction_prepare(), which locks all of the
 218 *         references involved in the update and checks that the
 219 *         update has no errors, has been called successfully for the
 220 *         transaction. A PREPARED transaction can be committed or
 221 *         aborted.
 222 *
 223 * CLOSED: The transaction is no longer active. A transaction becomes
 224 *         CLOSED if there is a failure while building the transaction
 225 *         or if a transaction is committed or aborted. A CLOSED
 226 *         transaction can only be freed.
 227 */
 228enum ref_transaction_state {
 229        REF_TRANSACTION_OPEN     = 0,
 230        REF_TRANSACTION_PREPARED = 1,
 231        REF_TRANSACTION_CLOSED   = 2
 232};
 233
 234/*
 235 * Data structure for holding a reference transaction, which can
 236 * consist of checks and updates to multiple references, carried out
 237 * as atomically as possible.  This structure is opaque to callers.
 238 */
 239struct ref_transaction {
 240        struct ref_store *ref_store;
 241        struct ref_update **updates;
 242        size_t alloc;
 243        size_t nr;
 244        enum ref_transaction_state state;
 245        void *backend_data;
 246};
 247
 248/*
 249 * Check for entries in extras that are within the specified
 250 * directory, where dirname is a reference directory name including
 251 * the trailing slash (e.g., "refs/heads/foo/"). Ignore any
 252 * conflicting references that are found in skip. If there is a
 253 * conflicting reference, return its name.
 254 *
 255 * extras and skip must be sorted lists of reference names. Either one
 256 * can be NULL, signifying the empty list.
 257 */
 258const char *find_descendant_ref(const char *dirname,
 259                                const struct string_list *extras,
 260                                const struct string_list *skip);
 261
 262/*
 263 * Check whether an attempt to rename old_refname to new_refname would
 264 * cause a D/F conflict with any existing reference (other than
 265 * possibly old_refname). If there would be a conflict, emit an error
 266 * message and return false; otherwise, return true.
 267 *
 268 * Note that this function is not safe against all races with other
 269 * processes (though rename_ref() catches some races that might get by
 270 * this check).
 271 */
 272int refs_rename_ref_available(struct ref_store *refs,
 273                              const char *old_refname,
 274                              const char *new_refname);
 275
 276/* We allow "recursive" symbolic refs. Only within reason, though */
 277#define SYMREF_MAXDEPTH 5
 278
 279/* Include broken references in a do_for_each_ref*() iteration: */
 280#define DO_FOR_EACH_INCLUDE_BROKEN 0x01
 281
 282/*
 283 * Reference iterators
 284 *
 285 * A reference iterator encapsulates the state of an in-progress
 286 * iteration over references. Create an instance of `struct
 287 * ref_iterator` via one of the functions in this module.
 288 *
 289 * A freshly-created ref_iterator doesn't yet point at a reference. To
 290 * advance the iterator, call ref_iterator_advance(). If successful,
 291 * this sets the iterator's refname, oid, and flags fields to describe
 292 * the next reference and returns ITER_OK. The data pointed at by
 293 * refname and oid belong to the iterator; if you want to retain them
 294 * after calling ref_iterator_advance() again or calling
 295 * ref_iterator_abort(), you must make a copy. When the iteration has
 296 * been exhausted, ref_iterator_advance() releases any resources
 297 * assocated with the iteration, frees the ref_iterator object, and
 298 * returns ITER_DONE. If you want to abort the iteration early, call
 299 * ref_iterator_abort(), which also frees the ref_iterator object and
 300 * any associated resources. If there was an internal error advancing
 301 * to the next entry, ref_iterator_advance() aborts the iteration,
 302 * frees the ref_iterator, and returns ITER_ERROR.
 303 *
 304 * The reference currently being looked at can be peeled by calling
 305 * ref_iterator_peel(). This function is often faster than peel_ref(),
 306 * so it should be preferred when iterating over references.
 307 *
 308 * Putting it all together, a typical iteration looks like this:
 309 *
 310 *     int ok;
 311 *     struct ref_iterator *iter = ...;
 312 *
 313 *     while ((ok = ref_iterator_advance(iter)) == ITER_OK) {
 314 *             if (want_to_stop_iteration()) {
 315 *                     ok = ref_iterator_abort(iter);
 316 *                     break;
 317 *             }
 318 *
 319 *             // Access information about the current reference:
 320 *             if (!(iter->flags & REF_ISSYMREF))
 321 *                     printf("%s is %s\n", iter->refname, oid_to_hex(&iter->oid));
 322 *
 323 *             // If you need to peel the reference:
 324 *             ref_iterator_peel(iter, &oid);
 325 *     }
 326 *
 327 *     if (ok != ITER_DONE)
 328 *             handle_error();
 329 */
 330struct ref_iterator {
 331        struct ref_iterator_vtable *vtable;
 332
 333        /*
 334         * Does this `ref_iterator` iterate over references in order
 335         * by refname?
 336         */
 337        unsigned int ordered : 1;
 338
 339        const char *refname;
 340        const struct object_id *oid;
 341        unsigned int flags;
 342};
 343
 344/*
 345 * Advance the iterator to the first or next item and return ITER_OK.
 346 * If the iteration is exhausted, free the resources associated with
 347 * the ref_iterator and return ITER_DONE. On errors, free the iterator
 348 * resources and return ITER_ERROR. It is a bug to use ref_iterator or
 349 * call this function again after it has returned ITER_DONE or
 350 * ITER_ERROR.
 351 */
 352int ref_iterator_advance(struct ref_iterator *ref_iterator);
 353
 354/*
 355 * If possible, peel the reference currently being viewed by the
 356 * iterator. Return 0 on success.
 357 */
 358int ref_iterator_peel(struct ref_iterator *ref_iterator,
 359                      struct object_id *peeled);
 360
 361/*
 362 * End the iteration before it has been exhausted, freeing the
 363 * reference iterator and any associated resources and returning
 364 * ITER_DONE. If the abort itself failed, return ITER_ERROR.
 365 */
 366int ref_iterator_abort(struct ref_iterator *ref_iterator);
 367
 368/*
 369 * An iterator over nothing (its first ref_iterator_advance() call
 370 * returns ITER_DONE).
 371 */
 372struct ref_iterator *empty_ref_iterator_begin(void);
 373
 374/*
 375 * Return true iff ref_iterator is an empty_ref_iterator.
 376 */
 377int is_empty_ref_iterator(struct ref_iterator *ref_iterator);
 378
 379/*
 380 * Return an iterator that goes over each reference in `refs` for
 381 * which the refname begins with prefix. If trim is non-zero, then
 382 * trim that many characters off the beginning of each refname. flags
 383 * can be DO_FOR_EACH_INCLUDE_BROKEN to include broken references in
 384 * the iteration. The output is ordered by refname.
 385 */
 386struct ref_iterator *refs_ref_iterator_begin(
 387                struct ref_store *refs,
 388                const char *prefix, int trim, int flags);
 389
 390/*
 391 * A callback function used to instruct merge_ref_iterator how to
 392 * interleave the entries from iter0 and iter1. The function should
 393 * return one of the constants defined in enum iterator_selection. It
 394 * must not advance either of the iterators itself.
 395 *
 396 * The function must be prepared to handle the case that iter0 and/or
 397 * iter1 is NULL, which indicates that the corresponding sub-iterator
 398 * has been exhausted. Its return value must be consistent with the
 399 * current states of the iterators; e.g., it must not return
 400 * ITER_SKIP_1 if iter1 has already been exhausted.
 401 */
 402typedef enum iterator_selection ref_iterator_select_fn(
 403                struct ref_iterator *iter0, struct ref_iterator *iter1,
 404                void *cb_data);
 405
 406/*
 407 * Iterate over the entries from iter0 and iter1, with the values
 408 * interleaved as directed by the select function. The iterator takes
 409 * ownership of iter0 and iter1 and frees them when the iteration is
 410 * over. A derived class should set `ordered` to 1 or 0 based on
 411 * whether it generates its output in order by reference name.
 412 */
 413struct ref_iterator *merge_ref_iterator_begin(
 414                int ordered,
 415                struct ref_iterator *iter0, struct ref_iterator *iter1,
 416                ref_iterator_select_fn *select, void *cb_data);
 417
 418/*
 419 * An iterator consisting of the union of the entries from front and
 420 * back. If there are entries common to the two sub-iterators, use the
 421 * one from front. Each iterator must iterate over its entries in
 422 * strcmp() order by refname for this to work.
 423 *
 424 * The new iterator takes ownership of its arguments and frees them
 425 * when the iteration is over. As a convenience to callers, if front
 426 * or back is an empty_ref_iterator, then abort that one immediately
 427 * and return the other iterator directly, without wrapping it.
 428 */
 429struct ref_iterator *overlay_ref_iterator_begin(
 430                struct ref_iterator *front, struct ref_iterator *back);
 431
 432/*
 433 * Wrap iter0, only letting through the references whose names start
 434 * with prefix. If trim is set, set iter->refname to the name of the
 435 * reference with that many characters trimmed off the front;
 436 * otherwise set it to the full refname. The new iterator takes over
 437 * ownership of iter0 and frees it when iteration is over. It makes
 438 * its own copy of prefix.
 439 *
 440 * As an convenience to callers, if prefix is the empty string and
 441 * trim is zero, this function returns iter0 directly, without
 442 * wrapping it.
 443 *
 444 * The resulting ref_iterator is ordered if iter0 is.
 445 */
 446struct ref_iterator *prefix_ref_iterator_begin(struct ref_iterator *iter0,
 447                                               const char *prefix,
 448                                               int trim);
 449
 450/* Internal implementation of reference iteration: */
 451
 452/*
 453 * Base class constructor for ref_iterators. Initialize the
 454 * ref_iterator part of iter, setting its vtable pointer as specified.
 455 * `ordered` should be set to 1 if the iterator will iterate over
 456 * references in order by refname; otherwise it should be set to 0.
 457 * This is meant to be called only by the initializers of derived
 458 * classes.
 459 */
 460void base_ref_iterator_init(struct ref_iterator *iter,
 461                            struct ref_iterator_vtable *vtable,
 462                            int ordered);
 463
 464/*
 465 * Base class destructor for ref_iterators. Destroy the ref_iterator
 466 * part of iter and shallow-free the object. This is meant to be
 467 * called only by the destructors of derived classes.
 468 */
 469void base_ref_iterator_free(struct ref_iterator *iter);
 470
 471/* Virtual function declarations for ref_iterators: */
 472
 473typedef int ref_iterator_advance_fn(struct ref_iterator *ref_iterator);
 474
 475typedef int ref_iterator_peel_fn(struct ref_iterator *ref_iterator,
 476                                 struct object_id *peeled);
 477
 478/*
 479 * Implementations of this function should free any resources specific
 480 * to the derived class, then call base_ref_iterator_free() to clean
 481 * up and free the ref_iterator object.
 482 */
 483typedef int ref_iterator_abort_fn(struct ref_iterator *ref_iterator);
 484
 485struct ref_iterator_vtable {
 486        ref_iterator_advance_fn *advance;
 487        ref_iterator_peel_fn *peel;
 488        ref_iterator_abort_fn *abort;
 489};
 490
 491/*
 492 * current_ref_iter is a performance hack: when iterating over
 493 * references using the for_each_ref*() functions, current_ref_iter is
 494 * set to the reference iterator before calling the callback function.
 495 * If the callback function calls peel_ref(), then peel_ref() first
 496 * checks whether the reference to be peeled is the one referred to by
 497 * the iterator (it usually is) and if so, asks the iterator for the
 498 * peeled version of the reference if it is available. This avoids a
 499 * refname lookup in a common case. current_ref_iter is set to NULL
 500 * when the iteration is over.
 501 */
 502extern struct ref_iterator *current_ref_iter;
 503
 504/*
 505 * The common backend for the for_each_*ref* functions. Call fn for
 506 * each reference in iter. If the iterator itself ever returns
 507 * ITER_ERROR, return -1. If fn ever returns a non-zero value, stop
 508 * the iteration and return that value. Otherwise, return 0. In any
 509 * case, free the iterator when done. This function is basically an
 510 * adapter between the callback style of reference iteration and the
 511 * iterator style.
 512 */
 513int do_for_each_ref_iterator(struct ref_iterator *iter,
 514                             each_ref_fn fn, void *cb_data);
 515
 516/*
 517 * Only include per-worktree refs in a do_for_each_ref*() iteration.
 518 * Normally this will be used with a files ref_store, since that's
 519 * where all reference backends will presumably store their
 520 * per-worktree refs.
 521 */
 522#define DO_FOR_EACH_PER_WORKTREE_ONLY 0x02
 523
 524struct ref_store;
 525
 526/* refs backends */
 527
 528/* ref_store_init flags */
 529#define REF_STORE_READ          (1 << 0)
 530#define REF_STORE_WRITE         (1 << 1) /* can perform update operations */
 531#define REF_STORE_ODB           (1 << 2) /* has access to object database */
 532#define REF_STORE_MAIN          (1 << 3)
 533#define REF_STORE_ALL_CAPS      (REF_STORE_READ | \
 534                                 REF_STORE_WRITE | \
 535                                 REF_STORE_ODB | \
 536                                 REF_STORE_MAIN)
 537
 538/*
 539 * Initialize the ref_store for the specified gitdir. These functions
 540 * should call base_ref_store_init() to initialize the shared part of
 541 * the ref_store and to record the ref_store for later lookup.
 542 */
 543typedef struct ref_store *ref_store_init_fn(const char *gitdir,
 544                                            unsigned int flags);
 545
 546typedef int ref_init_db_fn(struct ref_store *refs, struct strbuf *err);
 547
 548typedef int ref_transaction_prepare_fn(struct ref_store *refs,
 549                                       struct ref_transaction *transaction,
 550                                       struct strbuf *err);
 551
 552typedef int ref_transaction_finish_fn(struct ref_store *refs,
 553                                      struct ref_transaction *transaction,
 554                                      struct strbuf *err);
 555
 556typedef int ref_transaction_abort_fn(struct ref_store *refs,
 557                                     struct ref_transaction *transaction,
 558                                     struct strbuf *err);
 559
 560typedef int ref_transaction_commit_fn(struct ref_store *refs,
 561                                      struct ref_transaction *transaction,
 562                                      struct strbuf *err);
 563
 564typedef int pack_refs_fn(struct ref_store *ref_store, unsigned int flags);
 565typedef int create_symref_fn(struct ref_store *ref_store,
 566                             const char *ref_target,
 567                             const char *refs_heads_master,
 568                             const char *logmsg);
 569typedef int delete_refs_fn(struct ref_store *ref_store, const char *msg,
 570                           struct string_list *refnames, unsigned int flags);
 571typedef int rename_ref_fn(struct ref_store *ref_store,
 572                          const char *oldref, const char *newref,
 573                          const char *logmsg);
 574typedef int copy_ref_fn(struct ref_store *ref_store,
 575                          const char *oldref, const char *newref,
 576                          const char *logmsg);
 577
 578/*
 579 * Iterate over the references in `ref_store` whose names start with
 580 * `prefix`. `prefix` is matched as a literal string, without regard
 581 * for path separators. If prefix is NULL or the empty string, iterate
 582 * over all references in `ref_store`. The output is ordered by
 583 * refname.
 584 */
 585typedef struct ref_iterator *ref_iterator_begin_fn(
 586                struct ref_store *ref_store,
 587                const char *prefix, unsigned int flags);
 588
 589/* reflog functions */
 590
 591/*
 592 * Iterate over the references in the specified ref_store that have a
 593 * reflog. The refs are iterated over in arbitrary order.
 594 */
 595typedef struct ref_iterator *reflog_iterator_begin_fn(
 596                struct ref_store *ref_store);
 597
 598typedef int for_each_reflog_ent_fn(struct ref_store *ref_store,
 599                                   const char *refname,
 600                                   each_reflog_ent_fn fn,
 601                                   void *cb_data);
 602typedef int for_each_reflog_ent_reverse_fn(struct ref_store *ref_store,
 603                                           const char *refname,
 604                                           each_reflog_ent_fn fn,
 605                                           void *cb_data);
 606typedef int reflog_exists_fn(struct ref_store *ref_store, const char *refname);
 607typedef int create_reflog_fn(struct ref_store *ref_store, const char *refname,
 608                             int force_create, struct strbuf *err);
 609typedef int delete_reflog_fn(struct ref_store *ref_store, const char *refname);
 610typedef int reflog_expire_fn(struct ref_store *ref_store,
 611                             const char *refname, const unsigned char *sha1,
 612                             unsigned int flags,
 613                             reflog_expiry_prepare_fn prepare_fn,
 614                             reflog_expiry_should_prune_fn should_prune_fn,
 615                             reflog_expiry_cleanup_fn cleanup_fn,
 616                             void *policy_cb_data);
 617
 618/*
 619 * Read a reference from the specified reference store, non-recursively.
 620 * Set type to describe the reference, and:
 621 *
 622 * - If refname is the name of a normal reference, fill in sha1
 623 *   (leaving referent unchanged).
 624 *
 625 * - If refname is the name of a symbolic reference, write the full
 626 *   name of the reference to which it refers (e.g.
 627 *   "refs/heads/master") to referent and set the REF_ISSYMREF bit in
 628 *   type (leaving sha1 unchanged). The caller is responsible for
 629 *   validating that referent is a valid reference name.
 630 *
 631 * WARNING: refname might be used as part of a filename, so it is
 632 * important from a security standpoint that it be safe in the sense
 633 * of refname_is_safe(). Moreover, for symrefs this function sets
 634 * referent to whatever the repository says, which might not be a
 635 * properly-formatted or even safe reference name. NEITHER INPUT NOR
 636 * OUTPUT REFERENCE NAMES ARE VALIDATED WITHIN THIS FUNCTION.
 637 *
 638 * Return 0 on success. If the ref doesn't exist, set errno to ENOENT
 639 * and return -1. If the ref exists but is neither a symbolic ref nor
 640 * a sha1, it is broken; set REF_ISBROKEN in type, set errno to
 641 * EINVAL, and return -1. If there is another error reading the ref,
 642 * set errno appropriately and return -1.
 643 *
 644 * Backend-specific flags might be set in type as well, regardless of
 645 * outcome.
 646 *
 647 * It is OK for refname to point into referent. If so:
 648 *
 649 * - if the function succeeds with REF_ISSYMREF, referent will be
 650 *   overwritten and the memory formerly pointed to by it might be
 651 *   changed or even freed.
 652 *
 653 * - in all other cases, referent will be untouched, and therefore
 654 *   refname will still be valid and unchanged.
 655 */
 656typedef int read_raw_ref_fn(struct ref_store *ref_store,
 657                            const char *refname, unsigned char *sha1,
 658                            struct strbuf *referent, unsigned int *type);
 659
 660struct ref_storage_be {
 661        struct ref_storage_be *next;
 662        const char *name;
 663        ref_store_init_fn *init;
 664        ref_init_db_fn *init_db;
 665
 666        ref_transaction_prepare_fn *transaction_prepare;
 667        ref_transaction_finish_fn *transaction_finish;
 668        ref_transaction_abort_fn *transaction_abort;
 669        ref_transaction_commit_fn *initial_transaction_commit;
 670
 671        pack_refs_fn *pack_refs;
 672        create_symref_fn *create_symref;
 673        delete_refs_fn *delete_refs;
 674        rename_ref_fn *rename_ref;
 675        copy_ref_fn *copy_ref;
 676
 677        ref_iterator_begin_fn *iterator_begin;
 678        read_raw_ref_fn *read_raw_ref;
 679
 680        reflog_iterator_begin_fn *reflog_iterator_begin;
 681        for_each_reflog_ent_fn *for_each_reflog_ent;
 682        for_each_reflog_ent_reverse_fn *for_each_reflog_ent_reverse;
 683        reflog_exists_fn *reflog_exists;
 684        create_reflog_fn *create_reflog;
 685        delete_reflog_fn *delete_reflog;
 686        reflog_expire_fn *reflog_expire;
 687};
 688
 689extern struct ref_storage_be refs_be_files;
 690extern struct ref_storage_be refs_be_packed;
 691
 692/*
 693 * A representation of the reference store for the main repository or
 694 * a submodule. The ref_store instances for submodules are kept in a
 695 * linked list.
 696 */
 697struct ref_store {
 698        /* The backend describing this ref_store's storage scheme: */
 699        const struct ref_storage_be *be;
 700};
 701
 702/*
 703 * Fill in the generic part of refs and add it to our collection of
 704 * reference stores.
 705 */
 706void base_ref_store_init(struct ref_store *refs,
 707                         const struct ref_storage_be *be);
 708
 709#endif /* REFS_REFS_INTERNAL_H */