1#ifndef REFS_REFS_INTERNAL_H 2#define REFS_REFS_INTERNAL_H 3 4/* 5 * Data structures and functions for the internal use of the refs 6 * module. Code outside of the refs module should use only the public 7 * functions defined in "refs.h", and should *not* include this file. 8 */ 9 10/* 11 * Flag passed to lock_ref_sha1_basic() telling it to tolerate broken 12 * refs (i.e., because the reference is about to be deleted anyway). 13 */ 14#define REF_DELETING 0x02 15 16/* 17 * Used as a flag in ref_update::flags when a loose ref is being 18 * pruned. This flag must only be used when REF_NODEREF is set. 19 */ 20#define REF_ISPRUNING 0x04 21 22/* 23 * Used as a flag in ref_update::flags when the reference should be 24 * updated to new_sha1. 25 */ 26#define REF_HAVE_NEW 0x08 27 28/* 29 * Used as a flag in ref_update::flags when old_sha1 should be 30 * checked. 31 */ 32#define REF_HAVE_OLD 0x10 33 34/* 35 * Used as a flag in ref_update::flags when the lockfile needs to be 36 * committed. 37 */ 38#define REF_NEEDS_COMMIT 0x20 39 40/* 41 * 0x40 is REF_FORCE_CREATE_REFLOG, so skip it if you're adding a 42 * value to ref_update::flags 43 */ 44 45/* 46 * Used as a flag in ref_update::flags when we want to log a ref 47 * update but not actually perform it. This is used when a symbolic 48 * ref update is split up. 49 */ 50#define REF_LOG_ONLY 0x80 51 52/* 53 * Internal flag, meaning that the containing ref_update was via an 54 * update to HEAD. 55 */ 56#define REF_UPDATE_VIA_HEAD 0x100 57 58/* 59 * Used as a flag in ref_update::flags when the loose reference has 60 * been deleted. 61 */ 62#define REF_DELETED_LOOSE 0x200 63 64/* 65 * Return the length of time to retry acquiring a loose reference lock 66 * before giving up, in milliseconds: 67 */ 68longget_files_ref_lock_timeout_ms(void); 69 70/* 71 * Return true iff refname is minimally safe. "Safe" here means that 72 * deleting a loose reference by this name will not do any damage, for 73 * example by causing a file that is not a reference to be deleted. 74 * This function does not check that the reference name is legal; for 75 * that, use check_refname_format(). 76 * 77 * A refname that starts with "refs/" is considered safe iff it 78 * doesn't contain any "." or ".." components or consecutive '/' 79 * characters, end with '/', or (on Windows) contain any '\' 80 * characters. Names that do not start with "refs/" are considered 81 * safe iff they consist entirely of upper case characters and '_' 82 * (like "HEAD" and "MERGE_HEAD" but not "config" or "FOO/BAR"). 83 */ 84intrefname_is_safe(const char*refname); 85 86/* 87 * Helper function: return true if refname, which has the specified 88 * oid and flags, can be resolved to an object in the database. If the 89 * referred-to object does not exist, emit a warning and return false. 90 */ 91intref_resolves_to_object(const char*refname, 92const struct object_id *oid, 93unsigned int flags); 94 95enum peel_status { 96/* object was peeled successfully: */ 97 PEEL_PEELED =0, 98 99/* 100 * object cannot be peeled because the named object (or an 101 * object referred to by a tag in the peel chain), does not 102 * exist. 103 */ 104 PEEL_INVALID = -1, 105 106/* object cannot be peeled because it is not a tag: */ 107 PEEL_NON_TAG = -2, 108 109/* ref_entry contains no peeled value because it is a symref: */ 110 PEEL_IS_SYMREF = -3, 111 112/* 113 * ref_entry cannot be peeled because it is broken (i.e., the 114 * symbolic reference cannot even be resolved to an object 115 * name): 116 */ 117 PEEL_BROKEN = -4 118}; 119 120/* 121 * Peel the named object; i.e., if the object is a tag, resolve the 122 * tag recursively until a non-tag is found. If successful, store the 123 * result to sha1 and return PEEL_PEELED. If the object is not a tag 124 * or is not valid, return PEEL_NON_TAG or PEEL_INVALID, respectively, 125 * and leave sha1 unchanged. 126 */ 127enum peel_status peel_object(const unsigned char*name,unsigned char*sha1); 128 129/* 130 * Copy the reflog message msg to buf, which has been allocated sufficiently 131 * large, while cleaning up the whitespaces. Especially, convert LF to space, 132 * because reflog file is one line per entry. 133 */ 134intcopy_reflog_msg(char*buf,const char*msg); 135 136/** 137 * Information needed for a single ref update. Set new_sha1 to the new 138 * value or to null_sha1 to delete the ref. To check the old value 139 * while the ref is locked, set (flags & REF_HAVE_OLD) and set 140 * old_sha1 to the old value, or to null_sha1 to ensure the ref does 141 * not exist before update. 142 */ 143struct ref_update { 144 145/* 146 * If (flags & REF_HAVE_NEW), set the reference to this value: 147 */ 148struct object_id new_oid; 149 150/* 151 * If (flags & REF_HAVE_OLD), check that the reference 152 * previously had this value: 153 */ 154struct object_id old_oid; 155 156/* 157 * One or more of REF_HAVE_NEW, REF_HAVE_OLD, REF_NODEREF, 158 * REF_DELETING, REF_ISPRUNING, REF_LOG_ONLY, 159 * REF_UPDATE_VIA_HEAD, REF_NEEDS_COMMIT, and 160 * REF_DELETED_LOOSE: 161 */ 162unsigned int flags; 163 164void*backend_data; 165unsigned int type; 166char*msg; 167 168/* 169 * If this ref_update was split off of a symref update via 170 * split_symref_update(), then this member points at that 171 * update. This is used for two purposes: 172 * 1. When reporting errors, we report the refname under which 173 * the update was originally requested. 174 * 2. When we read the old value of this reference, we 175 * propagate it back to its parent update for recording in 176 * the latter's reflog. 177 */ 178struct ref_update *parent_update; 179 180const char refname[FLEX_ARRAY]; 181}; 182 183intrefs_read_raw_ref(struct ref_store *ref_store, 184const char*refname,unsigned char*sha1, 185struct strbuf *referent,unsigned int*type); 186 187/* 188 * Write an error to `err` and return a nonzero value iff the same 189 * refname appears multiple times in `refnames`. `refnames` must be 190 * sorted on entry to this function. 191 */ 192intref_update_reject_duplicates(struct string_list *refnames, 193struct strbuf *err); 194 195/* 196 * Add a ref_update with the specified properties to transaction, and 197 * return a pointer to the new object. This function does not verify 198 * that refname is well-formed. new_sha1 and old_sha1 are only 199 * dereferenced if the REF_HAVE_NEW and REF_HAVE_OLD bits, 200 * respectively, are set in flags. 201 */ 202struct ref_update *ref_transaction_add_update( 203struct ref_transaction *transaction, 204const char*refname,unsigned int flags, 205const unsigned char*new_sha1, 206const unsigned char*old_sha1, 207const char*msg); 208 209/* 210 * Transaction states. 211 * 212 * OPEN: The transaction is initialized and new updates can still be 213 * added to it. An OPEN transaction can be prepared, 214 * committed, freed, or aborted (freeing and aborting an open 215 * transaction are equivalent). 216 * 217 * PREPARED: ref_transaction_prepare(), which locks all of the 218 * references involved in the update and checks that the 219 * update has no errors, has been called successfully for the 220 * transaction. A PREPARED transaction can be committed or 221 * aborted. 222 * 223 * CLOSED: The transaction is no longer active. A transaction becomes 224 * CLOSED if there is a failure while building the transaction 225 * or if a transaction is committed or aborted. A CLOSED 226 * transaction can only be freed. 227 */ 228enum ref_transaction_state { 229 REF_TRANSACTION_OPEN =0, 230 REF_TRANSACTION_PREPARED =1, 231 REF_TRANSACTION_CLOSED =2 232}; 233 234/* 235 * Data structure for holding a reference transaction, which can 236 * consist of checks and updates to multiple references, carried out 237 * as atomically as possible. This structure is opaque to callers. 238 */ 239struct ref_transaction { 240struct ref_store *ref_store; 241struct ref_update **updates; 242size_t alloc; 243size_t nr; 244enum ref_transaction_state state; 245void*backend_data; 246}; 247 248/* 249 * Check for entries in extras that are within the specified 250 * directory, where dirname is a reference directory name including 251 * the trailing slash (e.g., "refs/heads/foo/"). Ignore any 252 * conflicting references that are found in skip. If there is a 253 * conflicting reference, return its name. 254 * 255 * extras and skip must be sorted lists of reference names. Either one 256 * can be NULL, signifying the empty list. 257 */ 258const char*find_descendant_ref(const char*dirname, 259const struct string_list *extras, 260const struct string_list *skip); 261 262/* 263 * Check whether an attempt to rename old_refname to new_refname would 264 * cause a D/F conflict with any existing reference (other than 265 * possibly old_refname). If there would be a conflict, emit an error 266 * message and return false; otherwise, return true. 267 * 268 * Note that this function is not safe against all races with other 269 * processes (though rename_ref() catches some races that might get by 270 * this check). 271 */ 272intrefs_rename_ref_available(struct ref_store *refs, 273const char*old_refname, 274const char*new_refname); 275 276/* We allow "recursive" symbolic refs. Only within reason, though */ 277#define SYMREF_MAXDEPTH 5 278 279/* Include broken references in a do_for_each_ref*() iteration: */ 280#define DO_FOR_EACH_INCLUDE_BROKEN 0x01 281 282/* 283 * Reference iterators 284 * 285 * A reference iterator encapsulates the state of an in-progress 286 * iteration over references. Create an instance of `struct 287 * ref_iterator` via one of the functions in this module. 288 * 289 * A freshly-created ref_iterator doesn't yet point at a reference. To 290 * advance the iterator, call ref_iterator_advance(). If successful, 291 * this sets the iterator's refname, oid, and flags fields to describe 292 * the next reference and returns ITER_OK. The data pointed at by 293 * refname and oid belong to the iterator; if you want to retain them 294 * after calling ref_iterator_advance() again or calling 295 * ref_iterator_abort(), you must make a copy. When the iteration has 296 * been exhausted, ref_iterator_advance() releases any resources 297 * assocated with the iteration, frees the ref_iterator object, and 298 * returns ITER_DONE. If you want to abort the iteration early, call 299 * ref_iterator_abort(), which also frees the ref_iterator object and 300 * any associated resources. If there was an internal error advancing 301 * to the next entry, ref_iterator_advance() aborts the iteration, 302 * frees the ref_iterator, and returns ITER_ERROR. 303 * 304 * The reference currently being looked at can be peeled by calling 305 * ref_iterator_peel(). This function is often faster than peel_ref(), 306 * so it should be preferred when iterating over references. 307 * 308 * Putting it all together, a typical iteration looks like this: 309 * 310 * int ok; 311 * struct ref_iterator *iter = ...; 312 * 313 * while ((ok = ref_iterator_advance(iter)) == ITER_OK) { 314 * if (want_to_stop_iteration()) { 315 * ok = ref_iterator_abort(iter); 316 * break; 317 * } 318 * 319 * // Access information about the current reference: 320 * if (!(iter->flags & REF_ISSYMREF)) 321 * printf("%s is %s\n", iter->refname, oid_to_hex(&iter->oid)); 322 * 323 * // If you need to peel the reference: 324 * ref_iterator_peel(iter, &oid); 325 * } 326 * 327 * if (ok != ITER_DONE) 328 * handle_error(); 329 */ 330struct ref_iterator { 331struct ref_iterator_vtable *vtable; 332 333/* 334 * Does this `ref_iterator` iterate over references in order 335 * by refname? 336 */ 337unsigned int ordered :1; 338 339const char*refname; 340const struct object_id *oid; 341unsigned int flags; 342}; 343 344/* 345 * Advance the iterator to the first or next item and return ITER_OK. 346 * If the iteration is exhausted, free the resources associated with 347 * the ref_iterator and return ITER_DONE. On errors, free the iterator 348 * resources and return ITER_ERROR. It is a bug to use ref_iterator or 349 * call this function again after it has returned ITER_DONE or 350 * ITER_ERROR. 351 */ 352intref_iterator_advance(struct ref_iterator *ref_iterator); 353 354/* 355 * If possible, peel the reference currently being viewed by the 356 * iterator. Return 0 on success. 357 */ 358intref_iterator_peel(struct ref_iterator *ref_iterator, 359struct object_id *peeled); 360 361/* 362 * End the iteration before it has been exhausted, freeing the 363 * reference iterator and any associated resources and returning 364 * ITER_DONE. If the abort itself failed, return ITER_ERROR. 365 */ 366intref_iterator_abort(struct ref_iterator *ref_iterator); 367 368/* 369 * An iterator over nothing (its first ref_iterator_advance() call 370 * returns ITER_DONE). 371 */ 372struct ref_iterator *empty_ref_iterator_begin(void); 373 374/* 375 * Return true iff ref_iterator is an empty_ref_iterator. 376 */ 377intis_empty_ref_iterator(struct ref_iterator *ref_iterator); 378 379/* 380 * Return an iterator that goes over each reference in `refs` for 381 * which the refname begins with prefix. If trim is non-zero, then 382 * trim that many characters off the beginning of each refname. flags 383 * can be DO_FOR_EACH_INCLUDE_BROKEN to include broken references in 384 * the iteration. The output is ordered by refname. 385 */ 386struct ref_iterator *refs_ref_iterator_begin( 387struct ref_store *refs, 388const char*prefix,int trim,int flags); 389 390/* 391 * A callback function used to instruct merge_ref_iterator how to 392 * interleave the entries from iter0 and iter1. The function should 393 * return one of the constants defined in enum iterator_selection. It 394 * must not advance either of the iterators itself. 395 * 396 * The function must be prepared to handle the case that iter0 and/or 397 * iter1 is NULL, which indicates that the corresponding sub-iterator 398 * has been exhausted. Its return value must be consistent with the 399 * current states of the iterators; e.g., it must not return 400 * ITER_SKIP_1 if iter1 has already been exhausted. 401 */ 402typedefenum iterator_selection ref_iterator_select_fn( 403struct ref_iterator *iter0,struct ref_iterator *iter1, 404void*cb_data); 405 406/* 407 * Iterate over the entries from iter0 and iter1, with the values 408 * interleaved as directed by the select function. The iterator takes 409 * ownership of iter0 and iter1 and frees them when the iteration is 410 * over. A derived class should set `ordered` to 1 or 0 based on 411 * whether it generates its output in order by reference name. 412 */ 413struct ref_iterator *merge_ref_iterator_begin( 414int ordered, 415struct ref_iterator *iter0,struct ref_iterator *iter1, 416 ref_iterator_select_fn *select,void*cb_data); 417 418/* 419 * An iterator consisting of the union of the entries from front and 420 * back. If there are entries common to the two sub-iterators, use the 421 * one from front. Each iterator must iterate over its entries in 422 * strcmp() order by refname for this to work. 423 * 424 * The new iterator takes ownership of its arguments and frees them 425 * when the iteration is over. As a convenience to callers, if front 426 * or back is an empty_ref_iterator, then abort that one immediately 427 * and return the other iterator directly, without wrapping it. 428 */ 429struct ref_iterator *overlay_ref_iterator_begin( 430struct ref_iterator *front,struct ref_iterator *back); 431 432/* 433 * Wrap iter0, only letting through the references whose names start 434 * with prefix. If trim is set, set iter->refname to the name of the 435 * reference with that many characters trimmed off the front; 436 * otherwise set it to the full refname. The new iterator takes over 437 * ownership of iter0 and frees it when iteration is over. It makes 438 * its own copy of prefix. 439 * 440 * As an convenience to callers, if prefix is the empty string and 441 * trim is zero, this function returns iter0 directly, without 442 * wrapping it. 443 * 444 * The resulting ref_iterator is ordered if iter0 is. 445 */ 446struct ref_iterator *prefix_ref_iterator_begin(struct ref_iterator *iter0, 447const char*prefix, 448int trim); 449 450/* Internal implementation of reference iteration: */ 451 452/* 453 * Base class constructor for ref_iterators. Initialize the 454 * ref_iterator part of iter, setting its vtable pointer as specified. 455 * `ordered` should be set to 1 if the iterator will iterate over 456 * references in order by refname; otherwise it should be set to 0. 457 * This is meant to be called only by the initializers of derived 458 * classes. 459 */ 460voidbase_ref_iterator_init(struct ref_iterator *iter, 461struct ref_iterator_vtable *vtable, 462int ordered); 463 464/* 465 * Base class destructor for ref_iterators. Destroy the ref_iterator 466 * part of iter and shallow-free the object. This is meant to be 467 * called only by the destructors of derived classes. 468 */ 469voidbase_ref_iterator_free(struct ref_iterator *iter); 470 471/* Virtual function declarations for ref_iterators: */ 472 473typedefintref_iterator_advance_fn(struct ref_iterator *ref_iterator); 474 475typedefintref_iterator_peel_fn(struct ref_iterator *ref_iterator, 476struct object_id *peeled); 477 478/* 479 * Implementations of this function should free any resources specific 480 * to the derived class, then call base_ref_iterator_free() to clean 481 * up and free the ref_iterator object. 482 */ 483typedefintref_iterator_abort_fn(struct ref_iterator *ref_iterator); 484 485struct ref_iterator_vtable { 486 ref_iterator_advance_fn *advance; 487 ref_iterator_peel_fn *peel; 488 ref_iterator_abort_fn *abort; 489}; 490 491/* 492 * current_ref_iter is a performance hack: when iterating over 493 * references using the for_each_ref*() functions, current_ref_iter is 494 * set to the reference iterator before calling the callback function. 495 * If the callback function calls peel_ref(), then peel_ref() first 496 * checks whether the reference to be peeled is the one referred to by 497 * the iterator (it usually is) and if so, asks the iterator for the 498 * peeled version of the reference if it is available. This avoids a 499 * refname lookup in a common case. current_ref_iter is set to NULL 500 * when the iteration is over. 501 */ 502externstruct ref_iterator *current_ref_iter; 503 504/* 505 * The common backend for the for_each_*ref* functions. Call fn for 506 * each reference in iter. If the iterator itself ever returns 507 * ITER_ERROR, return -1. If fn ever returns a non-zero value, stop 508 * the iteration and return that value. Otherwise, return 0. In any 509 * case, free the iterator when done. This function is basically an 510 * adapter between the callback style of reference iteration and the 511 * iterator style. 512 */ 513intdo_for_each_ref_iterator(struct ref_iterator *iter, 514 each_ref_fn fn,void*cb_data); 515 516/* 517 * Only include per-worktree refs in a do_for_each_ref*() iteration. 518 * Normally this will be used with a files ref_store, since that's 519 * where all reference backends will presumably store their 520 * per-worktree refs. 521 */ 522#define DO_FOR_EACH_PER_WORKTREE_ONLY 0x02 523 524struct ref_store; 525 526/* refs backends */ 527 528/* ref_store_init flags */ 529#define REF_STORE_READ (1 << 0) 530#define REF_STORE_WRITE (1 << 1)/* can perform update operations */ 531#define REF_STORE_ODB (1 << 2)/* has access to object database */ 532#define REF_STORE_MAIN (1 << 3) 533#define REF_STORE_ALL_CAPS (REF_STORE_READ | \ 534 REF_STORE_WRITE | \ 535 REF_STORE_ODB | \ 536 REF_STORE_MAIN) 537 538/* 539 * Initialize the ref_store for the specified gitdir. These functions 540 * should call base_ref_store_init() to initialize the shared part of 541 * the ref_store and to record the ref_store for later lookup. 542 */ 543typedefstruct ref_store *ref_store_init_fn(const char*gitdir, 544unsigned int flags); 545 546typedefintref_init_db_fn(struct ref_store *refs,struct strbuf *err); 547 548typedefintref_transaction_prepare_fn(struct ref_store *refs, 549struct ref_transaction *transaction, 550struct strbuf *err); 551 552typedefintref_transaction_finish_fn(struct ref_store *refs, 553struct ref_transaction *transaction, 554struct strbuf *err); 555 556typedefintref_transaction_abort_fn(struct ref_store *refs, 557struct ref_transaction *transaction, 558struct strbuf *err); 559 560typedefintref_transaction_commit_fn(struct ref_store *refs, 561struct ref_transaction *transaction, 562struct strbuf *err); 563 564typedefintpack_refs_fn(struct ref_store *ref_store,unsigned int flags); 565typedefintcreate_symref_fn(struct ref_store *ref_store, 566const char*ref_target, 567const char*refs_heads_master, 568const char*logmsg); 569typedefintdelete_refs_fn(struct ref_store *ref_store,const char*msg, 570struct string_list *refnames,unsigned int flags); 571typedefintrename_ref_fn(struct ref_store *ref_store, 572const char*oldref,const char*newref, 573const char*logmsg); 574typedefintcopy_ref_fn(struct ref_store *ref_store, 575const char*oldref,const char*newref, 576const char*logmsg); 577 578/* 579 * Iterate over the references in `ref_store` whose names start with 580 * `prefix`. `prefix` is matched as a literal string, without regard 581 * for path separators. If prefix is NULL or the empty string, iterate 582 * over all references in `ref_store`. The output is ordered by 583 * refname. 584 */ 585typedefstruct ref_iterator *ref_iterator_begin_fn( 586struct ref_store *ref_store, 587const char*prefix,unsigned int flags); 588 589/* reflog functions */ 590 591/* 592 * Iterate over the references in the specified ref_store that have a 593 * reflog. The refs are iterated over in arbitrary order. 594 */ 595typedefstruct ref_iterator *reflog_iterator_begin_fn( 596struct ref_store *ref_store); 597 598typedefintfor_each_reflog_ent_fn(struct ref_store *ref_store, 599const char*refname, 600 each_reflog_ent_fn fn, 601void*cb_data); 602typedefintfor_each_reflog_ent_reverse_fn(struct ref_store *ref_store, 603const char*refname, 604 each_reflog_ent_fn fn, 605void*cb_data); 606typedefintreflog_exists_fn(struct ref_store *ref_store,const char*refname); 607typedefintcreate_reflog_fn(struct ref_store *ref_store,const char*refname, 608int force_create,struct strbuf *err); 609typedefintdelete_reflog_fn(struct ref_store *ref_store,const char*refname); 610typedefintreflog_expire_fn(struct ref_store *ref_store, 611const char*refname,const unsigned char*sha1, 612unsigned int flags, 613 reflog_expiry_prepare_fn prepare_fn, 614 reflog_expiry_should_prune_fn should_prune_fn, 615 reflog_expiry_cleanup_fn cleanup_fn, 616void*policy_cb_data); 617 618/* 619 * Read a reference from the specified reference store, non-recursively. 620 * Set type to describe the reference, and: 621 * 622 * - If refname is the name of a normal reference, fill in sha1 623 * (leaving referent unchanged). 624 * 625 * - If refname is the name of a symbolic reference, write the full 626 * name of the reference to which it refers (e.g. 627 * "refs/heads/master") to referent and set the REF_ISSYMREF bit in 628 * type (leaving sha1 unchanged). The caller is responsible for 629 * validating that referent is a valid reference name. 630 * 631 * WARNING: refname might be used as part of a filename, so it is 632 * important from a security standpoint that it be safe in the sense 633 * of refname_is_safe(). Moreover, for symrefs this function sets 634 * referent to whatever the repository says, which might not be a 635 * properly-formatted or even safe reference name. NEITHER INPUT NOR 636 * OUTPUT REFERENCE NAMES ARE VALIDATED WITHIN THIS FUNCTION. 637 * 638 * Return 0 on success. If the ref doesn't exist, set errno to ENOENT 639 * and return -1. If the ref exists but is neither a symbolic ref nor 640 * a sha1, it is broken; set REF_ISBROKEN in type, set errno to 641 * EINVAL, and return -1. If there is another error reading the ref, 642 * set errno appropriately and return -1. 643 * 644 * Backend-specific flags might be set in type as well, regardless of 645 * outcome. 646 * 647 * It is OK for refname to point into referent. If so: 648 * 649 * - if the function succeeds with REF_ISSYMREF, referent will be 650 * overwritten and the memory formerly pointed to by it might be 651 * changed or even freed. 652 * 653 * - in all other cases, referent will be untouched, and therefore 654 * refname will still be valid and unchanged. 655 */ 656typedefintread_raw_ref_fn(struct ref_store *ref_store, 657const char*refname,unsigned char*sha1, 658struct strbuf *referent,unsigned int*type); 659 660struct ref_storage_be { 661struct ref_storage_be *next; 662const char*name; 663 ref_store_init_fn *init; 664 ref_init_db_fn *init_db; 665 666 ref_transaction_prepare_fn *transaction_prepare; 667 ref_transaction_finish_fn *transaction_finish; 668 ref_transaction_abort_fn *transaction_abort; 669 ref_transaction_commit_fn *initial_transaction_commit; 670 671 pack_refs_fn *pack_refs; 672 create_symref_fn *create_symref; 673 delete_refs_fn *delete_refs; 674 rename_ref_fn *rename_ref; 675 copy_ref_fn *copy_ref; 676 677 ref_iterator_begin_fn *iterator_begin; 678 read_raw_ref_fn *read_raw_ref; 679 680 reflog_iterator_begin_fn *reflog_iterator_begin; 681 for_each_reflog_ent_fn *for_each_reflog_ent; 682 for_each_reflog_ent_reverse_fn *for_each_reflog_ent_reverse; 683 reflog_exists_fn *reflog_exists; 684 create_reflog_fn *create_reflog; 685 delete_reflog_fn *delete_reflog; 686 reflog_expire_fn *reflog_expire; 687}; 688 689externstruct ref_storage_be refs_be_files; 690externstruct ref_storage_be refs_be_packed; 691 692/* 693 * A representation of the reference store for the main repository or 694 * a submodule. The ref_store instances for submodules are kept in a 695 * linked list. 696 */ 697struct ref_store { 698/* The backend describing this ref_store's storage scheme: */ 699const struct ref_storage_be *be; 700}; 701 702/* 703 * Fill in the generic part of refs and add it to our collection of 704 * reference stores. 705 */ 706voidbase_ref_store_init(struct ref_store *refs, 707const struct ref_storage_be *be); 708 709#endif/* REFS_REFS_INTERNAL_H */