1/* 2 * LibXDiff by Davide Libenzi ( File Differential Library ) 3 * Copyright (C) 2003 Davide Libenzi 4 * 5 * This library is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU Lesser General Public 7 * License as published by the Free Software Foundation; either 8 * version 2.1 of the License, or (at your option) any later version. 9 * 10 * This library is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 13 * Lesser General Public License for more details. 14 * 15 * You should have received a copy of the GNU Lesser General Public 16 * License along with this library; if not, see 17 * <http://www.gnu.org/licenses/>. 18 * 19 * Davide Libenzi <davidel@xmailserver.org> 20 * 21 */ 22 23#include"xinclude.h" 24 25 26 27#define XDL_MAX_COST_MIN 256 28#define XDL_HEUR_MIN_COST 256 29#define XDL_LINE_MAX (long)((1UL << (CHAR_BIT * sizeof(long) - 1)) - 1) 30#define XDL_SNAKE_CNT 20 31#define XDL_K_HEUR 4 32 33 34 35typedefstruct s_xdpsplit { 36long i1, i2; 37int min_lo, min_hi; 38} xdpsplit_t; 39 40 41 42 43static longxdl_split(unsigned long const*ha1,long off1,long lim1, 44unsigned long const*ha2,long off2,long lim2, 45long*kvdf,long*kvdb,int need_min, xdpsplit_t *spl, 46 xdalgoenv_t *xenv); 47static xdchange_t *xdl_add_change(xdchange_t *xscr,long i1,long i2,long chg1,long chg2); 48 49 50 51 52 53/* 54 * See "An O(ND) Difference Algorithm and its Variations", by Eugene Myers. 55 * Basically considers a "box" (off1, off2, lim1, lim2) and scan from both 56 * the forward diagonal starting from (off1, off2) and the backward diagonal 57 * starting from (lim1, lim2). If the K values on the same diagonal crosses 58 * returns the furthest point of reach. We might end up having to expensive 59 * cases using this algorithm is full, so a little bit of heuristic is needed 60 * to cut the search and to return a suboptimal point. 61 */ 62static longxdl_split(unsigned long const*ha1,long off1,long lim1, 63unsigned long const*ha2,long off2,long lim2, 64long*kvdf,long*kvdb,int need_min, xdpsplit_t *spl, 65 xdalgoenv_t *xenv) { 66long dmin = off1 - lim2, dmax = lim1 - off2; 67long fmid = off1 - off2, bmid = lim1 - lim2; 68long odd = (fmid - bmid) &1; 69long fmin = fmid, fmax = fmid; 70long bmin = bmid, bmax = bmid; 71long ec, d, i1, i2, prev1, best, dd, v, k; 72 73/* 74 * Set initial diagonal values for both forward and backward path. 75 */ 76 kvdf[fmid] = off1; 77 kvdb[bmid] = lim1; 78 79for(ec =1;; ec++) { 80int got_snake =0; 81 82/* 83 * We need to extent the diagonal "domain" by one. If the next 84 * values exits the box boundaries we need to change it in the 85 * opposite direction because (max - min) must be a power of two. 86 * Also we initialize the external K value to -1 so that we can 87 * avoid extra conditions check inside the core loop. 88 */ 89if(fmin > dmin) 90 kvdf[--fmin -1] = -1; 91else 92++fmin; 93if(fmax < dmax) 94 kvdf[++fmax +1] = -1; 95else 96--fmax; 97 98for(d = fmax; d >= fmin; d -=2) { 99if(kvdf[d -1] >= kvdf[d +1]) 100 i1 = kvdf[d -1] +1; 101else 102 i1 = kvdf[d +1]; 103 prev1 = i1; 104 i2 = i1 - d; 105for(; i1 < lim1 && i2 < lim2 && ha1[i1] == ha2[i2]; i1++, i2++); 106if(i1 - prev1 > xenv->snake_cnt) 107 got_snake =1; 108 kvdf[d] = i1; 109if(odd && bmin <= d && d <= bmax && kvdb[d] <= i1) { 110 spl->i1 = i1; 111 spl->i2 = i2; 112 spl->min_lo = spl->min_hi =1; 113return ec; 114} 115} 116 117/* 118 * We need to extent the diagonal "domain" by one. If the next 119 * values exits the box boundaries we need to change it in the 120 * opposite direction because (max - min) must be a power of two. 121 * Also we initialize the external K value to -1 so that we can 122 * avoid extra conditions check inside the core loop. 123 */ 124if(bmin > dmin) 125 kvdb[--bmin -1] = XDL_LINE_MAX; 126else 127++bmin; 128if(bmax < dmax) 129 kvdb[++bmax +1] = XDL_LINE_MAX; 130else 131--bmax; 132 133for(d = bmax; d >= bmin; d -=2) { 134if(kvdb[d -1] < kvdb[d +1]) 135 i1 = kvdb[d -1]; 136else 137 i1 = kvdb[d +1] -1; 138 prev1 = i1; 139 i2 = i1 - d; 140for(; i1 > off1 && i2 > off2 && ha1[i1 -1] == ha2[i2 -1]; i1--, i2--); 141if(prev1 - i1 > xenv->snake_cnt) 142 got_snake =1; 143 kvdb[d] = i1; 144if(!odd && fmin <= d && d <= fmax && i1 <= kvdf[d]) { 145 spl->i1 = i1; 146 spl->i2 = i2; 147 spl->min_lo = spl->min_hi =1; 148return ec; 149} 150} 151 152if(need_min) 153continue; 154 155/* 156 * If the edit cost is above the heuristic trigger and if 157 * we got a good snake, we sample current diagonals to see 158 * if some of the, have reached an "interesting" path. Our 159 * measure is a function of the distance from the diagonal 160 * corner (i1 + i2) penalized with the distance from the 161 * mid diagonal itself. If this value is above the current 162 * edit cost times a magic factor (XDL_K_HEUR) we consider 163 * it interesting. 164 */ 165if(got_snake && ec > xenv->heur_min) { 166for(best =0, d = fmax; d >= fmin; d -=2) { 167 dd = d > fmid ? d - fmid: fmid - d; 168 i1 = kvdf[d]; 169 i2 = i1 - d; 170 v = (i1 - off1) + (i2 - off2) - dd; 171 172if(v > XDL_K_HEUR * ec && v > best && 173 off1 + xenv->snake_cnt <= i1 && i1 < lim1 && 174 off2 + xenv->snake_cnt <= i2 && i2 < lim2) { 175for(k =1; ha1[i1 - k] == ha2[i2 - k]; k++) 176if(k == xenv->snake_cnt) { 177 best = v; 178 spl->i1 = i1; 179 spl->i2 = i2; 180break; 181} 182} 183} 184if(best >0) { 185 spl->min_lo =1; 186 spl->min_hi =0; 187return ec; 188} 189 190for(best =0, d = bmax; d >= bmin; d -=2) { 191 dd = d > bmid ? d - bmid: bmid - d; 192 i1 = kvdb[d]; 193 i2 = i1 - d; 194 v = (lim1 - i1) + (lim2 - i2) - dd; 195 196if(v > XDL_K_HEUR * ec && v > best && 197 off1 < i1 && i1 <= lim1 - xenv->snake_cnt && 198 off2 < i2 && i2 <= lim2 - xenv->snake_cnt) { 199for(k =0; ha1[i1 + k] == ha2[i2 + k]; k++) 200if(k == xenv->snake_cnt -1) { 201 best = v; 202 spl->i1 = i1; 203 spl->i2 = i2; 204break; 205} 206} 207} 208if(best >0) { 209 spl->min_lo =0; 210 spl->min_hi =1; 211return ec; 212} 213} 214 215/* 216 * Enough is enough. We spent too much time here and now we collect 217 * the furthest reaching path using the (i1 + i2) measure. 218 */ 219if(ec >= xenv->mxcost) { 220long fbest, fbest1, bbest, bbest1; 221 222 fbest = fbest1 = -1; 223for(d = fmax; d >= fmin; d -=2) { 224 i1 =XDL_MIN(kvdf[d], lim1); 225 i2 = i1 - d; 226if(lim2 < i2) 227 i1 = lim2 + d, i2 = lim2; 228if(fbest < i1 + i2) { 229 fbest = i1 + i2; 230 fbest1 = i1; 231} 232} 233 234 bbest = bbest1 = XDL_LINE_MAX; 235for(d = bmax; d >= bmin; d -=2) { 236 i1 =XDL_MAX(off1, kvdb[d]); 237 i2 = i1 - d; 238if(i2 < off2) 239 i1 = off2 + d, i2 = off2; 240if(i1 + i2 < bbest) { 241 bbest = i1 + i2; 242 bbest1 = i1; 243} 244} 245 246if((lim1 + lim2) - bbest < fbest - (off1 + off2)) { 247 spl->i1 = fbest1; 248 spl->i2 = fbest - fbest1; 249 spl->min_lo =1; 250 spl->min_hi =0; 251}else{ 252 spl->i1 = bbest1; 253 spl->i2 = bbest - bbest1; 254 spl->min_lo =0; 255 spl->min_hi =1; 256} 257return ec; 258} 259} 260} 261 262 263/* 264 * Rule: "Divide et Impera". Recursively split the box in sub-boxes by calling 265 * the box splitting function. Note that the real job (marking changed lines) 266 * is done in the two boundary reaching checks. 267 */ 268intxdl_recs_cmp(diffdata_t *dd1,long off1,long lim1, 269 diffdata_t *dd2,long off2,long lim2, 270long*kvdf,long*kvdb,int need_min, xdalgoenv_t *xenv) { 271unsigned long const*ha1 = dd1->ha, *ha2 = dd2->ha; 272 273/* 274 * Shrink the box by walking through each diagonal snake (SW and NE). 275 */ 276for(; off1 < lim1 && off2 < lim2 && ha1[off1] == ha2[off2]; off1++, off2++); 277for(; off1 < lim1 && off2 < lim2 && ha1[lim1 -1] == ha2[lim2 -1]; lim1--, lim2--); 278 279/* 280 * If one dimension is empty, then all records on the other one must 281 * be obviously changed. 282 */ 283if(off1 == lim1) { 284char*rchg2 = dd2->rchg; 285long*rindex2 = dd2->rindex; 286 287for(; off2 < lim2; off2++) 288 rchg2[rindex2[off2]] =1; 289}else if(off2 == lim2) { 290char*rchg1 = dd1->rchg; 291long*rindex1 = dd1->rindex; 292 293for(; off1 < lim1; off1++) 294 rchg1[rindex1[off1]] =1; 295}else{ 296 xdpsplit_t spl; 297 spl.i1 = spl.i2 =0; 298 299/* 300 * Divide ... 301 */ 302if(xdl_split(ha1, off1, lim1, ha2, off2, lim2, kvdf, kvdb, 303 need_min, &spl, xenv) <0) { 304 305return-1; 306} 307 308/* 309 * ... et Impera. 310 */ 311if(xdl_recs_cmp(dd1, off1, spl.i1, dd2, off2, spl.i2, 312 kvdf, kvdb, spl.min_lo, xenv) <0|| 313xdl_recs_cmp(dd1, spl.i1, lim1, dd2, spl.i2, lim2, 314 kvdf, kvdb, spl.min_hi, xenv) <0) { 315 316return-1; 317} 318} 319 320return0; 321} 322 323 324intxdl_do_diff(mmfile_t *mf1, mmfile_t *mf2, xpparam_t const*xpp, 325 xdfenv_t *xe) { 326long ndiags; 327long*kvd, *kvdf, *kvdb; 328 xdalgoenv_t xenv; 329 diffdata_t dd1, dd2; 330 331if(XDF_DIFF_ALG(xpp->flags) == XDF_PATIENCE_DIFF) 332returnxdl_do_patience_diff(mf1, mf2, xpp, xe); 333 334if(XDF_DIFF_ALG(xpp->flags) == XDF_HISTOGRAM_DIFF) 335returnxdl_do_histogram_diff(mf1, mf2, xpp, xe); 336 337if(xdl_prepare_env(mf1, mf2, xpp, xe) <0) { 338 339return-1; 340} 341 342/* 343 * Allocate and setup K vectors to be used by the differential algorithm. 344 * One is to store the forward path and one to store the backward path. 345 */ 346 ndiags = xe->xdf1.nreff + xe->xdf2.nreff +3; 347if(!(kvd = (long*)xdl_malloc((2* ndiags +2) *sizeof(long)))) { 348 349xdl_free_env(xe); 350return-1; 351} 352 kvdf = kvd; 353 kvdb = kvdf + ndiags; 354 kvdf += xe->xdf2.nreff +1; 355 kvdb += xe->xdf2.nreff +1; 356 357 xenv.mxcost =xdl_bogosqrt(ndiags); 358if(xenv.mxcost < XDL_MAX_COST_MIN) 359 xenv.mxcost = XDL_MAX_COST_MIN; 360 xenv.snake_cnt = XDL_SNAKE_CNT; 361 xenv.heur_min = XDL_HEUR_MIN_COST; 362 363 dd1.nrec = xe->xdf1.nreff; 364 dd1.ha = xe->xdf1.ha; 365 dd1.rchg = xe->xdf1.rchg; 366 dd1.rindex = xe->xdf1.rindex; 367 dd2.nrec = xe->xdf2.nreff; 368 dd2.ha = xe->xdf2.ha; 369 dd2.rchg = xe->xdf2.rchg; 370 dd2.rindex = xe->xdf2.rindex; 371 372if(xdl_recs_cmp(&dd1,0, dd1.nrec, &dd2,0, dd2.nrec, 373 kvdf, kvdb, (xpp->flags & XDF_NEED_MINIMAL) !=0, &xenv) <0) { 374 375xdl_free(kvd); 376xdl_free_env(xe); 377return-1; 378} 379 380xdl_free(kvd); 381 382return0; 383} 384 385 386static xdchange_t *xdl_add_change(xdchange_t *xscr,long i1,long i2,long chg1,long chg2) { 387 xdchange_t *xch; 388 389if(!(xch = (xdchange_t *)xdl_malloc(sizeof(xdchange_t)))) 390return NULL; 391 392 xch->next = xscr; 393 xch->i1 = i1; 394 xch->i2 = i2; 395 xch->chg1 = chg1; 396 xch->chg2 = chg2; 397 xch->ignore =0; 398 399return xch; 400} 401 402 403static intrecs_match(xrecord_t *rec1, xrecord_t *rec2,long flags) 404{ 405return(rec1->ha == rec2->ha && 406xdl_recmatch(rec1->ptr, rec1->size, 407 rec2->ptr, rec2->size, 408 flags)); 409} 410 411/* 412 * If a line is indented more than this, get_indent() just returns this value. 413 * This avoids having to do absurd amounts of work for data that are not 414 * human-readable text, and also ensures that the output of get_indent fits within 415 * an int. 416 */ 417#define MAX_INDENT 200 418 419/* 420 * Return the amount of indentation of the specified line, treating TAB as 8 421 * columns. Return -1 if line is empty or contains only whitespace. Clamp the 422 * output value at MAX_INDENT. 423 */ 424static intget_indent(xrecord_t *rec) 425{ 426long i; 427int ret =0; 428 429for(i =0; i < rec->size; i++) { 430char c = rec->ptr[i]; 431 432if(!XDL_ISSPACE(c)) 433return ret; 434else if(c ==' ') 435 ret +=1; 436else if(c =='\t') 437 ret +=8- ret %8; 438/* ignore other whitespace characters */ 439 440if(ret >= MAX_INDENT) 441return MAX_INDENT; 442} 443 444/* The line contains only whitespace. */ 445return-1; 446} 447 448/* 449 * If more than this number of consecutive blank rows are found, just return this 450 * value. This avoids requiring O(N^2) work for pathological cases, and also 451 * ensures that the output of score_split fits in an int. 452 */ 453#define MAX_BLANKS 20 454 455/* Characteristics measured about a hypothetical split position. */ 456struct split_measurement { 457/* 458 * Is the split at the end of the file (aside from any blank lines)? 459 */ 460int end_of_file; 461 462/* 463 * How much is the line immediately following the split indented (or -1 if 464 * the line is blank): 465 */ 466int indent; 467 468/* 469 * How many consecutive lines above the split are blank? 470 */ 471int pre_blank; 472 473/* 474 * How much is the nearest non-blank line above the split indented (or -1 475 * if there is no such line)? 476 */ 477int pre_indent; 478 479/* 480 * How many lines after the line following the split are blank? 481 */ 482int post_blank; 483 484/* 485 * How much is the nearest non-blank line after the line following the 486 * split indented (or -1 if there is no such line)? 487 */ 488int post_indent; 489}; 490 491struct split_score { 492/* The effective indent of this split (smaller is preferred). */ 493int effective_indent; 494 495/* Penalty for this split (smaller is preferred). */ 496int penalty; 497}; 498 499/* 500 * Fill m with information about a hypothetical split of xdf above line split. 501 */ 502static voidmeasure_split(const xdfile_t *xdf,long split, 503struct split_measurement *m) 504{ 505long i; 506 507if(split >= xdf->nrec) { 508 m->end_of_file =1; 509 m->indent = -1; 510}else{ 511 m->end_of_file =0; 512 m->indent =get_indent(xdf->recs[split]); 513} 514 515 m->pre_blank =0; 516 m->pre_indent = -1; 517for(i = split -1; i >=0; i--) { 518 m->pre_indent =get_indent(xdf->recs[i]); 519if(m->pre_indent != -1) 520break; 521 m->pre_blank +=1; 522if(m->pre_blank == MAX_BLANKS) { 523 m->pre_indent =0; 524break; 525} 526} 527 528 m->post_blank =0; 529 m->post_indent = -1; 530for(i = split +1; i < xdf->nrec; i++) { 531 m->post_indent =get_indent(xdf->recs[i]); 532if(m->post_indent != -1) 533break; 534 m->post_blank +=1; 535if(m->post_blank == MAX_BLANKS) { 536 m->post_indent =0; 537break; 538} 539} 540} 541 542/* 543 * The empirically-determined weight factors used by score_split() below. 544 * Larger values means that the position is a less favorable place to split. 545 * 546 * Note that scores are only ever compared against each other, so multiplying 547 * all of these weight/penalty values by the same factor wouldn't change the 548 * heuristic's behavior. Still, we need to set that arbitrary scale *somehow*. 549 * In practice, these numbers are chosen to be large enough that they can be 550 * adjusted relative to each other with sufficient precision despite using 551 * integer math. 552 */ 553 554/* Penalty if there are no non-blank lines before the split */ 555#define START_OF_FILE_PENALTY 1 556 557/* Penalty if there are no non-blank lines after the split */ 558#define END_OF_FILE_PENALTY 21 559 560/* Multiplier for the number of blank lines around the split */ 561#define TOTAL_BLANK_WEIGHT (-30) 562 563/* Multiplier for the number of blank lines after the split */ 564#define POST_BLANK_WEIGHT 6 565 566/* 567 * Penalties applied if the line is indented more than its predecessor 568 */ 569#define RELATIVE_INDENT_PENALTY (-4) 570#define RELATIVE_INDENT_WITH_BLANK_PENALTY 10 571 572/* 573 * Penalties applied if the line is indented less than both its predecessor and 574 * its successor 575 */ 576#define RELATIVE_OUTDENT_PENALTY 24 577#define RELATIVE_OUTDENT_WITH_BLANK_PENALTY 17 578 579/* 580 * Penalties applied if the line is indented less than its predecessor but not 581 * less than its successor 582 */ 583#define RELATIVE_DEDENT_PENALTY 23 584#define RELATIVE_DEDENT_WITH_BLANK_PENALTY 17 585 586/* 587 * We only consider whether the sum of the effective indents for splits are 588 * less than (-1), equal to (0), or greater than (+1) each other. The resulting 589 * value is multiplied by the following weight and combined with the penalty to 590 * determine the better of two scores. 591 */ 592#define INDENT_WEIGHT 60 593 594/* 595 * Compute a badness score for the hypothetical split whose measurements are 596 * stored in m. The weight factors were determined empirically using the tools and 597 * corpus described in 598 * 599 * https://github.com/mhagger/diff-slider-tools 600 * 601 * Also see that project if you want to improve the weights based on, for example, 602 * a larger or more diverse corpus. 603 */ 604static voidscore_add_split(const struct split_measurement *m,struct split_score *s) 605{ 606/* 607 * A place to accumulate penalty factors (positive makes this index more 608 * favored): 609 */ 610int post_blank, total_blank, indent, any_blanks; 611 612if(m->pre_indent == -1&& m->pre_blank ==0) 613 s->penalty += START_OF_FILE_PENALTY; 614 615if(m->end_of_file) 616 s->penalty += END_OF_FILE_PENALTY; 617 618/* 619 * Set post_blank to the number of blank lines following the split, 620 * including the line immediately after the split: 621 */ 622 post_blank = (m->indent == -1) ?1+ m->post_blank :0; 623 total_blank = m->pre_blank + post_blank; 624 625/* Penalties based on nearby blank lines: */ 626 s->penalty += TOTAL_BLANK_WEIGHT * total_blank; 627 s->penalty += POST_BLANK_WEIGHT * post_blank; 628 629if(m->indent != -1) 630 indent = m->indent; 631else 632 indent = m->post_indent; 633 634 any_blanks = (total_blank !=0); 635 636/* Note that the effective indent is -1 at the end of the file: */ 637 s->effective_indent += indent; 638 639if(indent == -1) { 640/* No additional adjustments needed. */ 641}else if(m->pre_indent == -1) { 642/* No additional adjustments needed. */ 643}else if(indent > m->pre_indent) { 644/* 645 * The line is indented more than its predecessor. 646 */ 647 s->penalty += any_blanks ? 648 RELATIVE_INDENT_WITH_BLANK_PENALTY : 649 RELATIVE_INDENT_PENALTY; 650}else if(indent == m->pre_indent) { 651/* 652 * The line has the same indentation level as its predecessor. 653 * No additional adjustments needed. 654 */ 655}else{ 656/* 657 * The line is indented less than its predecessor. It could be 658 * the block terminator of the previous block, but it could 659 * also be the start of a new block (e.g., an "else" block, or 660 * maybe the previous block didn't have a block terminator). 661 * Try to distinguish those cases based on what comes next: 662 */ 663if(m->post_indent != -1&& m->post_indent > indent) { 664/* 665 * The following line is indented more. So it is likely 666 * that this line is the start of a block. 667 */ 668 s->penalty += any_blanks ? 669 RELATIVE_OUTDENT_WITH_BLANK_PENALTY : 670 RELATIVE_OUTDENT_PENALTY; 671}else{ 672/* 673 * That was probably the end of a block. 674 */ 675 s->penalty += any_blanks ? 676 RELATIVE_DEDENT_WITH_BLANK_PENALTY : 677 RELATIVE_DEDENT_PENALTY; 678} 679} 680} 681 682static intscore_cmp(struct split_score *s1,struct split_score *s2) 683{ 684/* -1 if s1.effective_indent < s2->effective_indent, etc. */ 685int cmp_indents = ((s1->effective_indent > s2->effective_indent) - 686(s1->effective_indent < s2->effective_indent)); 687 688return INDENT_WEIGHT * cmp_indents + (s1->penalty - s2->penalty); 689} 690 691/* 692 * Represent a group of changed lines in an xdfile_t (i.e., a contiguous group 693 * of lines that was inserted or deleted from the corresponding version of the 694 * file). We consider there to be such a group at the beginning of the file, at 695 * the end of the file, and between any two unchanged lines, though most such 696 * groups will usually be empty. 697 * 698 * If the first line in a group is equal to the line following the group, then 699 * the group can be slid down. Similarly, if the last line in a group is equal 700 * to the line preceding the group, then the group can be slid up. See 701 * group_slide_down() and group_slide_up(). 702 * 703 * Note that loops that are testing for changed lines in xdf->rchg do not need 704 * index bounding since the array is prepared with a zero at position -1 and N. 705 */ 706struct xdlgroup { 707/* 708 * The index of the first changed line in the group, or the index of 709 * the unchanged line above which the (empty) group is located. 710 */ 711long start; 712 713/* 714 * The index of the first unchanged line after the group. For an empty 715 * group, end is equal to start. 716 */ 717long end; 718}; 719 720/* 721 * Initialize g to point at the first group in xdf. 722 */ 723static voidgroup_init(xdfile_t *xdf,struct xdlgroup *g) 724{ 725 g->start = g->end =0; 726while(xdf->rchg[g->end]) 727 g->end++; 728} 729 730/* 731 * Move g to describe the next (possibly empty) group in xdf and return 0. If g 732 * is already at the end of the file, do nothing and return -1. 733 */ 734staticinlineintgroup_next(xdfile_t *xdf,struct xdlgroup *g) 735{ 736if(g->end == xdf->nrec) 737return-1; 738 739 g->start = g->end +1; 740for(g->end = g->start; xdf->rchg[g->end]; g->end++) 741; 742 743return0; 744} 745 746/* 747 * Move g to describe the previous (possibly empty) group in xdf and return 0. 748 * If g is already at the beginning of the file, do nothing and return -1. 749 */ 750staticinlineintgroup_previous(xdfile_t *xdf,struct xdlgroup *g) 751{ 752if(g->start ==0) 753return-1; 754 755 g->end = g->start -1; 756for(g->start = g->end; xdf->rchg[g->start -1]; g->start--) 757; 758 759return0; 760} 761 762/* 763 * If g can be slid toward the end of the file, do so, and if it bumps into a 764 * following group, expand this group to include it. Return 0 on success or -1 765 * if g cannot be slid down. 766 */ 767static intgroup_slide_down(xdfile_t *xdf,struct xdlgroup *g,long flags) 768{ 769if(g->end < xdf->nrec && 770recs_match(xdf->recs[g->start], xdf->recs[g->end], flags)) { 771 xdf->rchg[g->start++] =0; 772 xdf->rchg[g->end++] =1; 773 774while(xdf->rchg[g->end]) 775 g->end++; 776 777return0; 778}else{ 779return-1; 780} 781} 782 783/* 784 * If g can be slid toward the beginning of the file, do so, and if it bumps 785 * into a previous group, expand this group to include it. Return 0 on success 786 * or -1 if g cannot be slid up. 787 */ 788static intgroup_slide_up(xdfile_t *xdf,struct xdlgroup *g,long flags) 789{ 790if(g->start >0&& 791recs_match(xdf->recs[g->start -1], xdf->recs[g->end -1], flags)) { 792 xdf->rchg[--g->start] =1; 793 xdf->rchg[--g->end] =0; 794 795while(xdf->rchg[g->start -1]) 796 g->start--; 797 798return0; 799}else{ 800return-1; 801} 802} 803 804static voidxdl_bug(const char*msg) 805{ 806fprintf(stderr,"BUG:%s\n", msg); 807exit(1); 808} 809 810/* 811 * Move back and forward change groups for a consistent and pretty diff output. 812 * This also helps in finding joinable change groups and reducing the diff 813 * size. 814 */ 815intxdl_change_compact(xdfile_t *xdf, xdfile_t *xdfo,long flags) { 816struct xdlgroup g, go; 817long earliest_end, end_matching_other; 818long groupsize; 819 820group_init(xdf, &g); 821group_init(xdfo, &go); 822 823while(1) { 824/* If the group is empty in the to-be-compacted file, skip it: */ 825if(g.end == g.start) 826goto next; 827 828/* 829 * Now shift the change up and then down as far as possible in 830 * each direction. If it bumps into any other changes, merge them. 831 */ 832do{ 833 groupsize = g.end - g.start; 834 835/* 836 * Keep track of the last "end" index that causes this 837 * group to align with a group of changed lines in the 838 * other file. -1 indicates that we haven't found such 839 * a match yet: 840 */ 841 end_matching_other = -1; 842 843/* Shift the group backward as much as possible: */ 844while(!group_slide_up(xdf, &g, flags)) 845if(group_previous(xdfo, &go)) 846xdl_bug("group sync broken sliding up"); 847 848/* 849 * This is this highest that this group can be shifted. 850 * Record its end index: 851 */ 852 earliest_end = g.end; 853 854if(go.end > go.start) 855 end_matching_other = g.end; 856 857/* Now shift the group forward as far as possible: */ 858while(1) { 859if(group_slide_down(xdf, &g, flags)) 860break; 861if(group_next(xdfo, &go)) 862xdl_bug("group sync broken sliding down"); 863 864if(go.end > go.start) 865 end_matching_other = g.end; 866} 867}while(groupsize != g.end - g.start); 868 869/* 870 * If the group can be shifted, then we can possibly use this 871 * freedom to produce a more intuitive diff. 872 * 873 * The group is currently shifted as far down as possible, so the 874 * heuristics below only have to handle upwards shifts. 875 */ 876 877if(g.end == earliest_end) { 878/* no shifting was possible */ 879}else if(end_matching_other != -1) { 880/* 881 * Move the possibly merged group of changes back to line 882 * up with the last group of changes from the other file 883 * that it can align with. 884 */ 885while(go.end == go.start) { 886if(group_slide_up(xdf, &g, flags)) 887xdl_bug("match disappeared"); 888if(group_previous(xdfo, &go)) 889xdl_bug("group sync broken sliding to match"); 890} 891}else if(flags & XDF_INDENT_HEURISTIC) { 892/* 893 * Indent heuristic: a group of pure add/delete lines 894 * implies two splits, one between the end of the "before" 895 * context and the start of the group, and another between 896 * the end of the group and the beginning of the "after" 897 * context. Some splits are aesthetically better and some 898 * are worse. We compute a badness "score" for each split, 899 * and add the scores for the two splits to define a 900 * "score" for each position that the group can be shifted 901 * to. Then we pick the shift with the lowest score. 902 */ 903long shift, best_shift = -1; 904struct split_score best_score; 905 906for(shift = earliest_end; shift <= g.end; shift++) { 907struct split_measurement m; 908struct split_score score = {0,0}; 909 910measure_split(xdf, shift, &m); 911score_add_split(&m, &score); 912measure_split(xdf, shift - groupsize, &m); 913score_add_split(&m, &score); 914if(best_shift == -1|| 915score_cmp(&score, &best_score) <=0) { 916 best_score.effective_indent = score.effective_indent; 917 best_score.penalty = score.penalty; 918 best_shift = shift; 919} 920} 921 922while(g.end > best_shift) { 923if(group_slide_up(xdf, &g, flags)) 924xdl_bug("best shift unreached"); 925if(group_previous(xdfo, &go)) 926xdl_bug("group sync broken sliding to blank line"); 927} 928} 929 930 next: 931/* Move past the just-processed group: */ 932if(group_next(xdf, &g)) 933break; 934if(group_next(xdfo, &go)) 935xdl_bug("group sync broken moving to next group"); 936} 937 938if(!group_next(xdfo, &go)) 939xdl_bug("group sync broken at end of file"); 940 941return0; 942} 943 944 945intxdl_build_script(xdfenv_t *xe, xdchange_t **xscr) { 946 xdchange_t *cscr = NULL, *xch; 947char*rchg1 = xe->xdf1.rchg, *rchg2 = xe->xdf2.rchg; 948long i1, i2, l1, l2; 949 950/* 951 * Trivial. Collects "groups" of changes and creates an edit script. 952 */ 953for(i1 = xe->xdf1.nrec, i2 = xe->xdf2.nrec; i1 >=0|| i2 >=0; i1--, i2--) 954if(rchg1[i1 -1] || rchg2[i2 -1]) { 955for(l1 = i1; rchg1[i1 -1]; i1--); 956for(l2 = i2; rchg2[i2 -1]; i2--); 957 958if(!(xch =xdl_add_change(cscr, i1, i2, l1 - i1, l2 - i2))) { 959xdl_free_script(cscr); 960return-1; 961} 962 cscr = xch; 963} 964 965*xscr = cscr; 966 967return0; 968} 969 970 971voidxdl_free_script(xdchange_t *xscr) { 972 xdchange_t *xch; 973 974while((xch = xscr) != NULL) { 975 xscr = xscr->next; 976xdl_free(xch); 977} 978} 979 980static intxdl_call_hunk_func(xdfenv_t *xe, xdchange_t *xscr, xdemitcb_t *ecb, 981 xdemitconf_t const*xecfg) 982{ 983 xdchange_t *xch, *xche; 984 985for(xch = xscr; xch; xch = xche->next) { 986 xche =xdl_get_hunk(&xch, xecfg); 987if(!xch) 988break; 989if(xecfg->hunk_func(xch->i1, xche->i1 + xche->chg1 - xch->i1, 990 xch->i2, xche->i2 + xche->chg2 - xch->i2, 991 ecb->priv) <0) 992return-1; 993} 994return0; 995} 996 997static voidxdl_mark_ignorable(xdchange_t *xscr, xdfenv_t *xe,long flags) 998{ 999 xdchange_t *xch;10001001for(xch = xscr; xch; xch = xch->next) {1002int ignore =1;1003 xrecord_t **rec;1004long i;10051006 rec = &xe->xdf1.recs[xch->i1];1007for(i =0; i < xch->chg1 && ignore; i++)1008 ignore =xdl_blankline(rec[i]->ptr, rec[i]->size, flags);10091010 rec = &xe->xdf2.recs[xch->i2];1011for(i =0; i < xch->chg2 && ignore; i++)1012 ignore =xdl_blankline(rec[i]->ptr, rec[i]->size, flags);10131014 xch->ignore = ignore;1015}1016}10171018intxdl_diff(mmfile_t *mf1, mmfile_t *mf2, xpparam_t const*xpp,1019 xdemitconf_t const*xecfg, xdemitcb_t *ecb) {1020 xdchange_t *xscr;1021 xdfenv_t xe;1022 emit_func_t ef = xecfg->hunk_func ? xdl_call_hunk_func : xdl_emit_diff;10231024if(xdl_do_diff(mf1, mf2, xpp, &xe) <0) {10251026return-1;1027}1028if(xdl_change_compact(&xe.xdf1, &xe.xdf2, xpp->flags) <0||1029xdl_change_compact(&xe.xdf2, &xe.xdf1, xpp->flags) <0||1030xdl_build_script(&xe, &xscr) <0) {10311032xdl_free_env(&xe);1033return-1;1034}1035if(xscr) {1036if(xpp->flags & XDF_IGNORE_BLANK_LINES)1037xdl_mark_ignorable(xscr, &xe, xpp->flags);10381039if(ef(&xe, xscr, ecb, xecfg) <0) {10401041xdl_free_script(xscr);1042xdl_free_env(&xe);1043return-1;1044}1045xdl_free_script(xscr);1046}1047xdl_free_env(&xe);10481049return0;1050}