1/* 2 * Copyright (c) 2005, Jon Seymour 3 * 4 * For more information about epoch theory on which this module is based, 5 * refer to http://blackcubes.dyndns.org/epoch/. That web page defines 6 * terms such as "epoch" and "minimal, non-linear epoch" and provides rationales 7 * for some of the algorithms used here. 8 * 9 */ 10#include <stdlib.h> 11 12/* Provides arbitrary precision integers required to accurately represent 13 * fractional mass: */ 14#include <openssl/bn.h> 15 16#include"cache.h" 17#include"commit.h" 18#include"epoch.h" 19 20struct fraction { 21 BIGNUM numerator; 22 BIGNUM denominator; 23}; 24 25#define HAS_EXACTLY_ONE_PARENT(n) ((n)->parents && !(n)->parents->next) 26 27static BN_CTX *context = NULL; 28static struct fraction *one = NULL; 29static struct fraction *zero = NULL; 30 31static BN_CTX *get_BN_CTX() 32{ 33if(!context) { 34 context =BN_CTX_new(); 35} 36return context; 37} 38 39static struct fraction *new_zero() 40{ 41struct fraction *result =xmalloc(sizeof(*result)); 42BN_init(&result->numerator); 43BN_init(&result->denominator); 44BN_zero(&result->numerator); 45BN_one(&result->denominator); 46return result; 47} 48 49static voidclear_fraction(struct fraction *fraction) 50{ 51BN_clear(&fraction->numerator); 52BN_clear(&fraction->denominator); 53} 54 55static struct fraction *divide(struct fraction *result,struct fraction *fraction,int divisor) 56{ 57 BIGNUM bn_divisor; 58 59BN_init(&bn_divisor); 60BN_set_word(&bn_divisor, divisor); 61 62BN_copy(&result->numerator, &fraction->numerator); 63BN_mul(&result->denominator, &fraction->denominator, &bn_divisor,get_BN_CTX()); 64 65BN_clear(&bn_divisor); 66return result; 67} 68 69static struct fraction *init_fraction(struct fraction *fraction) 70{ 71BN_init(&fraction->numerator); 72BN_init(&fraction->denominator); 73BN_zero(&fraction->numerator); 74BN_one(&fraction->denominator); 75return fraction; 76} 77 78static struct fraction *get_one() 79{ 80if(!one) { 81 one =new_zero(); 82BN_one(&one->numerator); 83} 84return one; 85} 86 87static struct fraction *get_zero() 88{ 89if(!zero) { 90 zero =new_zero(); 91} 92return zero; 93} 94 95static struct fraction *copy(struct fraction *to,struct fraction *from) 96{ 97BN_copy(&to->numerator, &from->numerator); 98BN_copy(&to->denominator, &from->denominator); 99return to; 100} 101 102static struct fraction *add(struct fraction *result,struct fraction *left,struct fraction *right) 103{ 104 BIGNUM a, b, gcd; 105 106BN_init(&a); 107BN_init(&b); 108BN_init(&gcd); 109 110BN_mul(&a, &left->numerator, &right->denominator,get_BN_CTX()); 111BN_mul(&b, &left->denominator, &right->numerator,get_BN_CTX()); 112BN_mul(&result->denominator, &left->denominator, &right->denominator,get_BN_CTX()); 113BN_add(&result->numerator, &a, &b); 114 115BN_gcd(&gcd, &result->denominator, &result->numerator,get_BN_CTX()); 116BN_div(&result->denominator, NULL, &result->denominator, &gcd,get_BN_CTX()); 117BN_div(&result->numerator, NULL, &result->numerator, &gcd,get_BN_CTX()); 118 119BN_clear(&a); 120BN_clear(&b); 121BN_clear(&gcd); 122 123return result; 124} 125 126static intcompare(struct fraction *left,struct fraction *right) 127{ 128 BIGNUM a, b; 129int result; 130 131BN_init(&a); 132BN_init(&b); 133 134BN_mul(&a, &left->numerator, &right->denominator,get_BN_CTX()); 135BN_mul(&b, &left->denominator, &right->numerator,get_BN_CTX()); 136 137 result =BN_cmp(&a, &b); 138 139BN_clear(&a); 140BN_clear(&b); 141 142return result; 143} 144 145struct mass_counter { 146struct fraction seen; 147struct fraction pending; 148}; 149 150static struct mass_counter *new_mass_counter(struct commit *commit,struct fraction *pending) 151{ 152struct mass_counter *mass_counter =xmalloc(sizeof(*mass_counter)); 153memset(mass_counter,0,sizeof(*mass_counter)); 154 155init_fraction(&mass_counter->seen); 156init_fraction(&mass_counter->pending); 157 158copy(&mass_counter->pending, pending); 159copy(&mass_counter->seen,get_zero()); 160 161if(commit->object.util) { 162die("multiple attempts to initialize mass counter for%s", 163sha1_to_hex(commit->object.sha1)); 164} 165 166 commit->object.util = mass_counter; 167 168return mass_counter; 169} 170 171static voidfree_mass_counter(struct mass_counter *counter) 172{ 173clear_fraction(&counter->seen); 174clear_fraction(&counter->pending); 175free(counter); 176} 177 178/* 179 * Finds the base commit of a list of commits. 180 * 181 * One property of the commit being searched for is that every commit reachable 182 * from the base commit is reachable from the commits in the starting list only 183 * via paths that include the base commit. 184 * 185 * This algorithm uses a conservation of mass approach to find the base commit. 186 * 187 * We start by injecting one unit of mass into the graph at each 188 * of the commits in the starting list. Injecting mass into a commit 189 * is achieved by adding to its pending mass counter and, if it is not already 190 * enqueued, enqueuing the commit in a list of pending commits, in latest 191 * commit date first order. 192 * 193 * The algorithm then preceeds to visit each commit in the pending queue. 194 * Upon each visit, the pending mass is added to the mass already seen for that 195 * commit and then divided into N equal portions, where N is the number of 196 * parents of the commit being visited. The divided portions are then injected 197 * into each of the parents. 198 * 199 * The algorithm continues until we discover a commit which has seen all the 200 * mass originally injected or until we run out of things to do. 201 * 202 * If we find a commit that has seen all the original mass, we have found 203 * the common base of all the commits in the starting list. 204 * 205 * The algorithm does _not_ depend on accurate timestamps for correct operation. 206 * However, reasonably sane (e.g. non-random) timestamps are required in order 207 * to prevent an exponential performance characteristic. The occasional 208 * timestamp inaccuracy will not dramatically affect performance but may 209 * result in more nodes being processed than strictly necessary. 210 * 211 * This procedure sets *boundary to the address of the base commit. It returns 212 * non-zero if, and only if, there was a problem parsing one of the 213 * commits discovered during the traversal. 214 */ 215static intfind_base_for_list(struct commit_list *list,struct commit **boundary) 216{ 217int ret =0; 218struct commit_list *cleaner = NULL; 219struct commit_list *pending = NULL; 220struct fraction injected; 221init_fraction(&injected); 222*boundary = NULL; 223 224for(; list; list = list->next) { 225struct commit *item = list->item; 226 227if(item->object.util) { 228die("%s:%d:%s: logic error: this should not have happened - commit%s", 229 __FILE__, __LINE__, __FUNCTION__, 230sha1_to_hex(item->object.sha1)); 231} 232 233new_mass_counter(list->item,get_one()); 234add(&injected, &injected,get_one()); 235 236commit_list_insert(list->item, &cleaner); 237commit_list_insert(list->item, &pending); 238} 239 240while(!*boundary && pending && !ret) { 241struct commit *latest =pop_commit(&pending); 242struct mass_counter *latest_node = (struct mass_counter *) latest->object.util; 243int num_parents; 244 245if((ret =parse_commit(latest))) 246continue; 247add(&latest_node->seen, &latest_node->seen, &latest_node->pending); 248 249 num_parents =count_parents(latest); 250if(num_parents) { 251struct fraction distribution; 252struct commit_list *parents; 253 254divide(init_fraction(&distribution), &latest_node->pending, num_parents); 255 256for(parents = latest->parents; parents; parents = parents->next) { 257struct commit *parent = parents->item; 258struct mass_counter *parent_node = (struct mass_counter *) parent->object.util; 259 260if(!parent_node) { 261 parent_node =new_mass_counter(parent, &distribution); 262insert_by_date(&pending, parent); 263commit_list_insert(parent, &cleaner); 264}else{ 265if(!compare(&parent_node->pending,get_zero())) 266insert_by_date(&pending, parent); 267add(&parent_node->pending, &parent_node->pending, &distribution); 268} 269} 270 271clear_fraction(&distribution); 272} 273 274if(!compare(&latest_node->seen, &injected)) 275*boundary = latest; 276copy(&latest_node->pending,get_zero()); 277} 278 279while(cleaner) { 280struct commit *next =pop_commit(&cleaner); 281free_mass_counter((struct mass_counter *) next->object.util); 282 next->object.util = NULL; 283} 284 285if(pending) 286free_commit_list(pending); 287 288clear_fraction(&injected); 289return ret; 290} 291 292 293/* 294 * Finds the base of an minimal, non-linear epoch, headed at head, by 295 * applying the find_base_for_list to a list consisting of the parents 296 */ 297static intfind_base(struct commit *head,struct commit **boundary) 298{ 299int ret =0; 300struct commit_list *pending = NULL; 301struct commit_list *next; 302 303for(next = head->parents; next; next = next->next) { 304commit_list_insert(next->item, &pending); 305} 306 ret =find_base_for_list(pending, boundary); 307free_commit_list(pending); 308 309return ret; 310} 311 312/* 313 * This procedure traverses to the boundary of the first epoch in the epoch 314 * sequence of the epoch headed at head_of_epoch. This is either the end of 315 * the maximal linear epoch or the base of a minimal non-linear epoch. 316 * 317 * The queue of pending nodes is sorted in reverse date order and each node 318 * is currently in the queue at most once. 319 */ 320static intfind_next_epoch_boundary(struct commit *head_of_epoch,struct commit **boundary) 321{ 322int ret; 323struct commit *item = head_of_epoch; 324 325 ret =parse_commit(item); 326if(ret) 327return ret; 328 329if(HAS_EXACTLY_ONE_PARENT(item)) { 330/* 331 * We are at the start of a maximimal linear epoch. 332 * Traverse to the end. 333 */ 334while(HAS_EXACTLY_ONE_PARENT(item) && !ret) { 335 item = item->parents->item; 336 ret =parse_commit(item); 337} 338*boundary = item; 339 340}else{ 341/* 342 * Otherwise, we are at the start of a minimal, non-linear 343 * epoch - find the common base of all parents. 344 */ 345 ret =find_base(item, boundary); 346} 347 348return ret; 349} 350 351/* 352 * Returns non-zero if parent is known to be a parent of child. 353 */ 354static intis_parent_of(struct commit *parent,struct commit *child) 355{ 356struct commit_list *parents; 357for(parents = child->parents; parents; parents = parents->next) { 358if(!memcmp(parent->object.sha1, parents->item->object.sha1, 359sizeof(parents->item->object.sha1))) 360return1; 361} 362return0; 363} 364 365/* 366 * Pushes an item onto the merge order stack. If the top of the stack is 367 * marked as being a possible "break", we check to see whether it actually 368 * is a break. 369 */ 370static voidpush_onto_merge_order_stack(struct commit_list **stack,struct commit *item) 371{ 372struct commit_list *top = *stack; 373if(top && (top->item->object.flags & DISCONTINUITY)) { 374if(is_parent_of(top->item, item)) { 375 top->item->object.flags &= ~DISCONTINUITY; 376} 377} 378commit_list_insert(item, stack); 379} 380 381/* 382 * Marks all interesting, visited commits reachable from this commit 383 * as uninteresting. We stop recursing when we reach the epoch boundary, 384 * an unvisited node or a node that has already been marking uninteresting. 385 * 386 * This doesn't actually mark all ancestors between the start node and the 387 * epoch boundary uninteresting, but does ensure that they will eventually 388 * be marked uninteresting when the main sort_first_epoch() traversal 389 * eventually reaches them. 390 */ 391static voidmark_ancestors_uninteresting(struct commit *commit) 392{ 393unsigned int flags = commit->object.flags; 394int visited = flags & VISITED; 395int boundary = flags & BOUNDARY; 396int uninteresting = flags & UNINTERESTING; 397struct commit_list *next; 398 399 commit->object.flags |= UNINTERESTING; 400 401/* 402 * We only need to recurse if 403 * we are not on the boundary and 404 * we have not already been marked uninteresting and 405 * we have already been visited. 406 * 407 * The main sort_first_epoch traverse will mark unreachable 408 * all uninteresting, unvisited parents as they are visited 409 * so there is no need to duplicate that traversal here. 410 * 411 * Similarly, if we are already marked uninteresting 412 * then either all ancestors have already been marked 413 * uninteresting or will be once the sort_first_epoch 414 * traverse reaches them. 415 */ 416 417if(uninteresting || boundary || !visited) 418return; 419 420for(next = commit->parents; next; next = next->next) 421mark_ancestors_uninteresting(next->item); 422} 423 424/* 425 * Sorts the nodes of the first epoch of the epoch sequence of the epoch headed at head 426 * into merge order. 427 */ 428static voidsort_first_epoch(struct commit *head,struct commit_list **stack) 429{ 430struct commit_list *parents; 431struct commit_list *reversed_parents = NULL; 432 433 head->object.flags |= VISITED; 434 435/* 436 * parse_commit() builds the parent list in reverse order with respect 437 * to the order of the git-commit-tree arguments. So we need to reverse 438 * this list to output the oldest (or most "local") commits last. 439 */ 440for(parents = head->parents; parents; parents = parents->next) 441commit_list_insert(parents->item, &reversed_parents); 442 443/* 444 * TODO: By sorting the parents in a different order, we can alter the 445 * merge order to show contemporaneous changes in parallel branches 446 * occurring after "local" changes. This is useful for a developer 447 * when a developer wants to see all changes that were incorporated 448 * into the same merge as her own changes occur after her own 449 * changes. 450 */ 451 452while(reversed_parents) { 453struct commit *parent =pop_commit(&reversed_parents); 454 455if(head->object.flags & UNINTERESTING) { 456/* 457 * Propagates the uninteresting bit to all parents. 458 * if we have already visited this parent, then 459 * the uninteresting bit will be propagated to each 460 * reachable commit that is still not marked 461 * uninteresting and won't otherwise be reached. 462 */ 463mark_ancestors_uninteresting(parent); 464} 465 466if(!(parent->object.flags & VISITED)) { 467if(parent->object.flags & BOUNDARY) { 468if(*stack) { 469die("something else is on the stack -%s", 470sha1_to_hex((*stack)->item->object.sha1)); 471} 472push_onto_merge_order_stack(stack, parent); 473 parent->object.flags |= VISITED; 474 475}else{ 476sort_first_epoch(parent, stack); 477if(reversed_parents) { 478/* 479 * This indicates a possible 480 * discontinuity it may not be be 481 * actual discontinuity if the head 482 * of parent N happens to be the tail 483 * of parent N+1. 484 * 485 * The next push onto the stack will 486 * resolve the question. 487 */ 488(*stack)->item->object.flags |= DISCONTINUITY; 489} 490} 491} 492} 493 494push_onto_merge_order_stack(stack, head); 495} 496 497/* 498 * Emit the contents of the stack. 499 * 500 * The stack is freed and replaced by NULL. 501 * 502 * Sets the return value to STOP if no further output should be generated. 503 */ 504static intemit_stack(struct commit_list **stack, emitter_func emitter) 505{ 506unsigned int seen =0; 507int action = CONTINUE; 508 509while(*stack && (action != STOP)) { 510struct commit *next =pop_commit(stack); 511 seen |= next->object.flags; 512if(*stack) 513 action = (*emitter) (next); 514} 515 516if(*stack) { 517free_commit_list(*stack); 518*stack = NULL; 519} 520 521return(action == STOP || (seen & UNINTERESTING)) ? STOP : CONTINUE; 522} 523 524/* 525 * Sorts an arbitrary epoch into merge order by sorting each epoch 526 * of its epoch sequence into order. 527 * 528 * Note: this algorithm currently leaves traces of its execution in the 529 * object flags of nodes it discovers. This should probably be fixed. 530 */ 531static intsort_in_merge_order(struct commit *head_of_epoch, emitter_func emitter) 532{ 533struct commit *next = head_of_epoch; 534int ret =0; 535int action = CONTINUE; 536 537 ret =parse_commit(head_of_epoch); 538 539while(next && next->parents && !ret && (action != STOP)) { 540struct commit *base = NULL; 541 542 ret =find_next_epoch_boundary(next, &base); 543if(ret) 544return ret; 545 next->object.flags |= BOUNDARY; 546if(base) 547 base->object.flags |= BOUNDARY; 548 549if(HAS_EXACTLY_ONE_PARENT(next)) { 550while(HAS_EXACTLY_ONE_PARENT(next) 551&& (action != STOP) 552&& !ret) { 553if(next->object.flags & UNINTERESTING) { 554 action = STOP; 555}else{ 556 action = (*emitter) (next); 557} 558if(action != STOP) { 559 next = next->parents->item; 560 ret =parse_commit(next); 561} 562} 563 564}else{ 565struct commit_list *stack = NULL; 566sort_first_epoch(next, &stack); 567 action =emit_stack(&stack, emitter); 568 next = base; 569} 570} 571 572if(next && (action != STOP) && !ret) { 573(*emitter) (next); 574} 575 576return ret; 577} 578 579/* 580 * Sorts the nodes reachable from a starting list in merge order, we 581 * first find the base for the starting list and then sort all nodes 582 * in this subgraph using the sort_first_epoch algorithm. Once we have 583 * reached the base we can continue sorting using sort_in_merge_order. 584 */ 585intsort_list_in_merge_order(struct commit_list *list, emitter_func emitter) 586{ 587struct commit_list *stack = NULL; 588struct commit *base; 589int ret =0; 590int action = CONTINUE; 591struct commit_list *reversed = NULL; 592 593for(; list; list = list->next) { 594struct commit *next = list->item; 595 596if(!(next->object.flags & UNINTERESTING)) { 597if(next->object.flags & DUPCHECK) { 598fprintf(stderr,"%s: duplicate commit%signored\n", 599 __FUNCTION__,sha1_to_hex(next->object.sha1)); 600}else{ 601 next->object.flags |= DUPCHECK; 602commit_list_insert(list->item, &reversed); 603} 604} 605} 606 607if(!reversed->next) { 608/* 609 * If there is only one element in the list, we can sort it 610 * using sort_in_merge_order. 611 */ 612 base = reversed->item; 613}else{ 614/* 615 * Otherwise, we search for the base of the list. 616 */ 617 ret =find_base_for_list(reversed, &base); 618if(ret) 619return ret; 620if(base) 621 base->object.flags |= BOUNDARY; 622 623while(reversed) { 624sort_first_epoch(pop_commit(&reversed), &stack); 625if(reversed) { 626/* 627 * If we have more commits to push, then the 628 * first push for the next parent may (or may 629 * not) represent a discontinuity with respect 630 * to the parent currently on the top of 631 * the stack. 632 * 633 * Mark it for checking here, and check it 634 * with the next push. See sort_first_epoch() 635 * for more details. 636 */ 637 stack->item->object.flags |= DISCONTINUITY; 638} 639} 640 641 action =emit_stack(&stack, emitter); 642} 643 644if(base && (action != STOP)) { 645 ret =sort_in_merge_order(base, emitter); 646} 647 648return ret; 649}