refs / files-backend.con commit refs.c: flatten get_ref_store() a bit (126c9e0)
   1#include "../cache.h"
   2#include "../refs.h"
   3#include "refs-internal.h"
   4#include "../iterator.h"
   5#include "../dir-iterator.h"
   6#include "../lockfile.h"
   7#include "../object.h"
   8#include "../dir.h"
   9
  10struct ref_lock {
  11        char *ref_name;
  12        struct lock_file *lk;
  13        struct object_id old_oid;
  14};
  15
  16struct ref_entry;
  17
  18/*
  19 * Information used (along with the information in ref_entry) to
  20 * describe a single cached reference.  This data structure only
  21 * occurs embedded in a union in struct ref_entry, and only when
  22 * (ref_entry->flag & REF_DIR) is zero.
  23 */
  24struct ref_value {
  25        /*
  26         * The name of the object to which this reference resolves
  27         * (which may be a tag object).  If REF_ISBROKEN, this is
  28         * null.  If REF_ISSYMREF, then this is the name of the object
  29         * referred to by the last reference in the symlink chain.
  30         */
  31        struct object_id oid;
  32
  33        /*
  34         * If REF_KNOWS_PEELED, then this field holds the peeled value
  35         * of this reference, or null if the reference is known not to
  36         * be peelable.  See the documentation for peel_ref() for an
  37         * exact definition of "peelable".
  38         */
  39        struct object_id peeled;
  40};
  41
  42struct files_ref_store;
  43
  44/*
  45 * Information used (along with the information in ref_entry) to
  46 * describe a level in the hierarchy of references.  This data
  47 * structure only occurs embedded in a union in struct ref_entry, and
  48 * only when (ref_entry.flag & REF_DIR) is set.  In that case,
  49 * (ref_entry.flag & REF_INCOMPLETE) determines whether the references
  50 * in the directory have already been read:
  51 *
  52 *     (ref_entry.flag & REF_INCOMPLETE) unset -- a directory of loose
  53 *         or packed references, already read.
  54 *
  55 *     (ref_entry.flag & REF_INCOMPLETE) set -- a directory of loose
  56 *         references that hasn't been read yet (nor has any of its
  57 *         subdirectories).
  58 *
  59 * Entries within a directory are stored within a growable array of
  60 * pointers to ref_entries (entries, nr, alloc).  Entries 0 <= i <
  61 * sorted are sorted by their component name in strcmp() order and the
  62 * remaining entries are unsorted.
  63 *
  64 * Loose references are read lazily, one directory at a time.  When a
  65 * directory of loose references is read, then all of the references
  66 * in that directory are stored, and REF_INCOMPLETE stubs are created
  67 * for any subdirectories, but the subdirectories themselves are not
  68 * read.  The reading is triggered by get_ref_dir().
  69 */
  70struct ref_dir {
  71        int nr, alloc;
  72
  73        /*
  74         * Entries with index 0 <= i < sorted are sorted by name.  New
  75         * entries are appended to the list unsorted, and are sorted
  76         * only when required; thus we avoid the need to sort the list
  77         * after the addition of every reference.
  78         */
  79        int sorted;
  80
  81        /* A pointer to the files_ref_store that contains this ref_dir. */
  82        struct files_ref_store *ref_store;
  83
  84        struct ref_entry **entries;
  85};
  86
  87/*
  88 * Bit values for ref_entry::flag.  REF_ISSYMREF=0x01,
  89 * REF_ISPACKED=0x02, REF_ISBROKEN=0x04 and REF_BAD_NAME=0x08 are
  90 * public values; see refs.h.
  91 */
  92
  93/*
  94 * The field ref_entry->u.value.peeled of this value entry contains
  95 * the correct peeled value for the reference, which might be
  96 * null_sha1 if the reference is not a tag or if it is broken.
  97 */
  98#define REF_KNOWS_PEELED 0x10
  99
 100/* ref_entry represents a directory of references */
 101#define REF_DIR 0x20
 102
 103/*
 104 * Entry has not yet been read from disk (used only for REF_DIR
 105 * entries representing loose references)
 106 */
 107#define REF_INCOMPLETE 0x40
 108
 109/*
 110 * A ref_entry represents either a reference or a "subdirectory" of
 111 * references.
 112 *
 113 * Each directory in the reference namespace is represented by a
 114 * ref_entry with (flags & REF_DIR) set and containing a subdir member
 115 * that holds the entries in that directory that have been read so
 116 * far.  If (flags & REF_INCOMPLETE) is set, then the directory and
 117 * its subdirectories haven't been read yet.  REF_INCOMPLETE is only
 118 * used for loose reference directories.
 119 *
 120 * References are represented by a ref_entry with (flags & REF_DIR)
 121 * unset and a value member that describes the reference's value.  The
 122 * flag member is at the ref_entry level, but it is also needed to
 123 * interpret the contents of the value field (in other words, a
 124 * ref_value object is not very much use without the enclosing
 125 * ref_entry).
 126 *
 127 * Reference names cannot end with slash and directories' names are
 128 * always stored with a trailing slash (except for the top-level
 129 * directory, which is always denoted by "").  This has two nice
 130 * consequences: (1) when the entries in each subdir are sorted
 131 * lexicographically by name (as they usually are), the references in
 132 * a whole tree can be generated in lexicographic order by traversing
 133 * the tree in left-to-right, depth-first order; (2) the names of
 134 * references and subdirectories cannot conflict, and therefore the
 135 * presence of an empty subdirectory does not block the creation of a
 136 * similarly-named reference.  (The fact that reference names with the
 137 * same leading components can conflict *with each other* is a
 138 * separate issue that is regulated by verify_refname_available().)
 139 *
 140 * Please note that the name field contains the fully-qualified
 141 * reference (or subdirectory) name.  Space could be saved by only
 142 * storing the relative names.  But that would require the full names
 143 * to be generated on the fly when iterating in do_for_each_ref(), and
 144 * would break callback functions, who have always been able to assume
 145 * that the name strings that they are passed will not be freed during
 146 * the iteration.
 147 */
 148struct ref_entry {
 149        unsigned char flag; /* ISSYMREF? ISPACKED? */
 150        union {
 151                struct ref_value value; /* if not (flags&REF_DIR) */
 152                struct ref_dir subdir; /* if (flags&REF_DIR) */
 153        } u;
 154        /*
 155         * The full name of the reference (e.g., "refs/heads/master")
 156         * or the full name of the directory with a trailing slash
 157         * (e.g., "refs/heads/"):
 158         */
 159        char name[FLEX_ARRAY];
 160};
 161
 162static void read_loose_refs(const char *dirname, struct ref_dir *dir);
 163static int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len);
 164static struct ref_entry *create_dir_entry(struct files_ref_store *ref_store,
 165                                          const char *dirname, size_t len,
 166                                          int incomplete);
 167static void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry);
 168static int files_log_ref_write(struct files_ref_store *refs,
 169                               const char *refname, const unsigned char *old_sha1,
 170                               const unsigned char *new_sha1, const char *msg,
 171                               int flags, struct strbuf *err);
 172
 173static struct ref_dir *get_ref_dir(struct ref_entry *entry)
 174{
 175        struct ref_dir *dir;
 176        assert(entry->flag & REF_DIR);
 177        dir = &entry->u.subdir;
 178        if (entry->flag & REF_INCOMPLETE) {
 179                read_loose_refs(entry->name, dir);
 180
 181                /*
 182                 * Manually add refs/bisect, which, being
 183                 * per-worktree, might not appear in the directory
 184                 * listing for refs/ in the main repo.
 185                 */
 186                if (!strcmp(entry->name, "refs/")) {
 187                        int pos = search_ref_dir(dir, "refs/bisect/", 12);
 188                        if (pos < 0) {
 189                                struct ref_entry *child_entry;
 190                                child_entry = create_dir_entry(dir->ref_store,
 191                                                               "refs/bisect/",
 192                                                               12, 1);
 193                                add_entry_to_dir(dir, child_entry);
 194                                read_loose_refs("refs/bisect",
 195                                                &child_entry->u.subdir);
 196                        }
 197                }
 198                entry->flag &= ~REF_INCOMPLETE;
 199        }
 200        return dir;
 201}
 202
 203static struct ref_entry *create_ref_entry(const char *refname,
 204                                          const unsigned char *sha1, int flag,
 205                                          int check_name)
 206{
 207        struct ref_entry *ref;
 208
 209        if (check_name &&
 210            check_refname_format(refname, REFNAME_ALLOW_ONELEVEL))
 211                die("Reference has invalid format: '%s'", refname);
 212        FLEX_ALLOC_STR(ref, name, refname);
 213        hashcpy(ref->u.value.oid.hash, sha1);
 214        oidclr(&ref->u.value.peeled);
 215        ref->flag = flag;
 216        return ref;
 217}
 218
 219static void clear_ref_dir(struct ref_dir *dir);
 220
 221static void free_ref_entry(struct ref_entry *entry)
 222{
 223        if (entry->flag & REF_DIR) {
 224                /*
 225                 * Do not use get_ref_dir() here, as that might
 226                 * trigger the reading of loose refs.
 227                 */
 228                clear_ref_dir(&entry->u.subdir);
 229        }
 230        free(entry);
 231}
 232
 233/*
 234 * Add a ref_entry to the end of dir (unsorted).  Entry is always
 235 * stored directly in dir; no recursion into subdirectories is
 236 * done.
 237 */
 238static void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry)
 239{
 240        ALLOC_GROW(dir->entries, dir->nr + 1, dir->alloc);
 241        dir->entries[dir->nr++] = entry;
 242        /* optimize for the case that entries are added in order */
 243        if (dir->nr == 1 ||
 244            (dir->nr == dir->sorted + 1 &&
 245             strcmp(dir->entries[dir->nr - 2]->name,
 246                    dir->entries[dir->nr - 1]->name) < 0))
 247                dir->sorted = dir->nr;
 248}
 249
 250/*
 251 * Clear and free all entries in dir, recursively.
 252 */
 253static void clear_ref_dir(struct ref_dir *dir)
 254{
 255        int i;
 256        for (i = 0; i < dir->nr; i++)
 257                free_ref_entry(dir->entries[i]);
 258        free(dir->entries);
 259        dir->sorted = dir->nr = dir->alloc = 0;
 260        dir->entries = NULL;
 261}
 262
 263/*
 264 * Create a struct ref_entry object for the specified dirname.
 265 * dirname is the name of the directory with a trailing slash (e.g.,
 266 * "refs/heads/") or "" for the top-level directory.
 267 */
 268static struct ref_entry *create_dir_entry(struct files_ref_store *ref_store,
 269                                          const char *dirname, size_t len,
 270                                          int incomplete)
 271{
 272        struct ref_entry *direntry;
 273        FLEX_ALLOC_MEM(direntry, name, dirname, len);
 274        direntry->u.subdir.ref_store = ref_store;
 275        direntry->flag = REF_DIR | (incomplete ? REF_INCOMPLETE : 0);
 276        return direntry;
 277}
 278
 279static int ref_entry_cmp(const void *a, const void *b)
 280{
 281        struct ref_entry *one = *(struct ref_entry **)a;
 282        struct ref_entry *two = *(struct ref_entry **)b;
 283        return strcmp(one->name, two->name);
 284}
 285
 286static void sort_ref_dir(struct ref_dir *dir);
 287
 288struct string_slice {
 289        size_t len;
 290        const char *str;
 291};
 292
 293static int ref_entry_cmp_sslice(const void *key_, const void *ent_)
 294{
 295        const struct string_slice *key = key_;
 296        const struct ref_entry *ent = *(const struct ref_entry * const *)ent_;
 297        int cmp = strncmp(key->str, ent->name, key->len);
 298        if (cmp)
 299                return cmp;
 300        return '\0' - (unsigned char)ent->name[key->len];
 301}
 302
 303/*
 304 * Return the index of the entry with the given refname from the
 305 * ref_dir (non-recursively), sorting dir if necessary.  Return -1 if
 306 * no such entry is found.  dir must already be complete.
 307 */
 308static int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len)
 309{
 310        struct ref_entry **r;
 311        struct string_slice key;
 312
 313        if (refname == NULL || !dir->nr)
 314                return -1;
 315
 316        sort_ref_dir(dir);
 317        key.len = len;
 318        key.str = refname;
 319        r = bsearch(&key, dir->entries, dir->nr, sizeof(*dir->entries),
 320                    ref_entry_cmp_sslice);
 321
 322        if (r == NULL)
 323                return -1;
 324
 325        return r - dir->entries;
 326}
 327
 328/*
 329 * Search for a directory entry directly within dir (without
 330 * recursing).  Sort dir if necessary.  subdirname must be a directory
 331 * name (i.e., end in '/').  If mkdir is set, then create the
 332 * directory if it is missing; otherwise, return NULL if the desired
 333 * directory cannot be found.  dir must already be complete.
 334 */
 335static struct ref_dir *search_for_subdir(struct ref_dir *dir,
 336                                         const char *subdirname, size_t len,
 337                                         int mkdir)
 338{
 339        int entry_index = search_ref_dir(dir, subdirname, len);
 340        struct ref_entry *entry;
 341        if (entry_index == -1) {
 342                if (!mkdir)
 343                        return NULL;
 344                /*
 345                 * Since dir is complete, the absence of a subdir
 346                 * means that the subdir really doesn't exist;
 347                 * therefore, create an empty record for it but mark
 348                 * the record complete.
 349                 */
 350                entry = create_dir_entry(dir->ref_store, subdirname, len, 0);
 351                add_entry_to_dir(dir, entry);
 352        } else {
 353                entry = dir->entries[entry_index];
 354        }
 355        return get_ref_dir(entry);
 356}
 357
 358/*
 359 * If refname is a reference name, find the ref_dir within the dir
 360 * tree that should hold refname.  If refname is a directory name
 361 * (i.e., ends in '/'), then return that ref_dir itself.  dir must
 362 * represent the top-level directory and must already be complete.
 363 * Sort ref_dirs and recurse into subdirectories as necessary.  If
 364 * mkdir is set, then create any missing directories; otherwise,
 365 * return NULL if the desired directory cannot be found.
 366 */
 367static struct ref_dir *find_containing_dir(struct ref_dir *dir,
 368                                           const char *refname, int mkdir)
 369{
 370        const char *slash;
 371        for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
 372                size_t dirnamelen = slash - refname + 1;
 373                struct ref_dir *subdir;
 374                subdir = search_for_subdir(dir, refname, dirnamelen, mkdir);
 375                if (!subdir) {
 376                        dir = NULL;
 377                        break;
 378                }
 379                dir = subdir;
 380        }
 381
 382        return dir;
 383}
 384
 385/*
 386 * Find the value entry with the given name in dir, sorting ref_dirs
 387 * and recursing into subdirectories as necessary.  If the name is not
 388 * found or it corresponds to a directory entry, return NULL.
 389 */
 390static struct ref_entry *find_ref(struct ref_dir *dir, const char *refname)
 391{
 392        int entry_index;
 393        struct ref_entry *entry;
 394        dir = find_containing_dir(dir, refname, 0);
 395        if (!dir)
 396                return NULL;
 397        entry_index = search_ref_dir(dir, refname, strlen(refname));
 398        if (entry_index == -1)
 399                return NULL;
 400        entry = dir->entries[entry_index];
 401        return (entry->flag & REF_DIR) ? NULL : entry;
 402}
 403
 404/*
 405 * Remove the entry with the given name from dir, recursing into
 406 * subdirectories as necessary.  If refname is the name of a directory
 407 * (i.e., ends with '/'), then remove the directory and its contents.
 408 * If the removal was successful, return the number of entries
 409 * remaining in the directory entry that contained the deleted entry.
 410 * If the name was not found, return -1.  Please note that this
 411 * function only deletes the entry from the cache; it does not delete
 412 * it from the filesystem or ensure that other cache entries (which
 413 * might be symbolic references to the removed entry) are updated.
 414 * Nor does it remove any containing dir entries that might be made
 415 * empty by the removal.  dir must represent the top-level directory
 416 * and must already be complete.
 417 */
 418static int remove_entry(struct ref_dir *dir, const char *refname)
 419{
 420        int refname_len = strlen(refname);
 421        int entry_index;
 422        struct ref_entry *entry;
 423        int is_dir = refname[refname_len - 1] == '/';
 424        if (is_dir) {
 425                /*
 426                 * refname represents a reference directory.  Remove
 427                 * the trailing slash; otherwise we will get the
 428                 * directory *representing* refname rather than the
 429                 * one *containing* it.
 430                 */
 431                char *dirname = xmemdupz(refname, refname_len - 1);
 432                dir = find_containing_dir(dir, dirname, 0);
 433                free(dirname);
 434        } else {
 435                dir = find_containing_dir(dir, refname, 0);
 436        }
 437        if (!dir)
 438                return -1;
 439        entry_index = search_ref_dir(dir, refname, refname_len);
 440        if (entry_index == -1)
 441                return -1;
 442        entry = dir->entries[entry_index];
 443
 444        memmove(&dir->entries[entry_index],
 445                &dir->entries[entry_index + 1],
 446                (dir->nr - entry_index - 1) * sizeof(*dir->entries)
 447                );
 448        dir->nr--;
 449        if (dir->sorted > entry_index)
 450                dir->sorted--;
 451        free_ref_entry(entry);
 452        return dir->nr;
 453}
 454
 455/*
 456 * Add a ref_entry to the ref_dir (unsorted), recursing into
 457 * subdirectories as necessary.  dir must represent the top-level
 458 * directory.  Return 0 on success.
 459 */
 460static int add_ref(struct ref_dir *dir, struct ref_entry *ref)
 461{
 462        dir = find_containing_dir(dir, ref->name, 1);
 463        if (!dir)
 464                return -1;
 465        add_entry_to_dir(dir, ref);
 466        return 0;
 467}
 468
 469/*
 470 * Emit a warning and return true iff ref1 and ref2 have the same name
 471 * and the same sha1.  Die if they have the same name but different
 472 * sha1s.
 473 */
 474static int is_dup_ref(const struct ref_entry *ref1, const struct ref_entry *ref2)
 475{
 476        if (strcmp(ref1->name, ref2->name))
 477                return 0;
 478
 479        /* Duplicate name; make sure that they don't conflict: */
 480
 481        if ((ref1->flag & REF_DIR) || (ref2->flag & REF_DIR))
 482                /* This is impossible by construction */
 483                die("Reference directory conflict: %s", ref1->name);
 484
 485        if (oidcmp(&ref1->u.value.oid, &ref2->u.value.oid))
 486                die("Duplicated ref, and SHA1s don't match: %s", ref1->name);
 487
 488        warning("Duplicated ref: %s", ref1->name);
 489        return 1;
 490}
 491
 492/*
 493 * Sort the entries in dir non-recursively (if they are not already
 494 * sorted) and remove any duplicate entries.
 495 */
 496static void sort_ref_dir(struct ref_dir *dir)
 497{
 498        int i, j;
 499        struct ref_entry *last = NULL;
 500
 501        /*
 502         * This check also prevents passing a zero-length array to qsort(),
 503         * which is a problem on some platforms.
 504         */
 505        if (dir->sorted == dir->nr)
 506                return;
 507
 508        QSORT(dir->entries, dir->nr, ref_entry_cmp);
 509
 510        /* Remove any duplicates: */
 511        for (i = 0, j = 0; j < dir->nr; j++) {
 512                struct ref_entry *entry = dir->entries[j];
 513                if (last && is_dup_ref(last, entry))
 514                        free_ref_entry(entry);
 515                else
 516                        last = dir->entries[i++] = entry;
 517        }
 518        dir->sorted = dir->nr = i;
 519}
 520
 521/*
 522 * Return true if refname, which has the specified oid and flags, can
 523 * be resolved to an object in the database. If the referred-to object
 524 * does not exist, emit a warning and return false.
 525 */
 526static int ref_resolves_to_object(const char *refname,
 527                                  const struct object_id *oid,
 528                                  unsigned int flags)
 529{
 530        if (flags & REF_ISBROKEN)
 531                return 0;
 532        if (!has_sha1_file(oid->hash)) {
 533                error("%s does not point to a valid object!", refname);
 534                return 0;
 535        }
 536        return 1;
 537}
 538
 539/*
 540 * Return true if the reference described by entry can be resolved to
 541 * an object in the database; otherwise, emit a warning and return
 542 * false.
 543 */
 544static int entry_resolves_to_object(struct ref_entry *entry)
 545{
 546        return ref_resolves_to_object(entry->name,
 547                                      &entry->u.value.oid, entry->flag);
 548}
 549
 550typedef int each_ref_entry_fn(struct ref_entry *entry, void *cb_data);
 551
 552/*
 553 * Call fn for each reference in dir that has index in the range
 554 * offset <= index < dir->nr.  Recurse into subdirectories that are in
 555 * that index range, sorting them before iterating.  This function
 556 * does not sort dir itself; it should be sorted beforehand.  fn is
 557 * called for all references, including broken ones.
 558 */
 559static int do_for_each_entry_in_dir(struct ref_dir *dir, int offset,
 560                                    each_ref_entry_fn fn, void *cb_data)
 561{
 562        int i;
 563        assert(dir->sorted == dir->nr);
 564        for (i = offset; i < dir->nr; i++) {
 565                struct ref_entry *entry = dir->entries[i];
 566                int retval;
 567                if (entry->flag & REF_DIR) {
 568                        struct ref_dir *subdir = get_ref_dir(entry);
 569                        sort_ref_dir(subdir);
 570                        retval = do_for_each_entry_in_dir(subdir, 0, fn, cb_data);
 571                } else {
 572                        retval = fn(entry, cb_data);
 573                }
 574                if (retval)
 575                        return retval;
 576        }
 577        return 0;
 578}
 579
 580/*
 581 * Load all of the refs from the dir into our in-memory cache. The hard work
 582 * of loading loose refs is done by get_ref_dir(), so we just need to recurse
 583 * through all of the sub-directories. We do not even need to care about
 584 * sorting, as traversal order does not matter to us.
 585 */
 586static void prime_ref_dir(struct ref_dir *dir)
 587{
 588        int i;
 589        for (i = 0; i < dir->nr; i++) {
 590                struct ref_entry *entry = dir->entries[i];
 591                if (entry->flag & REF_DIR)
 592                        prime_ref_dir(get_ref_dir(entry));
 593        }
 594}
 595
 596/*
 597 * A level in the reference hierarchy that is currently being iterated
 598 * through.
 599 */
 600struct cache_ref_iterator_level {
 601        /*
 602         * The ref_dir being iterated over at this level. The ref_dir
 603         * is sorted before being stored here.
 604         */
 605        struct ref_dir *dir;
 606
 607        /*
 608         * The index of the current entry within dir (which might
 609         * itself be a directory). If index == -1, then the iteration
 610         * hasn't yet begun. If index == dir->nr, then the iteration
 611         * through this level is over.
 612         */
 613        int index;
 614};
 615
 616/*
 617 * Represent an iteration through a ref_dir in the memory cache. The
 618 * iteration recurses through subdirectories.
 619 */
 620struct cache_ref_iterator {
 621        struct ref_iterator base;
 622
 623        /*
 624         * The number of levels currently on the stack. This is always
 625         * at least 1, because when it becomes zero the iteration is
 626         * ended and this struct is freed.
 627         */
 628        size_t levels_nr;
 629
 630        /* The number of levels that have been allocated on the stack */
 631        size_t levels_alloc;
 632
 633        /*
 634         * A stack of levels. levels[0] is the uppermost level that is
 635         * being iterated over in this iteration. (This is not
 636         * necessary the top level in the references hierarchy. If we
 637         * are iterating through a subtree, then levels[0] will hold
 638         * the ref_dir for that subtree, and subsequent levels will go
 639         * on from there.)
 640         */
 641        struct cache_ref_iterator_level *levels;
 642};
 643
 644static int cache_ref_iterator_advance(struct ref_iterator *ref_iterator)
 645{
 646        struct cache_ref_iterator *iter =
 647                (struct cache_ref_iterator *)ref_iterator;
 648
 649        while (1) {
 650                struct cache_ref_iterator_level *level =
 651                        &iter->levels[iter->levels_nr - 1];
 652                struct ref_dir *dir = level->dir;
 653                struct ref_entry *entry;
 654
 655                if (level->index == -1)
 656                        sort_ref_dir(dir);
 657
 658                if (++level->index == level->dir->nr) {
 659                        /* This level is exhausted; pop up a level */
 660                        if (--iter->levels_nr == 0)
 661                                return ref_iterator_abort(ref_iterator);
 662
 663                        continue;
 664                }
 665
 666                entry = dir->entries[level->index];
 667
 668                if (entry->flag & REF_DIR) {
 669                        /* push down a level */
 670                        ALLOC_GROW(iter->levels, iter->levels_nr + 1,
 671                                   iter->levels_alloc);
 672
 673                        level = &iter->levels[iter->levels_nr++];
 674                        level->dir = get_ref_dir(entry);
 675                        level->index = -1;
 676                } else {
 677                        iter->base.refname = entry->name;
 678                        iter->base.oid = &entry->u.value.oid;
 679                        iter->base.flags = entry->flag;
 680                        return ITER_OK;
 681                }
 682        }
 683}
 684
 685static enum peel_status peel_entry(struct ref_entry *entry, int repeel);
 686
 687static int cache_ref_iterator_peel(struct ref_iterator *ref_iterator,
 688                                   struct object_id *peeled)
 689{
 690        struct cache_ref_iterator *iter =
 691                (struct cache_ref_iterator *)ref_iterator;
 692        struct cache_ref_iterator_level *level;
 693        struct ref_entry *entry;
 694
 695        level = &iter->levels[iter->levels_nr - 1];
 696
 697        if (level->index == -1)
 698                die("BUG: peel called before advance for cache iterator");
 699
 700        entry = level->dir->entries[level->index];
 701
 702        if (peel_entry(entry, 0))
 703                return -1;
 704        oidcpy(peeled, &entry->u.value.peeled);
 705        return 0;
 706}
 707
 708static int cache_ref_iterator_abort(struct ref_iterator *ref_iterator)
 709{
 710        struct cache_ref_iterator *iter =
 711                (struct cache_ref_iterator *)ref_iterator;
 712
 713        free(iter->levels);
 714        base_ref_iterator_free(ref_iterator);
 715        return ITER_DONE;
 716}
 717
 718static struct ref_iterator_vtable cache_ref_iterator_vtable = {
 719        cache_ref_iterator_advance,
 720        cache_ref_iterator_peel,
 721        cache_ref_iterator_abort
 722};
 723
 724static struct ref_iterator *cache_ref_iterator_begin(struct ref_dir *dir)
 725{
 726        struct cache_ref_iterator *iter;
 727        struct ref_iterator *ref_iterator;
 728        struct cache_ref_iterator_level *level;
 729
 730        iter = xcalloc(1, sizeof(*iter));
 731        ref_iterator = &iter->base;
 732        base_ref_iterator_init(ref_iterator, &cache_ref_iterator_vtable);
 733        ALLOC_GROW(iter->levels, 10, iter->levels_alloc);
 734
 735        iter->levels_nr = 1;
 736        level = &iter->levels[0];
 737        level->index = -1;
 738        level->dir = dir;
 739
 740        return ref_iterator;
 741}
 742
 743struct nonmatching_ref_data {
 744        const struct string_list *skip;
 745        const char *conflicting_refname;
 746};
 747
 748static int nonmatching_ref_fn(struct ref_entry *entry, void *vdata)
 749{
 750        struct nonmatching_ref_data *data = vdata;
 751
 752        if (data->skip && string_list_has_string(data->skip, entry->name))
 753                return 0;
 754
 755        data->conflicting_refname = entry->name;
 756        return 1;
 757}
 758
 759/*
 760 * Return 0 if a reference named refname could be created without
 761 * conflicting with the name of an existing reference in dir.
 762 * See verify_refname_available for more information.
 763 */
 764static int verify_refname_available_dir(const char *refname,
 765                                        const struct string_list *extras,
 766                                        const struct string_list *skip,
 767                                        struct ref_dir *dir,
 768                                        struct strbuf *err)
 769{
 770        const char *slash;
 771        const char *extra_refname;
 772        int pos;
 773        struct strbuf dirname = STRBUF_INIT;
 774        int ret = -1;
 775
 776        /*
 777         * For the sake of comments in this function, suppose that
 778         * refname is "refs/foo/bar".
 779         */
 780
 781        assert(err);
 782
 783        strbuf_grow(&dirname, strlen(refname) + 1);
 784        for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
 785                /* Expand dirname to the new prefix, not including the trailing slash: */
 786                strbuf_add(&dirname, refname + dirname.len, slash - refname - dirname.len);
 787
 788                /*
 789                 * We are still at a leading dir of the refname (e.g.,
 790                 * "refs/foo"; if there is a reference with that name,
 791                 * it is a conflict, *unless* it is in skip.
 792                 */
 793                if (dir) {
 794                        pos = search_ref_dir(dir, dirname.buf, dirname.len);
 795                        if (pos >= 0 &&
 796                            (!skip || !string_list_has_string(skip, dirname.buf))) {
 797                                /*
 798                                 * We found a reference whose name is
 799                                 * a proper prefix of refname; e.g.,
 800                                 * "refs/foo", and is not in skip.
 801                                 */
 802                                strbuf_addf(err, "'%s' exists; cannot create '%s'",
 803                                            dirname.buf, refname);
 804                                goto cleanup;
 805                        }
 806                }
 807
 808                if (extras && string_list_has_string(extras, dirname.buf) &&
 809                    (!skip || !string_list_has_string(skip, dirname.buf))) {
 810                        strbuf_addf(err, "cannot process '%s' and '%s' at the same time",
 811                                    refname, dirname.buf);
 812                        goto cleanup;
 813                }
 814
 815                /*
 816                 * Otherwise, we can try to continue our search with
 817                 * the next component. So try to look up the
 818                 * directory, e.g., "refs/foo/". If we come up empty,
 819                 * we know there is nothing under this whole prefix,
 820                 * but even in that case we still have to continue the
 821                 * search for conflicts with extras.
 822                 */
 823                strbuf_addch(&dirname, '/');
 824                if (dir) {
 825                        pos = search_ref_dir(dir, dirname.buf, dirname.len);
 826                        if (pos < 0) {
 827                                /*
 828                                 * There was no directory "refs/foo/",
 829                                 * so there is nothing under this
 830                                 * whole prefix. So there is no need
 831                                 * to continue looking for conflicting
 832                                 * references. But we need to continue
 833                                 * looking for conflicting extras.
 834                                 */
 835                                dir = NULL;
 836                        } else {
 837                                dir = get_ref_dir(dir->entries[pos]);
 838                        }
 839                }
 840        }
 841
 842        /*
 843         * We are at the leaf of our refname (e.g., "refs/foo/bar").
 844         * There is no point in searching for a reference with that
 845         * name, because a refname isn't considered to conflict with
 846         * itself. But we still need to check for references whose
 847         * names are in the "refs/foo/bar/" namespace, because they
 848         * *do* conflict.
 849         */
 850        strbuf_addstr(&dirname, refname + dirname.len);
 851        strbuf_addch(&dirname, '/');
 852
 853        if (dir) {
 854                pos = search_ref_dir(dir, dirname.buf, dirname.len);
 855
 856                if (pos >= 0) {
 857                        /*
 858                         * We found a directory named "$refname/"
 859                         * (e.g., "refs/foo/bar/"). It is a problem
 860                         * iff it contains any ref that is not in
 861                         * "skip".
 862                         */
 863                        struct nonmatching_ref_data data;
 864
 865                        data.skip = skip;
 866                        data.conflicting_refname = NULL;
 867                        dir = get_ref_dir(dir->entries[pos]);
 868                        sort_ref_dir(dir);
 869                        if (do_for_each_entry_in_dir(dir, 0, nonmatching_ref_fn, &data)) {
 870                                strbuf_addf(err, "'%s' exists; cannot create '%s'",
 871                                            data.conflicting_refname, refname);
 872                                goto cleanup;
 873                        }
 874                }
 875        }
 876
 877        extra_refname = find_descendant_ref(dirname.buf, extras, skip);
 878        if (extra_refname)
 879                strbuf_addf(err, "cannot process '%s' and '%s' at the same time",
 880                            refname, extra_refname);
 881        else
 882                ret = 0;
 883
 884cleanup:
 885        strbuf_release(&dirname);
 886        return ret;
 887}
 888
 889struct packed_ref_cache {
 890        struct ref_entry *root;
 891
 892        /*
 893         * Count of references to the data structure in this instance,
 894         * including the pointer from files_ref_store::packed if any.
 895         * The data will not be freed as long as the reference count
 896         * is nonzero.
 897         */
 898        unsigned int referrers;
 899
 900        /*
 901         * Iff the packed-refs file associated with this instance is
 902         * currently locked for writing, this points at the associated
 903         * lock (which is owned by somebody else).  The referrer count
 904         * is also incremented when the file is locked and decremented
 905         * when it is unlocked.
 906         */
 907        struct lock_file *lock;
 908
 909        /* The metadata from when this packed-refs cache was read */
 910        struct stat_validity validity;
 911};
 912
 913/*
 914 * Future: need to be in "struct repository"
 915 * when doing a full libification.
 916 */
 917struct files_ref_store {
 918        struct ref_store base;
 919
 920        /*
 921         * The name of the submodule represented by this object, or
 922         * NULL if it represents the main repository's reference
 923         * store:
 924         */
 925        const char *submodule;
 926        char *gitdir;
 927        char *gitcommondir;
 928        char *packed_refs_path;
 929
 930        struct ref_entry *loose;
 931        struct packed_ref_cache *packed;
 932};
 933
 934/* Lock used for the main packed-refs file: */
 935static struct lock_file packlock;
 936
 937/*
 938 * Increment the reference count of *packed_refs.
 939 */
 940static void acquire_packed_ref_cache(struct packed_ref_cache *packed_refs)
 941{
 942        packed_refs->referrers++;
 943}
 944
 945/*
 946 * Decrease the reference count of *packed_refs.  If it goes to zero,
 947 * free *packed_refs and return true; otherwise return false.
 948 */
 949static int release_packed_ref_cache(struct packed_ref_cache *packed_refs)
 950{
 951        if (!--packed_refs->referrers) {
 952                free_ref_entry(packed_refs->root);
 953                stat_validity_clear(&packed_refs->validity);
 954                free(packed_refs);
 955                return 1;
 956        } else {
 957                return 0;
 958        }
 959}
 960
 961static void clear_packed_ref_cache(struct files_ref_store *refs)
 962{
 963        if (refs->packed) {
 964                struct packed_ref_cache *packed_refs = refs->packed;
 965
 966                if (packed_refs->lock)
 967                        die("internal error: packed-ref cache cleared while locked");
 968                refs->packed = NULL;
 969                release_packed_ref_cache(packed_refs);
 970        }
 971}
 972
 973static void clear_loose_ref_cache(struct files_ref_store *refs)
 974{
 975        if (refs->loose) {
 976                free_ref_entry(refs->loose);
 977                refs->loose = NULL;
 978        }
 979}
 980
 981/*
 982 * Create a new submodule ref cache and add it to the internal
 983 * set of caches.
 984 */
 985static struct ref_store *files_ref_store_create(const char *submodule)
 986{
 987        struct files_ref_store *refs = xcalloc(1, sizeof(*refs));
 988        struct ref_store *ref_store = (struct ref_store *)refs;
 989        struct strbuf sb = STRBUF_INIT;
 990        const char *gitdir = get_git_dir();
 991
 992        base_ref_store_init(ref_store, &refs_be_files);
 993
 994        if (submodule) {
 995                refs->submodule = xstrdup(submodule);
 996                refs->packed_refs_path = git_pathdup_submodule(
 997                        refs->submodule, "packed-refs");
 998                return ref_store;
 999        }
1000
1001        refs->gitdir = xstrdup(gitdir);
1002        get_common_dir_noenv(&sb, gitdir);
1003        refs->gitcommondir = strbuf_detach(&sb, NULL);
1004        strbuf_addf(&sb, "%s/packed-refs", refs->gitcommondir);
1005        refs->packed_refs_path = strbuf_detach(&sb, NULL);
1006
1007        return ref_store;
1008}
1009
1010/*
1011 * Die if refs is for a submodule (i.e., not for the main repository).
1012 * caller is used in any necessary error messages.
1013 */
1014static void files_assert_main_repository(struct files_ref_store *refs,
1015                                         const char *caller)
1016{
1017        if (refs->submodule)
1018                die("BUG: %s called for a submodule", caller);
1019}
1020
1021/*
1022 * Downcast ref_store to files_ref_store. Die if ref_store is not a
1023 * files_ref_store. If submodule_allowed is not true, then also die if
1024 * files_ref_store is for a submodule (i.e., not for the main
1025 * repository). caller is used in any necessary error messages.
1026 */
1027static struct files_ref_store *files_downcast(
1028                struct ref_store *ref_store, int submodule_allowed,
1029                const char *caller)
1030{
1031        struct files_ref_store *refs;
1032
1033        if (ref_store->be != &refs_be_files)
1034                die("BUG: ref_store is type \"%s\" not \"files\" in %s",
1035                    ref_store->be->name, caller);
1036
1037        refs = (struct files_ref_store *)ref_store;
1038
1039        if (!submodule_allowed)
1040                files_assert_main_repository(refs, caller);
1041
1042        return refs;
1043}
1044
1045/* The length of a peeled reference line in packed-refs, including EOL: */
1046#define PEELED_LINE_LENGTH 42
1047
1048/*
1049 * The packed-refs header line that we write out.  Perhaps other
1050 * traits will be added later.  The trailing space is required.
1051 */
1052static const char PACKED_REFS_HEADER[] =
1053        "# pack-refs with: peeled fully-peeled \n";
1054
1055/*
1056 * Parse one line from a packed-refs file.  Write the SHA1 to sha1.
1057 * Return a pointer to the refname within the line (null-terminated),
1058 * or NULL if there was a problem.
1059 */
1060static const char *parse_ref_line(struct strbuf *line, unsigned char *sha1)
1061{
1062        const char *ref;
1063
1064        /*
1065         * 42: the answer to everything.
1066         *
1067         * In this case, it happens to be the answer to
1068         *  40 (length of sha1 hex representation)
1069         *  +1 (space in between hex and name)
1070         *  +1 (newline at the end of the line)
1071         */
1072        if (line->len <= 42)
1073                return NULL;
1074
1075        if (get_sha1_hex(line->buf, sha1) < 0)
1076                return NULL;
1077        if (!isspace(line->buf[40]))
1078                return NULL;
1079
1080        ref = line->buf + 41;
1081        if (isspace(*ref))
1082                return NULL;
1083
1084        if (line->buf[line->len - 1] != '\n')
1085                return NULL;
1086        line->buf[--line->len] = 0;
1087
1088        return ref;
1089}
1090
1091/*
1092 * Read f, which is a packed-refs file, into dir.
1093 *
1094 * A comment line of the form "# pack-refs with: " may contain zero or
1095 * more traits. We interpret the traits as follows:
1096 *
1097 *   No traits:
1098 *
1099 *      Probably no references are peeled. But if the file contains a
1100 *      peeled value for a reference, we will use it.
1101 *
1102 *   peeled:
1103 *
1104 *      References under "refs/tags/", if they *can* be peeled, *are*
1105 *      peeled in this file. References outside of "refs/tags/" are
1106 *      probably not peeled even if they could have been, but if we find
1107 *      a peeled value for such a reference we will use it.
1108 *
1109 *   fully-peeled:
1110 *
1111 *      All references in the file that can be peeled are peeled.
1112 *      Inversely (and this is more important), any references in the
1113 *      file for which no peeled value is recorded is not peelable. This
1114 *      trait should typically be written alongside "peeled" for
1115 *      compatibility with older clients, but we do not require it
1116 *      (i.e., "peeled" is a no-op if "fully-peeled" is set).
1117 */
1118static void read_packed_refs(FILE *f, struct ref_dir *dir)
1119{
1120        struct ref_entry *last = NULL;
1121        struct strbuf line = STRBUF_INIT;
1122        enum { PEELED_NONE, PEELED_TAGS, PEELED_FULLY } peeled = PEELED_NONE;
1123
1124        while (strbuf_getwholeline(&line, f, '\n') != EOF) {
1125                unsigned char sha1[20];
1126                const char *refname;
1127                const char *traits;
1128
1129                if (skip_prefix(line.buf, "# pack-refs with:", &traits)) {
1130                        if (strstr(traits, " fully-peeled "))
1131                                peeled = PEELED_FULLY;
1132                        else if (strstr(traits, " peeled "))
1133                                peeled = PEELED_TAGS;
1134                        /* perhaps other traits later as well */
1135                        continue;
1136                }
1137
1138                refname = parse_ref_line(&line, sha1);
1139                if (refname) {
1140                        int flag = REF_ISPACKED;
1141
1142                        if (check_refname_format(refname, REFNAME_ALLOW_ONELEVEL)) {
1143                                if (!refname_is_safe(refname))
1144                                        die("packed refname is dangerous: %s", refname);
1145                                hashclr(sha1);
1146                                flag |= REF_BAD_NAME | REF_ISBROKEN;
1147                        }
1148                        last = create_ref_entry(refname, sha1, flag, 0);
1149                        if (peeled == PEELED_FULLY ||
1150                            (peeled == PEELED_TAGS && starts_with(refname, "refs/tags/")))
1151                                last->flag |= REF_KNOWS_PEELED;
1152                        add_ref(dir, last);
1153                        continue;
1154                }
1155                if (last &&
1156                    line.buf[0] == '^' &&
1157                    line.len == PEELED_LINE_LENGTH &&
1158                    line.buf[PEELED_LINE_LENGTH - 1] == '\n' &&
1159                    !get_sha1_hex(line.buf + 1, sha1)) {
1160                        hashcpy(last->u.value.peeled.hash, sha1);
1161                        /*
1162                         * Regardless of what the file header said,
1163                         * we definitely know the value of *this*
1164                         * reference:
1165                         */
1166                        last->flag |= REF_KNOWS_PEELED;
1167                }
1168        }
1169
1170        strbuf_release(&line);
1171}
1172
1173static const char *files_packed_refs_path(struct files_ref_store *refs)
1174{
1175        return refs->packed_refs_path;
1176}
1177
1178static void files_reflog_path(struct files_ref_store *refs,
1179                              struct strbuf *sb,
1180                              const char *refname)
1181{
1182        if (!refname) {
1183                /*
1184                 * FIXME: of course this is wrong in multi worktree
1185                 * setting. To be fixed real soon.
1186                 */
1187                strbuf_addf(sb, "%s/logs", refs->gitcommondir);
1188                return;
1189        }
1190
1191        switch (ref_type(refname)) {
1192        case REF_TYPE_PER_WORKTREE:
1193        case REF_TYPE_PSEUDOREF:
1194                strbuf_addf(sb, "%s/logs/%s", refs->gitdir, refname);
1195                break;
1196        case REF_TYPE_NORMAL:
1197                strbuf_addf(sb, "%s/logs/%s", refs->gitcommondir, refname);
1198                break;
1199        default:
1200                die("BUG: unknown ref type %d of ref %s",
1201                    ref_type(refname), refname);
1202        }
1203}
1204
1205static void files_ref_path(struct files_ref_store *refs,
1206                           struct strbuf *sb,
1207                           const char *refname)
1208{
1209        if (refs->submodule) {
1210                strbuf_git_path_submodule(sb, refs->submodule, "%s", refname);
1211                return;
1212        }
1213
1214        switch (ref_type(refname)) {
1215        case REF_TYPE_PER_WORKTREE:
1216        case REF_TYPE_PSEUDOREF:
1217                strbuf_addf(sb, "%s/%s", refs->gitdir, refname);
1218                break;
1219        case REF_TYPE_NORMAL:
1220                strbuf_addf(sb, "%s/%s", refs->gitcommondir, refname);
1221                break;
1222        default:
1223                die("BUG: unknown ref type %d of ref %s",
1224                    ref_type(refname), refname);
1225        }
1226}
1227
1228/*
1229 * Get the packed_ref_cache for the specified files_ref_store,
1230 * creating it if necessary.
1231 */
1232static struct packed_ref_cache *get_packed_ref_cache(struct files_ref_store *refs)
1233{
1234        const char *packed_refs_file = files_packed_refs_path(refs);
1235
1236        if (refs->packed &&
1237            !stat_validity_check(&refs->packed->validity, packed_refs_file))
1238                clear_packed_ref_cache(refs);
1239
1240        if (!refs->packed) {
1241                FILE *f;
1242
1243                refs->packed = xcalloc(1, sizeof(*refs->packed));
1244                acquire_packed_ref_cache(refs->packed);
1245                refs->packed->root = create_dir_entry(refs, "", 0, 0);
1246                f = fopen(packed_refs_file, "r");
1247                if (f) {
1248                        stat_validity_update(&refs->packed->validity, fileno(f));
1249                        read_packed_refs(f, get_ref_dir(refs->packed->root));
1250                        fclose(f);
1251                }
1252        }
1253        return refs->packed;
1254}
1255
1256static struct ref_dir *get_packed_ref_dir(struct packed_ref_cache *packed_ref_cache)
1257{
1258        return get_ref_dir(packed_ref_cache->root);
1259}
1260
1261static struct ref_dir *get_packed_refs(struct files_ref_store *refs)
1262{
1263        return get_packed_ref_dir(get_packed_ref_cache(refs));
1264}
1265
1266/*
1267 * Add a reference to the in-memory packed reference cache.  This may
1268 * only be called while the packed-refs file is locked (see
1269 * lock_packed_refs()).  To actually write the packed-refs file, call
1270 * commit_packed_refs().
1271 */
1272static void add_packed_ref(struct files_ref_store *refs,
1273                           const char *refname, const unsigned char *sha1)
1274{
1275        struct packed_ref_cache *packed_ref_cache = get_packed_ref_cache(refs);
1276
1277        if (!packed_ref_cache->lock)
1278                die("internal error: packed refs not locked");
1279        add_ref(get_packed_ref_dir(packed_ref_cache),
1280                create_ref_entry(refname, sha1, REF_ISPACKED, 1));
1281}
1282
1283/*
1284 * Read the loose references from the namespace dirname into dir
1285 * (without recursing).  dirname must end with '/'.  dir must be the
1286 * directory entry corresponding to dirname.
1287 */
1288static void read_loose_refs(const char *dirname, struct ref_dir *dir)
1289{
1290        struct files_ref_store *refs = dir->ref_store;
1291        DIR *d;
1292        struct dirent *de;
1293        int dirnamelen = strlen(dirname);
1294        struct strbuf refname;
1295        struct strbuf path = STRBUF_INIT;
1296        size_t path_baselen;
1297
1298        files_ref_path(refs, &path, dirname);
1299        path_baselen = path.len;
1300
1301        d = opendir(path.buf);
1302        if (!d) {
1303                strbuf_release(&path);
1304                return;
1305        }
1306
1307        strbuf_init(&refname, dirnamelen + 257);
1308        strbuf_add(&refname, dirname, dirnamelen);
1309
1310        while ((de = readdir(d)) != NULL) {
1311                unsigned char sha1[20];
1312                struct stat st;
1313                int flag;
1314
1315                if (de->d_name[0] == '.')
1316                        continue;
1317                if (ends_with(de->d_name, ".lock"))
1318                        continue;
1319                strbuf_addstr(&refname, de->d_name);
1320                strbuf_addstr(&path, de->d_name);
1321                if (stat(path.buf, &st) < 0) {
1322                        ; /* silently ignore */
1323                } else if (S_ISDIR(st.st_mode)) {
1324                        strbuf_addch(&refname, '/');
1325                        add_entry_to_dir(dir,
1326                                         create_dir_entry(refs, refname.buf,
1327                                                          refname.len, 1));
1328                } else {
1329                        if (!resolve_ref_recursively(&refs->base,
1330                                                     refname.buf,
1331                                                     RESOLVE_REF_READING,
1332                                                     sha1, &flag)) {
1333                                hashclr(sha1);
1334                                flag |= REF_ISBROKEN;
1335                        } else if (is_null_sha1(sha1)) {
1336                                /*
1337                                 * It is so astronomically unlikely
1338                                 * that NULL_SHA1 is the SHA-1 of an
1339                                 * actual object that we consider its
1340                                 * appearance in a loose reference
1341                                 * file to be repo corruption
1342                                 * (probably due to a software bug).
1343                                 */
1344                                flag |= REF_ISBROKEN;
1345                        }
1346
1347                        if (check_refname_format(refname.buf,
1348                                                 REFNAME_ALLOW_ONELEVEL)) {
1349                                if (!refname_is_safe(refname.buf))
1350                                        die("loose refname is dangerous: %s", refname.buf);
1351                                hashclr(sha1);
1352                                flag |= REF_BAD_NAME | REF_ISBROKEN;
1353                        }
1354                        add_entry_to_dir(dir,
1355                                         create_ref_entry(refname.buf, sha1, flag, 0));
1356                }
1357                strbuf_setlen(&refname, dirnamelen);
1358                strbuf_setlen(&path, path_baselen);
1359        }
1360        strbuf_release(&refname);
1361        strbuf_release(&path);
1362        closedir(d);
1363}
1364
1365static struct ref_dir *get_loose_refs(struct files_ref_store *refs)
1366{
1367        if (!refs->loose) {
1368                /*
1369                 * Mark the top-level directory complete because we
1370                 * are about to read the only subdirectory that can
1371                 * hold references:
1372                 */
1373                refs->loose = create_dir_entry(refs, "", 0, 0);
1374                /*
1375                 * Create an incomplete entry for "refs/":
1376                 */
1377                add_entry_to_dir(get_ref_dir(refs->loose),
1378                                 create_dir_entry(refs, "refs/", 5, 1));
1379        }
1380        return get_ref_dir(refs->loose);
1381}
1382
1383/*
1384 * Return the ref_entry for the given refname from the packed
1385 * references.  If it does not exist, return NULL.
1386 */
1387static struct ref_entry *get_packed_ref(struct files_ref_store *refs,
1388                                        const char *refname)
1389{
1390        return find_ref(get_packed_refs(refs), refname);
1391}
1392
1393/*
1394 * A loose ref file doesn't exist; check for a packed ref.
1395 */
1396static int resolve_packed_ref(struct files_ref_store *refs,
1397                              const char *refname,
1398                              unsigned char *sha1, unsigned int *flags)
1399{
1400        struct ref_entry *entry;
1401
1402        /*
1403         * The loose reference file does not exist; check for a packed
1404         * reference.
1405         */
1406        entry = get_packed_ref(refs, refname);
1407        if (entry) {
1408                hashcpy(sha1, entry->u.value.oid.hash);
1409                *flags |= REF_ISPACKED;
1410                return 0;
1411        }
1412        /* refname is not a packed reference. */
1413        return -1;
1414}
1415
1416static int files_read_raw_ref(struct ref_store *ref_store,
1417                              const char *refname, unsigned char *sha1,
1418                              struct strbuf *referent, unsigned int *type)
1419{
1420        struct files_ref_store *refs =
1421                files_downcast(ref_store, 1, "read_raw_ref");
1422        struct strbuf sb_contents = STRBUF_INIT;
1423        struct strbuf sb_path = STRBUF_INIT;
1424        const char *path;
1425        const char *buf;
1426        struct stat st;
1427        int fd;
1428        int ret = -1;
1429        int save_errno;
1430        int remaining_retries = 3;
1431
1432        *type = 0;
1433        strbuf_reset(&sb_path);
1434
1435        files_ref_path(refs, &sb_path, refname);
1436
1437        path = sb_path.buf;
1438
1439stat_ref:
1440        /*
1441         * We might have to loop back here to avoid a race
1442         * condition: first we lstat() the file, then we try
1443         * to read it as a link or as a file.  But if somebody
1444         * changes the type of the file (file <-> directory
1445         * <-> symlink) between the lstat() and reading, then
1446         * we don't want to report that as an error but rather
1447         * try again starting with the lstat().
1448         *
1449         * We'll keep a count of the retries, though, just to avoid
1450         * any confusing situation sending us into an infinite loop.
1451         */
1452
1453        if (remaining_retries-- <= 0)
1454                goto out;
1455
1456        if (lstat(path, &st) < 0) {
1457                if (errno != ENOENT)
1458                        goto out;
1459                if (resolve_packed_ref(refs, refname, sha1, type)) {
1460                        errno = ENOENT;
1461                        goto out;
1462                }
1463                ret = 0;
1464                goto out;
1465        }
1466
1467        /* Follow "normalized" - ie "refs/.." symlinks by hand */
1468        if (S_ISLNK(st.st_mode)) {
1469                strbuf_reset(&sb_contents);
1470                if (strbuf_readlink(&sb_contents, path, 0) < 0) {
1471                        if (errno == ENOENT || errno == EINVAL)
1472                                /* inconsistent with lstat; retry */
1473                                goto stat_ref;
1474                        else
1475                                goto out;
1476                }
1477                if (starts_with(sb_contents.buf, "refs/") &&
1478                    !check_refname_format(sb_contents.buf, 0)) {
1479                        strbuf_swap(&sb_contents, referent);
1480                        *type |= REF_ISSYMREF;
1481                        ret = 0;
1482                        goto out;
1483                }
1484                /*
1485                 * It doesn't look like a refname; fall through to just
1486                 * treating it like a non-symlink, and reading whatever it
1487                 * points to.
1488                 */
1489        }
1490
1491        /* Is it a directory? */
1492        if (S_ISDIR(st.st_mode)) {
1493                /*
1494                 * Even though there is a directory where the loose
1495                 * ref is supposed to be, there could still be a
1496                 * packed ref:
1497                 */
1498                if (resolve_packed_ref(refs, refname, sha1, type)) {
1499                        errno = EISDIR;
1500                        goto out;
1501                }
1502                ret = 0;
1503                goto out;
1504        }
1505
1506        /*
1507         * Anything else, just open it and try to use it as
1508         * a ref
1509         */
1510        fd = open(path, O_RDONLY);
1511        if (fd < 0) {
1512                if (errno == ENOENT && !S_ISLNK(st.st_mode))
1513                        /* inconsistent with lstat; retry */
1514                        goto stat_ref;
1515                else
1516                        goto out;
1517        }
1518        strbuf_reset(&sb_contents);
1519        if (strbuf_read(&sb_contents, fd, 256) < 0) {
1520                int save_errno = errno;
1521                close(fd);
1522                errno = save_errno;
1523                goto out;
1524        }
1525        close(fd);
1526        strbuf_rtrim(&sb_contents);
1527        buf = sb_contents.buf;
1528        if (starts_with(buf, "ref:")) {
1529                buf += 4;
1530                while (isspace(*buf))
1531                        buf++;
1532
1533                strbuf_reset(referent);
1534                strbuf_addstr(referent, buf);
1535                *type |= REF_ISSYMREF;
1536                ret = 0;
1537                goto out;
1538        }
1539
1540        /*
1541         * Please note that FETCH_HEAD has additional
1542         * data after the sha.
1543         */
1544        if (get_sha1_hex(buf, sha1) ||
1545            (buf[40] != '\0' && !isspace(buf[40]))) {
1546                *type |= REF_ISBROKEN;
1547                errno = EINVAL;
1548                goto out;
1549        }
1550
1551        ret = 0;
1552
1553out:
1554        save_errno = errno;
1555        strbuf_release(&sb_path);
1556        strbuf_release(&sb_contents);
1557        errno = save_errno;
1558        return ret;
1559}
1560
1561static void unlock_ref(struct ref_lock *lock)
1562{
1563        /* Do not free lock->lk -- atexit() still looks at them */
1564        if (lock->lk)
1565                rollback_lock_file(lock->lk);
1566        free(lock->ref_name);
1567        free(lock);
1568}
1569
1570/*
1571 * Lock refname, without following symrefs, and set *lock_p to point
1572 * at a newly-allocated lock object. Fill in lock->old_oid, referent,
1573 * and type similarly to read_raw_ref().
1574 *
1575 * The caller must verify that refname is a "safe" reference name (in
1576 * the sense of refname_is_safe()) before calling this function.
1577 *
1578 * If the reference doesn't already exist, verify that refname doesn't
1579 * have a D/F conflict with any existing references. extras and skip
1580 * are passed to verify_refname_available_dir() for this check.
1581 *
1582 * If mustexist is not set and the reference is not found or is
1583 * broken, lock the reference anyway but clear sha1.
1584 *
1585 * Return 0 on success. On failure, write an error message to err and
1586 * return TRANSACTION_NAME_CONFLICT or TRANSACTION_GENERIC_ERROR.
1587 *
1588 * Implementation note: This function is basically
1589 *
1590 *     lock reference
1591 *     read_raw_ref()
1592 *
1593 * but it includes a lot more code to
1594 * - Deal with possible races with other processes
1595 * - Avoid calling verify_refname_available_dir() when it can be
1596 *   avoided, namely if we were successfully able to read the ref
1597 * - Generate informative error messages in the case of failure
1598 */
1599static int lock_raw_ref(struct files_ref_store *refs,
1600                        const char *refname, int mustexist,
1601                        const struct string_list *extras,
1602                        const struct string_list *skip,
1603                        struct ref_lock **lock_p,
1604                        struct strbuf *referent,
1605                        unsigned int *type,
1606                        struct strbuf *err)
1607{
1608        struct ref_lock *lock;
1609        struct strbuf ref_file = STRBUF_INIT;
1610        int attempts_remaining = 3;
1611        int ret = TRANSACTION_GENERIC_ERROR;
1612
1613        assert(err);
1614        files_assert_main_repository(refs, "lock_raw_ref");
1615
1616        *type = 0;
1617
1618        /* First lock the file so it can't change out from under us. */
1619
1620        *lock_p = lock = xcalloc(1, sizeof(*lock));
1621
1622        lock->ref_name = xstrdup(refname);
1623        files_ref_path(refs, &ref_file, refname);
1624
1625retry:
1626        switch (safe_create_leading_directories(ref_file.buf)) {
1627        case SCLD_OK:
1628                break; /* success */
1629        case SCLD_EXISTS:
1630                /*
1631                 * Suppose refname is "refs/foo/bar". We just failed
1632                 * to create the containing directory, "refs/foo",
1633                 * because there was a non-directory in the way. This
1634                 * indicates a D/F conflict, probably because of
1635                 * another reference such as "refs/foo". There is no
1636                 * reason to expect this error to be transitory.
1637                 */
1638                if (verify_refname_available(refname, extras, skip, err)) {
1639                        if (mustexist) {
1640                                /*
1641                                 * To the user the relevant error is
1642                                 * that the "mustexist" reference is
1643                                 * missing:
1644                                 */
1645                                strbuf_reset(err);
1646                                strbuf_addf(err, "unable to resolve reference '%s'",
1647                                            refname);
1648                        } else {
1649                                /*
1650                                 * The error message set by
1651                                 * verify_refname_available_dir() is OK.
1652                                 */
1653                                ret = TRANSACTION_NAME_CONFLICT;
1654                        }
1655                } else {
1656                        /*
1657                         * The file that is in the way isn't a loose
1658                         * reference. Report it as a low-level
1659                         * failure.
1660                         */
1661                        strbuf_addf(err, "unable to create lock file %s.lock; "
1662                                    "non-directory in the way",
1663                                    ref_file.buf);
1664                }
1665                goto error_return;
1666        case SCLD_VANISHED:
1667                /* Maybe another process was tidying up. Try again. */
1668                if (--attempts_remaining > 0)
1669                        goto retry;
1670                /* fall through */
1671        default:
1672                strbuf_addf(err, "unable to create directory for %s",
1673                            ref_file.buf);
1674                goto error_return;
1675        }
1676
1677        if (!lock->lk)
1678                lock->lk = xcalloc(1, sizeof(struct lock_file));
1679
1680        if (hold_lock_file_for_update(lock->lk, ref_file.buf, LOCK_NO_DEREF) < 0) {
1681                if (errno == ENOENT && --attempts_remaining > 0) {
1682                        /*
1683                         * Maybe somebody just deleted one of the
1684                         * directories leading to ref_file.  Try
1685                         * again:
1686                         */
1687                        goto retry;
1688                } else {
1689                        unable_to_lock_message(ref_file.buf, errno, err);
1690                        goto error_return;
1691                }
1692        }
1693
1694        /*
1695         * Now we hold the lock and can read the reference without
1696         * fear that its value will change.
1697         */
1698
1699        if (files_read_raw_ref(&refs->base, refname,
1700                               lock->old_oid.hash, referent, type)) {
1701                if (errno == ENOENT) {
1702                        if (mustexist) {
1703                                /* Garden variety missing reference. */
1704                                strbuf_addf(err, "unable to resolve reference '%s'",
1705                                            refname);
1706                                goto error_return;
1707                        } else {
1708                                /*
1709                                 * Reference is missing, but that's OK. We
1710                                 * know that there is not a conflict with
1711                                 * another loose reference because
1712                                 * (supposing that we are trying to lock
1713                                 * reference "refs/foo/bar"):
1714                                 *
1715                                 * - We were successfully able to create
1716                                 *   the lockfile refs/foo/bar.lock, so we
1717                                 *   know there cannot be a loose reference
1718                                 *   named "refs/foo".
1719                                 *
1720                                 * - We got ENOENT and not EISDIR, so we
1721                                 *   know that there cannot be a loose
1722                                 *   reference named "refs/foo/bar/baz".
1723                                 */
1724                        }
1725                } else if (errno == EISDIR) {
1726                        /*
1727                         * There is a directory in the way. It might have
1728                         * contained references that have been deleted. If
1729                         * we don't require that the reference already
1730                         * exists, try to remove the directory so that it
1731                         * doesn't cause trouble when we want to rename the
1732                         * lockfile into place later.
1733                         */
1734                        if (mustexist) {
1735                                /* Garden variety missing reference. */
1736                                strbuf_addf(err, "unable to resolve reference '%s'",
1737                                            refname);
1738                                goto error_return;
1739                        } else if (remove_dir_recursively(&ref_file,
1740                                                          REMOVE_DIR_EMPTY_ONLY)) {
1741                                if (verify_refname_available_dir(
1742                                                    refname, extras, skip,
1743                                                    get_loose_refs(refs),
1744                                                    err)) {
1745                                        /*
1746                                         * The error message set by
1747                                         * verify_refname_available() is OK.
1748                                         */
1749                                        ret = TRANSACTION_NAME_CONFLICT;
1750                                        goto error_return;
1751                                } else {
1752                                        /*
1753                                         * We can't delete the directory,
1754                                         * but we also don't know of any
1755                                         * references that it should
1756                                         * contain.
1757                                         */
1758                                        strbuf_addf(err, "there is a non-empty directory '%s' "
1759                                                    "blocking reference '%s'",
1760                                                    ref_file.buf, refname);
1761                                        goto error_return;
1762                                }
1763                        }
1764                } else if (errno == EINVAL && (*type & REF_ISBROKEN)) {
1765                        strbuf_addf(err, "unable to resolve reference '%s': "
1766                                    "reference broken", refname);
1767                        goto error_return;
1768                } else {
1769                        strbuf_addf(err, "unable to resolve reference '%s': %s",
1770                                    refname, strerror(errno));
1771                        goto error_return;
1772                }
1773
1774                /*
1775                 * If the ref did not exist and we are creating it,
1776                 * make sure there is no existing packed ref whose
1777                 * name begins with our refname, nor a packed ref
1778                 * whose name is a proper prefix of our refname.
1779                 */
1780                if (verify_refname_available_dir(
1781                                    refname, extras, skip,
1782                                    get_packed_refs(refs),
1783                                    err)) {
1784                        goto error_return;
1785                }
1786        }
1787
1788        ret = 0;
1789        goto out;
1790
1791error_return:
1792        unlock_ref(lock);
1793        *lock_p = NULL;
1794
1795out:
1796        strbuf_release(&ref_file);
1797        return ret;
1798}
1799
1800/*
1801 * Peel the entry (if possible) and return its new peel_status.  If
1802 * repeel is true, re-peel the entry even if there is an old peeled
1803 * value that is already stored in it.
1804 *
1805 * It is OK to call this function with a packed reference entry that
1806 * might be stale and might even refer to an object that has since
1807 * been garbage-collected.  In such a case, if the entry has
1808 * REF_KNOWS_PEELED then leave the status unchanged and return
1809 * PEEL_PEELED or PEEL_NON_TAG; otherwise, return PEEL_INVALID.
1810 */
1811static enum peel_status peel_entry(struct ref_entry *entry, int repeel)
1812{
1813        enum peel_status status;
1814
1815        if (entry->flag & REF_KNOWS_PEELED) {
1816                if (repeel) {
1817                        entry->flag &= ~REF_KNOWS_PEELED;
1818                        oidclr(&entry->u.value.peeled);
1819                } else {
1820                        return is_null_oid(&entry->u.value.peeled) ?
1821                                PEEL_NON_TAG : PEEL_PEELED;
1822                }
1823        }
1824        if (entry->flag & REF_ISBROKEN)
1825                return PEEL_BROKEN;
1826        if (entry->flag & REF_ISSYMREF)
1827                return PEEL_IS_SYMREF;
1828
1829        status = peel_object(entry->u.value.oid.hash, entry->u.value.peeled.hash);
1830        if (status == PEEL_PEELED || status == PEEL_NON_TAG)
1831                entry->flag |= REF_KNOWS_PEELED;
1832        return status;
1833}
1834
1835static int files_peel_ref(struct ref_store *ref_store,
1836                          const char *refname, unsigned char *sha1)
1837{
1838        struct files_ref_store *refs = files_downcast(ref_store, 0, "peel_ref");
1839        int flag;
1840        unsigned char base[20];
1841
1842        if (current_ref_iter && current_ref_iter->refname == refname) {
1843                struct object_id peeled;
1844
1845                if (ref_iterator_peel(current_ref_iter, &peeled))
1846                        return -1;
1847                hashcpy(sha1, peeled.hash);
1848                return 0;
1849        }
1850
1851        if (read_ref_full(refname, RESOLVE_REF_READING, base, &flag))
1852                return -1;
1853
1854        /*
1855         * If the reference is packed, read its ref_entry from the
1856         * cache in the hope that we already know its peeled value.
1857         * We only try this optimization on packed references because
1858         * (a) forcing the filling of the loose reference cache could
1859         * be expensive and (b) loose references anyway usually do not
1860         * have REF_KNOWS_PEELED.
1861         */
1862        if (flag & REF_ISPACKED) {
1863                struct ref_entry *r = get_packed_ref(refs, refname);
1864                if (r) {
1865                        if (peel_entry(r, 0))
1866                                return -1;
1867                        hashcpy(sha1, r->u.value.peeled.hash);
1868                        return 0;
1869                }
1870        }
1871
1872        return peel_object(base, sha1);
1873}
1874
1875struct files_ref_iterator {
1876        struct ref_iterator base;
1877
1878        struct packed_ref_cache *packed_ref_cache;
1879        struct ref_iterator *iter0;
1880        unsigned int flags;
1881};
1882
1883static int files_ref_iterator_advance(struct ref_iterator *ref_iterator)
1884{
1885        struct files_ref_iterator *iter =
1886                (struct files_ref_iterator *)ref_iterator;
1887        int ok;
1888
1889        while ((ok = ref_iterator_advance(iter->iter0)) == ITER_OK) {
1890                if (iter->flags & DO_FOR_EACH_PER_WORKTREE_ONLY &&
1891                    ref_type(iter->iter0->refname) != REF_TYPE_PER_WORKTREE)
1892                        continue;
1893
1894                if (!(iter->flags & DO_FOR_EACH_INCLUDE_BROKEN) &&
1895                    !ref_resolves_to_object(iter->iter0->refname,
1896                                            iter->iter0->oid,
1897                                            iter->iter0->flags))
1898                        continue;
1899
1900                iter->base.refname = iter->iter0->refname;
1901                iter->base.oid = iter->iter0->oid;
1902                iter->base.flags = iter->iter0->flags;
1903                return ITER_OK;
1904        }
1905
1906        iter->iter0 = NULL;
1907        if (ref_iterator_abort(ref_iterator) != ITER_DONE)
1908                ok = ITER_ERROR;
1909
1910        return ok;
1911}
1912
1913static int files_ref_iterator_peel(struct ref_iterator *ref_iterator,
1914                                   struct object_id *peeled)
1915{
1916        struct files_ref_iterator *iter =
1917                (struct files_ref_iterator *)ref_iterator;
1918
1919        return ref_iterator_peel(iter->iter0, peeled);
1920}
1921
1922static int files_ref_iterator_abort(struct ref_iterator *ref_iterator)
1923{
1924        struct files_ref_iterator *iter =
1925                (struct files_ref_iterator *)ref_iterator;
1926        int ok = ITER_DONE;
1927
1928        if (iter->iter0)
1929                ok = ref_iterator_abort(iter->iter0);
1930
1931        release_packed_ref_cache(iter->packed_ref_cache);
1932        base_ref_iterator_free(ref_iterator);
1933        return ok;
1934}
1935
1936static struct ref_iterator_vtable files_ref_iterator_vtable = {
1937        files_ref_iterator_advance,
1938        files_ref_iterator_peel,
1939        files_ref_iterator_abort
1940};
1941
1942static struct ref_iterator *files_ref_iterator_begin(
1943                struct ref_store *ref_store,
1944                const char *prefix, unsigned int flags)
1945{
1946        struct files_ref_store *refs =
1947                files_downcast(ref_store, 1, "ref_iterator_begin");
1948        struct ref_dir *loose_dir, *packed_dir;
1949        struct ref_iterator *loose_iter, *packed_iter;
1950        struct files_ref_iterator *iter;
1951        struct ref_iterator *ref_iterator;
1952
1953        if (ref_paranoia < 0)
1954                ref_paranoia = git_env_bool("GIT_REF_PARANOIA", 0);
1955        if (ref_paranoia)
1956                flags |= DO_FOR_EACH_INCLUDE_BROKEN;
1957
1958        iter = xcalloc(1, sizeof(*iter));
1959        ref_iterator = &iter->base;
1960        base_ref_iterator_init(ref_iterator, &files_ref_iterator_vtable);
1961
1962        /*
1963         * We must make sure that all loose refs are read before
1964         * accessing the packed-refs file; this avoids a race
1965         * condition if loose refs are migrated to the packed-refs
1966         * file by a simultaneous process, but our in-memory view is
1967         * from before the migration. We ensure this as follows:
1968         * First, we call prime_ref_dir(), which pre-reads the loose
1969         * references for the subtree into the cache. (If they've
1970         * already been read, that's OK; we only need to guarantee
1971         * that they're read before the packed refs, not *how much*
1972         * before.) After that, we call get_packed_ref_cache(), which
1973         * internally checks whether the packed-ref cache is up to
1974         * date with what is on disk, and re-reads it if not.
1975         */
1976
1977        loose_dir = get_loose_refs(refs);
1978
1979        if (prefix && *prefix)
1980                loose_dir = find_containing_dir(loose_dir, prefix, 0);
1981
1982        if (loose_dir) {
1983                prime_ref_dir(loose_dir);
1984                loose_iter = cache_ref_iterator_begin(loose_dir);
1985        } else {
1986                /* There's nothing to iterate over. */
1987                loose_iter = empty_ref_iterator_begin();
1988        }
1989
1990        iter->packed_ref_cache = get_packed_ref_cache(refs);
1991        acquire_packed_ref_cache(iter->packed_ref_cache);
1992        packed_dir = get_packed_ref_dir(iter->packed_ref_cache);
1993
1994        if (prefix && *prefix)
1995                packed_dir = find_containing_dir(packed_dir, prefix, 0);
1996
1997        if (packed_dir) {
1998                packed_iter = cache_ref_iterator_begin(packed_dir);
1999        } else {
2000                /* There's nothing to iterate over. */
2001                packed_iter = empty_ref_iterator_begin();
2002        }
2003
2004        iter->iter0 = overlay_ref_iterator_begin(loose_iter, packed_iter);
2005        iter->flags = flags;
2006
2007        return ref_iterator;
2008}
2009
2010/*
2011 * Verify that the reference locked by lock has the value old_sha1.
2012 * Fail if the reference doesn't exist and mustexist is set. Return 0
2013 * on success. On error, write an error message to err, set errno, and
2014 * return a negative value.
2015 */
2016static int verify_lock(struct ref_lock *lock,
2017                       const unsigned char *old_sha1, int mustexist,
2018                       struct strbuf *err)
2019{
2020        assert(err);
2021
2022        if (read_ref_full(lock->ref_name,
2023                          mustexist ? RESOLVE_REF_READING : 0,
2024                          lock->old_oid.hash, NULL)) {
2025                if (old_sha1) {
2026                        int save_errno = errno;
2027                        strbuf_addf(err, "can't verify ref '%s'", lock->ref_name);
2028                        errno = save_errno;
2029                        return -1;
2030                } else {
2031                        oidclr(&lock->old_oid);
2032                        return 0;
2033                }
2034        }
2035        if (old_sha1 && hashcmp(lock->old_oid.hash, old_sha1)) {
2036                strbuf_addf(err, "ref '%s' is at %s but expected %s",
2037                            lock->ref_name,
2038                            oid_to_hex(&lock->old_oid),
2039                            sha1_to_hex(old_sha1));
2040                errno = EBUSY;
2041                return -1;
2042        }
2043        return 0;
2044}
2045
2046static int remove_empty_directories(struct strbuf *path)
2047{
2048        /*
2049         * we want to create a file but there is a directory there;
2050         * if that is an empty directory (or a directory that contains
2051         * only empty directories), remove them.
2052         */
2053        return remove_dir_recursively(path, REMOVE_DIR_EMPTY_ONLY);
2054}
2055
2056static int create_reflock(const char *path, void *cb)
2057{
2058        struct lock_file *lk = cb;
2059
2060        return hold_lock_file_for_update(lk, path, LOCK_NO_DEREF) < 0 ? -1 : 0;
2061}
2062
2063/*
2064 * Locks a ref returning the lock on success and NULL on failure.
2065 * On failure errno is set to something meaningful.
2066 */
2067static struct ref_lock *lock_ref_sha1_basic(struct files_ref_store *refs,
2068                                            const char *refname,
2069                                            const unsigned char *old_sha1,
2070                                            const struct string_list *extras,
2071                                            const struct string_list *skip,
2072                                            unsigned int flags, int *type,
2073                                            struct strbuf *err)
2074{
2075        struct strbuf ref_file = STRBUF_INIT;
2076        struct ref_lock *lock;
2077        int last_errno = 0;
2078        int mustexist = (old_sha1 && !is_null_sha1(old_sha1));
2079        int resolve_flags = RESOLVE_REF_NO_RECURSE;
2080        int resolved;
2081
2082        files_assert_main_repository(refs, "lock_ref_sha1_basic");
2083        assert(err);
2084
2085        lock = xcalloc(1, sizeof(struct ref_lock));
2086
2087        if (mustexist)
2088                resolve_flags |= RESOLVE_REF_READING;
2089        if (flags & REF_DELETING)
2090                resolve_flags |= RESOLVE_REF_ALLOW_BAD_NAME;
2091
2092        files_ref_path(refs, &ref_file, refname);
2093        resolved = !!resolve_ref_unsafe(refname, resolve_flags,
2094                                        lock->old_oid.hash, type);
2095        if (!resolved && errno == EISDIR) {
2096                /*
2097                 * we are trying to lock foo but we used to
2098                 * have foo/bar which now does not exist;
2099                 * it is normal for the empty directory 'foo'
2100                 * to remain.
2101                 */
2102                if (remove_empty_directories(&ref_file)) {
2103                        last_errno = errno;
2104                        if (!verify_refname_available_dir(
2105                                            refname, extras, skip,
2106                                            get_loose_refs(refs), err))
2107                                strbuf_addf(err, "there are still refs under '%s'",
2108                                            refname);
2109                        goto error_return;
2110                }
2111                resolved = !!resolve_ref_unsafe(refname, resolve_flags,
2112                                                lock->old_oid.hash, type);
2113        }
2114        if (!resolved) {
2115                last_errno = errno;
2116                if (last_errno != ENOTDIR ||
2117                    !verify_refname_available_dir(
2118                                    refname, extras, skip,
2119                                    get_loose_refs(refs), err))
2120                        strbuf_addf(err, "unable to resolve reference '%s': %s",
2121                                    refname, strerror(last_errno));
2122
2123                goto error_return;
2124        }
2125
2126        /*
2127         * If the ref did not exist and we are creating it, make sure
2128         * there is no existing packed ref whose name begins with our
2129         * refname, nor a packed ref whose name is a proper prefix of
2130         * our refname.
2131         */
2132        if (is_null_oid(&lock->old_oid) &&
2133            verify_refname_available_dir(refname, extras, skip,
2134                                         get_packed_refs(refs),
2135                                         err)) {
2136                last_errno = ENOTDIR;
2137                goto error_return;
2138        }
2139
2140        lock->lk = xcalloc(1, sizeof(struct lock_file));
2141
2142        lock->ref_name = xstrdup(refname);
2143
2144        if (raceproof_create_file(ref_file.buf, create_reflock, lock->lk)) {
2145                last_errno = errno;
2146                unable_to_lock_message(ref_file.buf, errno, err);
2147                goto error_return;
2148        }
2149
2150        if (verify_lock(lock, old_sha1, mustexist, err)) {
2151                last_errno = errno;
2152                goto error_return;
2153        }
2154        goto out;
2155
2156 error_return:
2157        unlock_ref(lock);
2158        lock = NULL;
2159
2160 out:
2161        strbuf_release(&ref_file);
2162        errno = last_errno;
2163        return lock;
2164}
2165
2166/*
2167 * Write an entry to the packed-refs file for the specified refname.
2168 * If peeled is non-NULL, write it as the entry's peeled value.
2169 */
2170static void write_packed_entry(FILE *fh, char *refname, unsigned char *sha1,
2171                               unsigned char *peeled)
2172{
2173        fprintf_or_die(fh, "%s %s\n", sha1_to_hex(sha1), refname);
2174        if (peeled)
2175                fprintf_or_die(fh, "^%s\n", sha1_to_hex(peeled));
2176}
2177
2178/*
2179 * An each_ref_entry_fn that writes the entry to a packed-refs file.
2180 */
2181static int write_packed_entry_fn(struct ref_entry *entry, void *cb_data)
2182{
2183        enum peel_status peel_status = peel_entry(entry, 0);
2184
2185        if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2186                error("internal error: %s is not a valid packed reference!",
2187                      entry->name);
2188        write_packed_entry(cb_data, entry->name, entry->u.value.oid.hash,
2189                           peel_status == PEEL_PEELED ?
2190                           entry->u.value.peeled.hash : NULL);
2191        return 0;
2192}
2193
2194/*
2195 * Lock the packed-refs file for writing. Flags is passed to
2196 * hold_lock_file_for_update(). Return 0 on success. On errors, set
2197 * errno appropriately and return a nonzero value.
2198 */
2199static int lock_packed_refs(struct files_ref_store *refs, int flags)
2200{
2201        static int timeout_configured = 0;
2202        static int timeout_value = 1000;
2203        struct packed_ref_cache *packed_ref_cache;
2204
2205        files_assert_main_repository(refs, "lock_packed_refs");
2206
2207        if (!timeout_configured) {
2208                git_config_get_int("core.packedrefstimeout", &timeout_value);
2209                timeout_configured = 1;
2210        }
2211
2212        if (hold_lock_file_for_update_timeout(
2213                            &packlock, files_packed_refs_path(refs),
2214                            flags, timeout_value) < 0)
2215                return -1;
2216        /*
2217         * Get the current packed-refs while holding the lock.  If the
2218         * packed-refs file has been modified since we last read it,
2219         * this will automatically invalidate the cache and re-read
2220         * the packed-refs file.
2221         */
2222        packed_ref_cache = get_packed_ref_cache(refs);
2223        packed_ref_cache->lock = &packlock;
2224        /* Increment the reference count to prevent it from being freed: */
2225        acquire_packed_ref_cache(packed_ref_cache);
2226        return 0;
2227}
2228
2229/*
2230 * Write the current version of the packed refs cache from memory to
2231 * disk. The packed-refs file must already be locked for writing (see
2232 * lock_packed_refs()). Return zero on success. On errors, set errno
2233 * and return a nonzero value
2234 */
2235static int commit_packed_refs(struct files_ref_store *refs)
2236{
2237        struct packed_ref_cache *packed_ref_cache =
2238                get_packed_ref_cache(refs);
2239        int error = 0;
2240        int save_errno = 0;
2241        FILE *out;
2242
2243        files_assert_main_repository(refs, "commit_packed_refs");
2244
2245        if (!packed_ref_cache->lock)
2246                die("internal error: packed-refs not locked");
2247
2248        out = fdopen_lock_file(packed_ref_cache->lock, "w");
2249        if (!out)
2250                die_errno("unable to fdopen packed-refs descriptor");
2251
2252        fprintf_or_die(out, "%s", PACKED_REFS_HEADER);
2253        do_for_each_entry_in_dir(get_packed_ref_dir(packed_ref_cache),
2254                                 0, write_packed_entry_fn, out);
2255
2256        if (commit_lock_file(packed_ref_cache->lock)) {
2257                save_errno = errno;
2258                error = -1;
2259        }
2260        packed_ref_cache->lock = NULL;
2261        release_packed_ref_cache(packed_ref_cache);
2262        errno = save_errno;
2263        return error;
2264}
2265
2266/*
2267 * Rollback the lockfile for the packed-refs file, and discard the
2268 * in-memory packed reference cache.  (The packed-refs file will be
2269 * read anew if it is needed again after this function is called.)
2270 */
2271static void rollback_packed_refs(struct files_ref_store *refs)
2272{
2273        struct packed_ref_cache *packed_ref_cache =
2274                get_packed_ref_cache(refs);
2275
2276        files_assert_main_repository(refs, "rollback_packed_refs");
2277
2278        if (!packed_ref_cache->lock)
2279                die("internal error: packed-refs not locked");
2280        rollback_lock_file(packed_ref_cache->lock);
2281        packed_ref_cache->lock = NULL;
2282        release_packed_ref_cache(packed_ref_cache);
2283        clear_packed_ref_cache(refs);
2284}
2285
2286struct ref_to_prune {
2287        struct ref_to_prune *next;
2288        unsigned char sha1[20];
2289        char name[FLEX_ARRAY];
2290};
2291
2292struct pack_refs_cb_data {
2293        unsigned int flags;
2294        struct ref_dir *packed_refs;
2295        struct ref_to_prune *ref_to_prune;
2296};
2297
2298/*
2299 * An each_ref_entry_fn that is run over loose references only.  If
2300 * the loose reference can be packed, add an entry in the packed ref
2301 * cache.  If the reference should be pruned, also add it to
2302 * ref_to_prune in the pack_refs_cb_data.
2303 */
2304static int pack_if_possible_fn(struct ref_entry *entry, void *cb_data)
2305{
2306        struct pack_refs_cb_data *cb = cb_data;
2307        enum peel_status peel_status;
2308        struct ref_entry *packed_entry;
2309        int is_tag_ref = starts_with(entry->name, "refs/tags/");
2310
2311        /* Do not pack per-worktree refs: */
2312        if (ref_type(entry->name) != REF_TYPE_NORMAL)
2313                return 0;
2314
2315        /* ALWAYS pack tags */
2316        if (!(cb->flags & PACK_REFS_ALL) && !is_tag_ref)
2317                return 0;
2318
2319        /* Do not pack symbolic or broken refs: */
2320        if ((entry->flag & REF_ISSYMREF) || !entry_resolves_to_object(entry))
2321                return 0;
2322
2323        /* Add a packed ref cache entry equivalent to the loose entry. */
2324        peel_status = peel_entry(entry, 1);
2325        if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2326                die("internal error peeling reference %s (%s)",
2327                    entry->name, oid_to_hex(&entry->u.value.oid));
2328        packed_entry = find_ref(cb->packed_refs, entry->name);
2329        if (packed_entry) {
2330                /* Overwrite existing packed entry with info from loose entry */
2331                packed_entry->flag = REF_ISPACKED | REF_KNOWS_PEELED;
2332                oidcpy(&packed_entry->u.value.oid, &entry->u.value.oid);
2333        } else {
2334                packed_entry = create_ref_entry(entry->name, entry->u.value.oid.hash,
2335                                                REF_ISPACKED | REF_KNOWS_PEELED, 0);
2336                add_ref(cb->packed_refs, packed_entry);
2337        }
2338        oidcpy(&packed_entry->u.value.peeled, &entry->u.value.peeled);
2339
2340        /* Schedule the loose reference for pruning if requested. */
2341        if ((cb->flags & PACK_REFS_PRUNE)) {
2342                struct ref_to_prune *n;
2343                FLEX_ALLOC_STR(n, name, entry->name);
2344                hashcpy(n->sha1, entry->u.value.oid.hash);
2345                n->next = cb->ref_to_prune;
2346                cb->ref_to_prune = n;
2347        }
2348        return 0;
2349}
2350
2351enum {
2352        REMOVE_EMPTY_PARENTS_REF = 0x01,
2353        REMOVE_EMPTY_PARENTS_REFLOG = 0x02
2354};
2355
2356/*
2357 * Remove empty parent directories associated with the specified
2358 * reference and/or its reflog, but spare [logs/]refs/ and immediate
2359 * subdirs. flags is a combination of REMOVE_EMPTY_PARENTS_REF and/or
2360 * REMOVE_EMPTY_PARENTS_REFLOG.
2361 */
2362static void try_remove_empty_parents(struct files_ref_store *refs,
2363                                     const char *refname,
2364                                     unsigned int flags)
2365{
2366        struct strbuf buf = STRBUF_INIT;
2367        struct strbuf sb = STRBUF_INIT;
2368        char *p, *q;
2369        int i;
2370
2371        strbuf_addstr(&buf, refname);
2372        p = buf.buf;
2373        for (i = 0; i < 2; i++) { /* refs/{heads,tags,...}/ */
2374                while (*p && *p != '/')
2375                        p++;
2376                /* tolerate duplicate slashes; see check_refname_format() */
2377                while (*p == '/')
2378                        p++;
2379        }
2380        q = buf.buf + buf.len;
2381        while (flags & (REMOVE_EMPTY_PARENTS_REF | REMOVE_EMPTY_PARENTS_REFLOG)) {
2382                while (q > p && *q != '/')
2383                        q--;
2384                while (q > p && *(q-1) == '/')
2385                        q--;
2386                if (q == p)
2387                        break;
2388                strbuf_setlen(&buf, q - buf.buf);
2389
2390                strbuf_reset(&sb);
2391                files_ref_path(refs, &sb, buf.buf);
2392                if ((flags & REMOVE_EMPTY_PARENTS_REF) && rmdir(sb.buf))
2393                        flags &= ~REMOVE_EMPTY_PARENTS_REF;
2394
2395                strbuf_reset(&sb);
2396                files_reflog_path(refs, &sb, buf.buf);
2397                if ((flags & REMOVE_EMPTY_PARENTS_REFLOG) && rmdir(sb.buf))
2398                        flags &= ~REMOVE_EMPTY_PARENTS_REFLOG;
2399        }
2400        strbuf_release(&buf);
2401        strbuf_release(&sb);
2402}
2403
2404/* make sure nobody touched the ref, and unlink */
2405static void prune_ref(struct ref_to_prune *r)
2406{
2407        struct ref_transaction *transaction;
2408        struct strbuf err = STRBUF_INIT;
2409
2410        if (check_refname_format(r->name, 0))
2411                return;
2412
2413        transaction = ref_transaction_begin(&err);
2414        if (!transaction ||
2415            ref_transaction_delete(transaction, r->name, r->sha1,
2416                                   REF_ISPRUNING | REF_NODEREF, NULL, &err) ||
2417            ref_transaction_commit(transaction, &err)) {
2418                ref_transaction_free(transaction);
2419                error("%s", err.buf);
2420                strbuf_release(&err);
2421                return;
2422        }
2423        ref_transaction_free(transaction);
2424        strbuf_release(&err);
2425}
2426
2427static void prune_refs(struct ref_to_prune *r)
2428{
2429        while (r) {
2430                prune_ref(r);
2431                r = r->next;
2432        }
2433}
2434
2435static int files_pack_refs(struct ref_store *ref_store, unsigned int flags)
2436{
2437        struct files_ref_store *refs =
2438                files_downcast(ref_store, 0, "pack_refs");
2439        struct pack_refs_cb_data cbdata;
2440
2441        memset(&cbdata, 0, sizeof(cbdata));
2442        cbdata.flags = flags;
2443
2444        lock_packed_refs(refs, LOCK_DIE_ON_ERROR);
2445        cbdata.packed_refs = get_packed_refs(refs);
2446
2447        do_for_each_entry_in_dir(get_loose_refs(refs), 0,
2448                                 pack_if_possible_fn, &cbdata);
2449
2450        if (commit_packed_refs(refs))
2451                die_errno("unable to overwrite old ref-pack file");
2452
2453        prune_refs(cbdata.ref_to_prune);
2454        return 0;
2455}
2456
2457/*
2458 * Rewrite the packed-refs file, omitting any refs listed in
2459 * 'refnames'. On error, leave packed-refs unchanged, write an error
2460 * message to 'err', and return a nonzero value.
2461 *
2462 * The refs in 'refnames' needn't be sorted. `err` must not be NULL.
2463 */
2464static int repack_without_refs(struct files_ref_store *refs,
2465                               struct string_list *refnames, struct strbuf *err)
2466{
2467        struct ref_dir *packed;
2468        struct string_list_item *refname;
2469        int ret, needs_repacking = 0, removed = 0;
2470
2471        files_assert_main_repository(refs, "repack_without_refs");
2472        assert(err);
2473
2474        /* Look for a packed ref */
2475        for_each_string_list_item(refname, refnames) {
2476                if (get_packed_ref(refs, refname->string)) {
2477                        needs_repacking = 1;
2478                        break;
2479                }
2480        }
2481
2482        /* Avoid locking if we have nothing to do */
2483        if (!needs_repacking)
2484                return 0; /* no refname exists in packed refs */
2485
2486        if (lock_packed_refs(refs, 0)) {
2487                unable_to_lock_message(files_packed_refs_path(refs), errno, err);
2488                return -1;
2489        }
2490        packed = get_packed_refs(refs);
2491
2492        /* Remove refnames from the cache */
2493        for_each_string_list_item(refname, refnames)
2494                if (remove_entry(packed, refname->string) != -1)
2495                        removed = 1;
2496        if (!removed) {
2497                /*
2498                 * All packed entries disappeared while we were
2499                 * acquiring the lock.
2500                 */
2501                rollback_packed_refs(refs);
2502                return 0;
2503        }
2504
2505        /* Write what remains */
2506        ret = commit_packed_refs(refs);
2507        if (ret)
2508                strbuf_addf(err, "unable to overwrite old ref-pack file: %s",
2509                            strerror(errno));
2510        return ret;
2511}
2512
2513static int files_delete_refs(struct ref_store *ref_store,
2514                             struct string_list *refnames, unsigned int flags)
2515{
2516        struct files_ref_store *refs =
2517                files_downcast(ref_store, 0, "delete_refs");
2518        struct strbuf err = STRBUF_INIT;
2519        int i, result = 0;
2520
2521        if (!refnames->nr)
2522                return 0;
2523
2524        result = repack_without_refs(refs, refnames, &err);
2525        if (result) {
2526                /*
2527                 * If we failed to rewrite the packed-refs file, then
2528                 * it is unsafe to try to remove loose refs, because
2529                 * doing so might expose an obsolete packed value for
2530                 * a reference that might even point at an object that
2531                 * has been garbage collected.
2532                 */
2533                if (refnames->nr == 1)
2534                        error(_("could not delete reference %s: %s"),
2535                              refnames->items[0].string, err.buf);
2536                else
2537                        error(_("could not delete references: %s"), err.buf);
2538
2539                goto out;
2540        }
2541
2542        for (i = 0; i < refnames->nr; i++) {
2543                const char *refname = refnames->items[i].string;
2544
2545                if (delete_ref(NULL, refname, NULL, flags))
2546                        result |= error(_("could not remove reference %s"), refname);
2547        }
2548
2549out:
2550        strbuf_release(&err);
2551        return result;
2552}
2553
2554/*
2555 * People using contrib's git-new-workdir have .git/logs/refs ->
2556 * /some/other/path/.git/logs/refs, and that may live on another device.
2557 *
2558 * IOW, to avoid cross device rename errors, the temporary renamed log must
2559 * live into logs/refs.
2560 */
2561#define TMP_RENAMED_LOG  "refs/.tmp-renamed-log"
2562
2563struct rename_cb {
2564        const char *tmp_renamed_log;
2565        int true_errno;
2566};
2567
2568static int rename_tmp_log_callback(const char *path, void *cb_data)
2569{
2570        struct rename_cb *cb = cb_data;
2571
2572        if (rename(cb->tmp_renamed_log, path)) {
2573                /*
2574                 * rename(a, b) when b is an existing directory ought
2575                 * to result in ISDIR, but Solaris 5.8 gives ENOTDIR.
2576                 * Sheesh. Record the true errno for error reporting,
2577                 * but report EISDIR to raceproof_create_file() so
2578                 * that it knows to retry.
2579                 */
2580                cb->true_errno = errno;
2581                if (errno == ENOTDIR)
2582                        errno = EISDIR;
2583                return -1;
2584        } else {
2585                return 0;
2586        }
2587}
2588
2589static int rename_tmp_log(struct files_ref_store *refs, const char *newrefname)
2590{
2591        struct strbuf path = STRBUF_INIT;
2592        struct strbuf tmp = STRBUF_INIT;
2593        struct rename_cb cb;
2594        int ret;
2595
2596        files_reflog_path(refs, &path, newrefname);
2597        files_reflog_path(refs, &tmp, TMP_RENAMED_LOG);
2598        cb.tmp_renamed_log = tmp.buf;
2599        ret = raceproof_create_file(path.buf, rename_tmp_log_callback, &cb);
2600        if (ret) {
2601                if (errno == EISDIR)
2602                        error("directory not empty: %s", path.buf);
2603                else
2604                        error("unable to move logfile %s to %s: %s",
2605                              tmp.buf, path.buf,
2606                              strerror(cb.true_errno));
2607        }
2608
2609        strbuf_release(&path);
2610        strbuf_release(&tmp);
2611        return ret;
2612}
2613
2614static int files_verify_refname_available(struct ref_store *ref_store,
2615                                          const char *newname,
2616                                          const struct string_list *extras,
2617                                          const struct string_list *skip,
2618                                          struct strbuf *err)
2619{
2620        struct files_ref_store *refs =
2621                files_downcast(ref_store, 1, "verify_refname_available");
2622        struct ref_dir *packed_refs = get_packed_refs(refs);
2623        struct ref_dir *loose_refs = get_loose_refs(refs);
2624
2625        if (verify_refname_available_dir(newname, extras, skip,
2626                                         packed_refs, err) ||
2627            verify_refname_available_dir(newname, extras, skip,
2628                                         loose_refs, err))
2629                return -1;
2630
2631        return 0;
2632}
2633
2634static int write_ref_to_lockfile(struct ref_lock *lock,
2635                                 const unsigned char *sha1, struct strbuf *err);
2636static int commit_ref_update(struct files_ref_store *refs,
2637                             struct ref_lock *lock,
2638                             const unsigned char *sha1, const char *logmsg,
2639                             struct strbuf *err);
2640
2641static int files_rename_ref(struct ref_store *ref_store,
2642                            const char *oldrefname, const char *newrefname,
2643                            const char *logmsg)
2644{
2645        struct files_ref_store *refs =
2646                files_downcast(ref_store, 0, "rename_ref");
2647        unsigned char sha1[20], orig_sha1[20];
2648        int flag = 0, logmoved = 0;
2649        struct ref_lock *lock;
2650        struct stat loginfo;
2651        struct strbuf sb_oldref = STRBUF_INIT;
2652        struct strbuf sb_newref = STRBUF_INIT;
2653        struct strbuf tmp_renamed_log = STRBUF_INIT;
2654        int log, ret;
2655        struct strbuf err = STRBUF_INIT;
2656
2657        files_reflog_path(refs, &sb_oldref, oldrefname);
2658        files_reflog_path(refs, &sb_newref, newrefname);
2659        files_reflog_path(refs, &tmp_renamed_log, TMP_RENAMED_LOG);
2660
2661        log = !lstat(sb_oldref.buf, &loginfo);
2662        if (log && S_ISLNK(loginfo.st_mode)) {
2663                ret = error("reflog for %s is a symlink", oldrefname);
2664                goto out;
2665        }
2666
2667        if (!resolve_ref_unsafe(oldrefname, RESOLVE_REF_READING | RESOLVE_REF_NO_RECURSE,
2668                                orig_sha1, &flag)) {
2669                ret = error("refname %s not found", oldrefname);
2670                goto out;
2671        }
2672
2673        if (flag & REF_ISSYMREF) {
2674                ret = error("refname %s is a symbolic ref, renaming it is not supported",
2675                            oldrefname);
2676                goto out;
2677        }
2678        if (!rename_ref_available(oldrefname, newrefname)) {
2679                ret = 1;
2680                goto out;
2681        }
2682
2683        if (log && rename(sb_oldref.buf, tmp_renamed_log.buf)) {
2684                ret = error("unable to move logfile logs/%s to logs/"TMP_RENAMED_LOG": %s",
2685                            oldrefname, strerror(errno));
2686                goto out;
2687        }
2688
2689        if (delete_ref(logmsg, oldrefname, orig_sha1, REF_NODEREF)) {
2690                error("unable to delete old %s", oldrefname);
2691                goto rollback;
2692        }
2693
2694        /*
2695         * Since we are doing a shallow lookup, sha1 is not the
2696         * correct value to pass to delete_ref as old_sha1. But that
2697         * doesn't matter, because an old_sha1 check wouldn't add to
2698         * the safety anyway; we want to delete the reference whatever
2699         * its current value.
2700         */
2701        if (!read_ref_full(newrefname, RESOLVE_REF_READING | RESOLVE_REF_NO_RECURSE,
2702                           sha1, NULL) &&
2703            delete_ref(NULL, newrefname, NULL, REF_NODEREF)) {
2704                if (errno == EISDIR) {
2705                        struct strbuf path = STRBUF_INIT;
2706                        int result;
2707
2708                        files_ref_path(refs, &path, newrefname);
2709                        result = remove_empty_directories(&path);
2710                        strbuf_release(&path);
2711
2712                        if (result) {
2713                                error("Directory not empty: %s", newrefname);
2714                                goto rollback;
2715                        }
2716                } else {
2717                        error("unable to delete existing %s", newrefname);
2718                        goto rollback;
2719                }
2720        }
2721
2722        if (log && rename_tmp_log(refs, newrefname))
2723                goto rollback;
2724
2725        logmoved = log;
2726
2727        lock = lock_ref_sha1_basic(refs, newrefname, NULL, NULL, NULL,
2728                                   REF_NODEREF, NULL, &err);
2729        if (!lock) {
2730                error("unable to rename '%s' to '%s': %s", oldrefname, newrefname, err.buf);
2731                strbuf_release(&err);
2732                goto rollback;
2733        }
2734        hashcpy(lock->old_oid.hash, orig_sha1);
2735
2736        if (write_ref_to_lockfile(lock, orig_sha1, &err) ||
2737            commit_ref_update(refs, lock, orig_sha1, logmsg, &err)) {
2738                error("unable to write current sha1 into %s: %s", newrefname, err.buf);
2739                strbuf_release(&err);
2740                goto rollback;
2741        }
2742
2743        ret = 0;
2744        goto out;
2745
2746 rollback:
2747        lock = lock_ref_sha1_basic(refs, oldrefname, NULL, NULL, NULL,
2748                                   REF_NODEREF, NULL, &err);
2749        if (!lock) {
2750                error("unable to lock %s for rollback: %s", oldrefname, err.buf);
2751                strbuf_release(&err);
2752                goto rollbacklog;
2753        }
2754
2755        flag = log_all_ref_updates;
2756        log_all_ref_updates = LOG_REFS_NONE;
2757        if (write_ref_to_lockfile(lock, orig_sha1, &err) ||
2758            commit_ref_update(refs, lock, orig_sha1, NULL, &err)) {
2759                error("unable to write current sha1 into %s: %s", oldrefname, err.buf);
2760                strbuf_release(&err);
2761        }
2762        log_all_ref_updates = flag;
2763
2764 rollbacklog:
2765        if (logmoved && rename(sb_newref.buf, sb_oldref.buf))
2766                error("unable to restore logfile %s from %s: %s",
2767                        oldrefname, newrefname, strerror(errno));
2768        if (!logmoved && log &&
2769            rename(tmp_renamed_log.buf, sb_oldref.buf))
2770                error("unable to restore logfile %s from logs/"TMP_RENAMED_LOG": %s",
2771                        oldrefname, strerror(errno));
2772        ret = 1;
2773 out:
2774        strbuf_release(&sb_newref);
2775        strbuf_release(&sb_oldref);
2776        strbuf_release(&tmp_renamed_log);
2777
2778        return ret;
2779}
2780
2781static int close_ref(struct ref_lock *lock)
2782{
2783        if (close_lock_file(lock->lk))
2784                return -1;
2785        return 0;
2786}
2787
2788static int commit_ref(struct ref_lock *lock)
2789{
2790        char *path = get_locked_file_path(lock->lk);
2791        struct stat st;
2792
2793        if (!lstat(path, &st) && S_ISDIR(st.st_mode)) {
2794                /*
2795                 * There is a directory at the path we want to rename
2796                 * the lockfile to. Hopefully it is empty; try to
2797                 * delete it.
2798                 */
2799                size_t len = strlen(path);
2800                struct strbuf sb_path = STRBUF_INIT;
2801
2802                strbuf_attach(&sb_path, path, len, len);
2803
2804                /*
2805                 * If this fails, commit_lock_file() will also fail
2806                 * and will report the problem.
2807                 */
2808                remove_empty_directories(&sb_path);
2809                strbuf_release(&sb_path);
2810        } else {
2811                free(path);
2812        }
2813
2814        if (commit_lock_file(lock->lk))
2815                return -1;
2816        return 0;
2817}
2818
2819static int open_or_create_logfile(const char *path, void *cb)
2820{
2821        int *fd = cb;
2822
2823        *fd = open(path, O_APPEND | O_WRONLY | O_CREAT, 0666);
2824        return (*fd < 0) ? -1 : 0;
2825}
2826
2827/*
2828 * Create a reflog for a ref. If force_create = 0, only create the
2829 * reflog for certain refs (those for which should_autocreate_reflog
2830 * returns non-zero). Otherwise, create it regardless of the reference
2831 * name. If the logfile already existed or was created, return 0 and
2832 * set *logfd to the file descriptor opened for appending to the file.
2833 * If no logfile exists and we decided not to create one, return 0 and
2834 * set *logfd to -1. On failure, fill in *err, set *logfd to -1, and
2835 * return -1.
2836 */
2837static int log_ref_setup(struct files_ref_store *refs,
2838                         const char *refname, int force_create,
2839                         int *logfd, struct strbuf *err)
2840{
2841        struct strbuf logfile_sb = STRBUF_INIT;
2842        char *logfile;
2843
2844        files_reflog_path(refs, &logfile_sb, refname);
2845        logfile = strbuf_detach(&logfile_sb, NULL);
2846
2847        if (force_create || should_autocreate_reflog(refname)) {
2848                if (raceproof_create_file(logfile, open_or_create_logfile, logfd)) {
2849                        if (errno == ENOENT)
2850                                strbuf_addf(err, "unable to create directory for '%s': "
2851                                            "%s", logfile, strerror(errno));
2852                        else if (errno == EISDIR)
2853                                strbuf_addf(err, "there are still logs under '%s'",
2854                                            logfile);
2855                        else
2856                                strbuf_addf(err, "unable to append to '%s': %s",
2857                                            logfile, strerror(errno));
2858
2859                        goto error;
2860                }
2861        } else {
2862                *logfd = open(logfile, O_APPEND | O_WRONLY, 0666);
2863                if (*logfd < 0) {
2864                        if (errno == ENOENT || errno == EISDIR) {
2865                                /*
2866                                 * The logfile doesn't already exist,
2867                                 * but that is not an error; it only
2868                                 * means that we won't write log
2869                                 * entries to it.
2870                                 */
2871                                ;
2872                        } else {
2873                                strbuf_addf(err, "unable to append to '%s': %s",
2874                                            logfile, strerror(errno));
2875                                goto error;
2876                        }
2877                }
2878        }
2879
2880        if (*logfd >= 0)
2881                adjust_shared_perm(logfile);
2882
2883        free(logfile);
2884        return 0;
2885
2886error:
2887        free(logfile);
2888        return -1;
2889}
2890
2891static int files_create_reflog(struct ref_store *ref_store,
2892                               const char *refname, int force_create,
2893                               struct strbuf *err)
2894{
2895        struct files_ref_store *refs =
2896                files_downcast(ref_store, 0, "create_reflog");
2897        int fd;
2898
2899        if (log_ref_setup(refs, refname, force_create, &fd, err))
2900                return -1;
2901
2902        if (fd >= 0)
2903                close(fd);
2904
2905        return 0;
2906}
2907
2908static int log_ref_write_fd(int fd, const unsigned char *old_sha1,
2909                            const unsigned char *new_sha1,
2910                            const char *committer, const char *msg)
2911{
2912        int msglen, written;
2913        unsigned maxlen, len;
2914        char *logrec;
2915
2916        msglen = msg ? strlen(msg) : 0;
2917        maxlen = strlen(committer) + msglen + 100;
2918        logrec = xmalloc(maxlen);
2919        len = xsnprintf(logrec, maxlen, "%s %s %s\n",
2920                        sha1_to_hex(old_sha1),
2921                        sha1_to_hex(new_sha1),
2922                        committer);
2923        if (msglen)
2924                len += copy_reflog_msg(logrec + len - 1, msg) - 1;
2925
2926        written = len <= maxlen ? write_in_full(fd, logrec, len) : -1;
2927        free(logrec);
2928        if (written != len)
2929                return -1;
2930
2931        return 0;
2932}
2933
2934static int files_log_ref_write(struct files_ref_store *refs,
2935                               const char *refname, const unsigned char *old_sha1,
2936                               const unsigned char *new_sha1, const char *msg,
2937                               int flags, struct strbuf *err)
2938{
2939        int logfd, result;
2940
2941        if (log_all_ref_updates == LOG_REFS_UNSET)
2942                log_all_ref_updates = is_bare_repository() ? LOG_REFS_NONE : LOG_REFS_NORMAL;
2943
2944        result = log_ref_setup(refs, refname,
2945                               flags & REF_FORCE_CREATE_REFLOG,
2946                               &logfd, err);
2947
2948        if (result)
2949                return result;
2950
2951        if (logfd < 0)
2952                return 0;
2953        result = log_ref_write_fd(logfd, old_sha1, new_sha1,
2954                                  git_committer_info(0), msg);
2955        if (result) {
2956                struct strbuf sb = STRBUF_INIT;
2957                int save_errno = errno;
2958
2959                files_reflog_path(refs, &sb, refname);
2960                strbuf_addf(err, "unable to append to '%s': %s",
2961                            sb.buf, strerror(save_errno));
2962                strbuf_release(&sb);
2963                close(logfd);
2964                return -1;
2965        }
2966        if (close(logfd)) {
2967                struct strbuf sb = STRBUF_INIT;
2968                int save_errno = errno;
2969
2970                files_reflog_path(refs, &sb, refname);
2971                strbuf_addf(err, "unable to append to '%s': %s",
2972                            sb.buf, strerror(save_errno));
2973                strbuf_release(&sb);
2974                return -1;
2975        }
2976        return 0;
2977}
2978
2979/*
2980 * Write sha1 into the open lockfile, then close the lockfile. On
2981 * errors, rollback the lockfile, fill in *err and
2982 * return -1.
2983 */
2984static int write_ref_to_lockfile(struct ref_lock *lock,
2985                                 const unsigned char *sha1, struct strbuf *err)
2986{
2987        static char term = '\n';
2988        struct object *o;
2989        int fd;
2990
2991        o = parse_object(sha1);
2992        if (!o) {
2993                strbuf_addf(err,
2994                            "trying to write ref '%s' with nonexistent object %s",
2995                            lock->ref_name, sha1_to_hex(sha1));
2996                unlock_ref(lock);
2997                return -1;
2998        }
2999        if (o->type != OBJ_COMMIT && is_branch(lock->ref_name)) {
3000                strbuf_addf(err,
3001                            "trying to write non-commit object %s to branch '%s'",
3002                            sha1_to_hex(sha1), lock->ref_name);
3003                unlock_ref(lock);
3004                return -1;
3005        }
3006        fd = get_lock_file_fd(lock->lk);
3007        if (write_in_full(fd, sha1_to_hex(sha1), 40) != 40 ||
3008            write_in_full(fd, &term, 1) != 1 ||
3009            close_ref(lock) < 0) {
3010                strbuf_addf(err,
3011                            "couldn't write '%s'", get_lock_file_path(lock->lk));
3012                unlock_ref(lock);
3013                return -1;
3014        }
3015        return 0;
3016}
3017
3018/*
3019 * Commit a change to a loose reference that has already been written
3020 * to the loose reference lockfile. Also update the reflogs if
3021 * necessary, using the specified lockmsg (which can be NULL).
3022 */
3023static int commit_ref_update(struct files_ref_store *refs,
3024                             struct ref_lock *lock,
3025                             const unsigned char *sha1, const char *logmsg,
3026                             struct strbuf *err)
3027{
3028        files_assert_main_repository(refs, "commit_ref_update");
3029
3030        clear_loose_ref_cache(refs);
3031        if (files_log_ref_write(refs, lock->ref_name,
3032                                lock->old_oid.hash, sha1,
3033                                logmsg, 0, err)) {
3034                char *old_msg = strbuf_detach(err, NULL);
3035                strbuf_addf(err, "cannot update the ref '%s': %s",
3036                            lock->ref_name, old_msg);
3037                free(old_msg);
3038                unlock_ref(lock);
3039                return -1;
3040        }
3041
3042        if (strcmp(lock->ref_name, "HEAD") != 0) {
3043                /*
3044                 * Special hack: If a branch is updated directly and HEAD
3045                 * points to it (may happen on the remote side of a push
3046                 * for example) then logically the HEAD reflog should be
3047                 * updated too.
3048                 * A generic solution implies reverse symref information,
3049                 * but finding all symrefs pointing to the given branch
3050                 * would be rather costly for this rare event (the direct
3051                 * update of a branch) to be worth it.  So let's cheat and
3052                 * check with HEAD only which should cover 99% of all usage
3053                 * scenarios (even 100% of the default ones).
3054                 */
3055                unsigned char head_sha1[20];
3056                int head_flag;
3057                const char *head_ref;
3058
3059                head_ref = resolve_ref_unsafe("HEAD", RESOLVE_REF_READING,
3060                                              head_sha1, &head_flag);
3061                if (head_ref && (head_flag & REF_ISSYMREF) &&
3062                    !strcmp(head_ref, lock->ref_name)) {
3063                        struct strbuf log_err = STRBUF_INIT;
3064                        if (files_log_ref_write(refs, "HEAD",
3065                                                lock->old_oid.hash, sha1,
3066                                                logmsg, 0, &log_err)) {
3067                                error("%s", log_err.buf);
3068                                strbuf_release(&log_err);
3069                        }
3070                }
3071        }
3072
3073        if (commit_ref(lock)) {
3074                strbuf_addf(err, "couldn't set '%s'", lock->ref_name);
3075                unlock_ref(lock);
3076                return -1;
3077        }
3078
3079        unlock_ref(lock);
3080        return 0;
3081}
3082
3083static int create_ref_symlink(struct ref_lock *lock, const char *target)
3084{
3085        int ret = -1;
3086#ifndef NO_SYMLINK_HEAD
3087        char *ref_path = get_locked_file_path(lock->lk);
3088        unlink(ref_path);
3089        ret = symlink(target, ref_path);
3090        free(ref_path);
3091
3092        if (ret)
3093                fprintf(stderr, "no symlink - falling back to symbolic ref\n");
3094#endif
3095        return ret;
3096}
3097
3098static void update_symref_reflog(struct files_ref_store *refs,
3099                                 struct ref_lock *lock, const char *refname,
3100                                 const char *target, const char *logmsg)
3101{
3102        struct strbuf err = STRBUF_INIT;
3103        unsigned char new_sha1[20];
3104        if (logmsg && !read_ref(target, new_sha1) &&
3105            files_log_ref_write(refs, refname, lock->old_oid.hash,
3106                                new_sha1, logmsg, 0, &err)) {
3107                error("%s", err.buf);
3108                strbuf_release(&err);
3109        }
3110}
3111
3112static int create_symref_locked(struct files_ref_store *refs,
3113                                struct ref_lock *lock, const char *refname,
3114                                const char *target, const char *logmsg)
3115{
3116        if (prefer_symlink_refs && !create_ref_symlink(lock, target)) {
3117                update_symref_reflog(refs, lock, refname, target, logmsg);
3118                return 0;
3119        }
3120
3121        if (!fdopen_lock_file(lock->lk, "w"))
3122                return error("unable to fdopen %s: %s",
3123                             lock->lk->tempfile.filename.buf, strerror(errno));
3124
3125        update_symref_reflog(refs, lock, refname, target, logmsg);
3126
3127        /* no error check; commit_ref will check ferror */
3128        fprintf(lock->lk->tempfile.fp, "ref: %s\n", target);
3129        if (commit_ref(lock) < 0)
3130                return error("unable to write symref for %s: %s", refname,
3131                             strerror(errno));
3132        return 0;
3133}
3134
3135static int files_create_symref(struct ref_store *ref_store,
3136                               const char *refname, const char *target,
3137                               const char *logmsg)
3138{
3139        struct files_ref_store *refs =
3140                files_downcast(ref_store, 0, "create_symref");
3141        struct strbuf err = STRBUF_INIT;
3142        struct ref_lock *lock;
3143        int ret;
3144
3145        lock = lock_ref_sha1_basic(refs, refname, NULL,
3146                                   NULL, NULL, REF_NODEREF, NULL,
3147                                   &err);
3148        if (!lock) {
3149                error("%s", err.buf);
3150                strbuf_release(&err);
3151                return -1;
3152        }
3153
3154        ret = create_symref_locked(refs, lock, refname, target, logmsg);
3155        unlock_ref(lock);
3156        return ret;
3157}
3158
3159int set_worktree_head_symref(const char *gitdir, const char *target, const char *logmsg)
3160{
3161        /*
3162         * FIXME: this obviously will not work well for future refs
3163         * backends. This function needs to die.
3164         */
3165        struct files_ref_store *refs =
3166                files_downcast(get_ref_store(NULL), 0, "set_head_symref");
3167
3168        static struct lock_file head_lock;
3169        struct ref_lock *lock;
3170        struct strbuf head_path = STRBUF_INIT;
3171        const char *head_rel;
3172        int ret;
3173
3174        strbuf_addf(&head_path, "%s/HEAD", absolute_path(gitdir));
3175        if (hold_lock_file_for_update(&head_lock, head_path.buf,
3176                                      LOCK_NO_DEREF) < 0) {
3177                struct strbuf err = STRBUF_INIT;
3178                unable_to_lock_message(head_path.buf, errno, &err);
3179                error("%s", err.buf);
3180                strbuf_release(&err);
3181                strbuf_release(&head_path);
3182                return -1;
3183        }
3184
3185        /* head_rel will be "HEAD" for the main tree, "worktrees/wt/HEAD" for
3186           linked trees */
3187        head_rel = remove_leading_path(head_path.buf,
3188                                       absolute_path(get_git_common_dir()));
3189        /* to make use of create_symref_locked(), initialize ref_lock */
3190        lock = xcalloc(1, sizeof(struct ref_lock));
3191        lock->lk = &head_lock;
3192        lock->ref_name = xstrdup(head_rel);
3193
3194        ret = create_symref_locked(refs, lock, head_rel, target, logmsg);
3195
3196        unlock_ref(lock); /* will free lock */
3197        strbuf_release(&head_path);
3198        return ret;
3199}
3200
3201static int files_reflog_exists(struct ref_store *ref_store,
3202                               const char *refname)
3203{
3204        struct files_ref_store *refs =
3205                files_downcast(ref_store, 0, "reflog_exists");
3206        struct strbuf sb = STRBUF_INIT;
3207        struct stat st;
3208        int ret;
3209
3210        files_reflog_path(refs, &sb, refname);
3211        ret = !lstat(sb.buf, &st) && S_ISREG(st.st_mode);
3212        strbuf_release(&sb);
3213        return ret;
3214}
3215
3216static int files_delete_reflog(struct ref_store *ref_store,
3217                               const char *refname)
3218{
3219        struct files_ref_store *refs =
3220                files_downcast(ref_store, 0, "delete_reflog");
3221        struct strbuf sb = STRBUF_INIT;
3222        int ret;
3223
3224        files_reflog_path(refs, &sb, refname);
3225        ret = remove_path(sb.buf);
3226        strbuf_release(&sb);
3227        return ret;
3228}
3229
3230static int show_one_reflog_ent(struct strbuf *sb, each_reflog_ent_fn fn, void *cb_data)
3231{
3232        struct object_id ooid, noid;
3233        char *email_end, *message;
3234        unsigned long timestamp;
3235        int tz;
3236        const char *p = sb->buf;
3237
3238        /* old SP new SP name <email> SP time TAB msg LF */
3239        if (!sb->len || sb->buf[sb->len - 1] != '\n' ||
3240            parse_oid_hex(p, &ooid, &p) || *p++ != ' ' ||
3241            parse_oid_hex(p, &noid, &p) || *p++ != ' ' ||
3242            !(email_end = strchr(p, '>')) ||
3243            email_end[1] != ' ' ||
3244            !(timestamp = strtoul(email_end + 2, &message, 10)) ||
3245            !message || message[0] != ' ' ||
3246            (message[1] != '+' && message[1] != '-') ||
3247            !isdigit(message[2]) || !isdigit(message[3]) ||
3248            !isdigit(message[4]) || !isdigit(message[5]))
3249                return 0; /* corrupt? */
3250        email_end[1] = '\0';
3251        tz = strtol(message + 1, NULL, 10);
3252        if (message[6] != '\t')
3253                message += 6;
3254        else
3255                message += 7;
3256        return fn(&ooid, &noid, p, timestamp, tz, message, cb_data);
3257}
3258
3259static char *find_beginning_of_line(char *bob, char *scan)
3260{
3261        while (bob < scan && *(--scan) != '\n')
3262                ; /* keep scanning backwards */
3263        /*
3264         * Return either beginning of the buffer, or LF at the end of
3265         * the previous line.
3266         */
3267        return scan;
3268}
3269
3270static int files_for_each_reflog_ent_reverse(struct ref_store *ref_store,
3271                                             const char *refname,
3272                                             each_reflog_ent_fn fn,
3273                                             void *cb_data)
3274{
3275        struct files_ref_store *refs =
3276                files_downcast(ref_store, 0, "for_each_reflog_ent_reverse");
3277        struct strbuf sb = STRBUF_INIT;
3278        FILE *logfp;
3279        long pos;
3280        int ret = 0, at_tail = 1;
3281
3282        files_reflog_path(refs, &sb, refname);
3283        logfp = fopen(sb.buf, "r");
3284        strbuf_release(&sb);
3285        if (!logfp)
3286                return -1;
3287
3288        /* Jump to the end */
3289        if (fseek(logfp, 0, SEEK_END) < 0)
3290                return error("cannot seek back reflog for %s: %s",
3291                             refname, strerror(errno));
3292        pos = ftell(logfp);
3293        while (!ret && 0 < pos) {
3294                int cnt;
3295                size_t nread;
3296                char buf[BUFSIZ];
3297                char *endp, *scanp;
3298
3299                /* Fill next block from the end */
3300                cnt = (sizeof(buf) < pos) ? sizeof(buf) : pos;
3301                if (fseek(logfp, pos - cnt, SEEK_SET))
3302                        return error("cannot seek back reflog for %s: %s",
3303                                     refname, strerror(errno));
3304                nread = fread(buf, cnt, 1, logfp);
3305                if (nread != 1)
3306                        return error("cannot read %d bytes from reflog for %s: %s",
3307                                     cnt, refname, strerror(errno));
3308                pos -= cnt;
3309
3310                scanp = endp = buf + cnt;
3311                if (at_tail && scanp[-1] == '\n')
3312                        /* Looking at the final LF at the end of the file */
3313                        scanp--;
3314                at_tail = 0;
3315
3316                while (buf < scanp) {
3317                        /*
3318                         * terminating LF of the previous line, or the beginning
3319                         * of the buffer.
3320                         */
3321                        char *bp;
3322
3323                        bp = find_beginning_of_line(buf, scanp);
3324
3325                        if (*bp == '\n') {
3326                                /*
3327                                 * The newline is the end of the previous line,
3328                                 * so we know we have complete line starting
3329                                 * at (bp + 1). Prefix it onto any prior data
3330                                 * we collected for the line and process it.
3331                                 */
3332                                strbuf_splice(&sb, 0, 0, bp + 1, endp - (bp + 1));
3333                                scanp = bp;
3334                                endp = bp + 1;
3335                                ret = show_one_reflog_ent(&sb, fn, cb_data);
3336                                strbuf_reset(&sb);
3337                                if (ret)
3338                                        break;
3339                        } else if (!pos) {
3340                                /*
3341                                 * We are at the start of the buffer, and the
3342                                 * start of the file; there is no previous
3343                                 * line, and we have everything for this one.
3344                                 * Process it, and we can end the loop.
3345                                 */
3346                                strbuf_splice(&sb, 0, 0, buf, endp - buf);
3347                                ret = show_one_reflog_ent(&sb, fn, cb_data);
3348                                strbuf_reset(&sb);
3349                                break;
3350                        }
3351
3352                        if (bp == buf) {
3353                                /*
3354                                 * We are at the start of the buffer, and there
3355                                 * is more file to read backwards. Which means
3356                                 * we are in the middle of a line. Note that we
3357                                 * may get here even if *bp was a newline; that
3358                                 * just means we are at the exact end of the
3359                                 * previous line, rather than some spot in the
3360                                 * middle.
3361                                 *
3362                                 * Save away what we have to be combined with
3363                                 * the data from the next read.
3364                                 */
3365                                strbuf_splice(&sb, 0, 0, buf, endp - buf);
3366                                break;
3367                        }
3368                }
3369
3370        }
3371        if (!ret && sb.len)
3372                die("BUG: reverse reflog parser had leftover data");
3373
3374        fclose(logfp);
3375        strbuf_release(&sb);
3376        return ret;
3377}
3378
3379static int files_for_each_reflog_ent(struct ref_store *ref_store,
3380                                     const char *refname,
3381                                     each_reflog_ent_fn fn, void *cb_data)
3382{
3383        struct files_ref_store *refs =
3384                files_downcast(ref_store, 0, "for_each_reflog_ent");
3385        FILE *logfp;
3386        struct strbuf sb = STRBUF_INIT;
3387        int ret = 0;
3388
3389        files_reflog_path(refs, &sb, refname);
3390        logfp = fopen(sb.buf, "r");
3391        strbuf_release(&sb);
3392        if (!logfp)
3393                return -1;
3394
3395        while (!ret && !strbuf_getwholeline(&sb, logfp, '\n'))
3396                ret = show_one_reflog_ent(&sb, fn, cb_data);
3397        fclose(logfp);
3398        strbuf_release(&sb);
3399        return ret;
3400}
3401
3402struct files_reflog_iterator {
3403        struct ref_iterator base;
3404
3405        struct dir_iterator *dir_iterator;
3406        struct object_id oid;
3407};
3408
3409static int files_reflog_iterator_advance(struct ref_iterator *ref_iterator)
3410{
3411        struct files_reflog_iterator *iter =
3412                (struct files_reflog_iterator *)ref_iterator;
3413        struct dir_iterator *diter = iter->dir_iterator;
3414        int ok;
3415
3416        while ((ok = dir_iterator_advance(diter)) == ITER_OK) {
3417                int flags;
3418
3419                if (!S_ISREG(diter->st.st_mode))
3420                        continue;
3421                if (diter->basename[0] == '.')
3422                        continue;
3423                if (ends_with(diter->basename, ".lock"))
3424                        continue;
3425
3426                if (read_ref_full(diter->relative_path, 0,
3427                                  iter->oid.hash, &flags)) {
3428                        error("bad ref for %s", diter->path.buf);
3429                        continue;
3430                }
3431
3432                iter->base.refname = diter->relative_path;
3433                iter->base.oid = &iter->oid;
3434                iter->base.flags = flags;
3435                return ITER_OK;
3436        }
3437
3438        iter->dir_iterator = NULL;
3439        if (ref_iterator_abort(ref_iterator) == ITER_ERROR)
3440                ok = ITER_ERROR;
3441        return ok;
3442}
3443
3444static int files_reflog_iterator_peel(struct ref_iterator *ref_iterator,
3445                                   struct object_id *peeled)
3446{
3447        die("BUG: ref_iterator_peel() called for reflog_iterator");
3448}
3449
3450static int files_reflog_iterator_abort(struct ref_iterator *ref_iterator)
3451{
3452        struct files_reflog_iterator *iter =
3453                (struct files_reflog_iterator *)ref_iterator;
3454        int ok = ITER_DONE;
3455
3456        if (iter->dir_iterator)
3457                ok = dir_iterator_abort(iter->dir_iterator);
3458
3459        base_ref_iterator_free(ref_iterator);
3460        return ok;
3461}
3462
3463static struct ref_iterator_vtable files_reflog_iterator_vtable = {
3464        files_reflog_iterator_advance,
3465        files_reflog_iterator_peel,
3466        files_reflog_iterator_abort
3467};
3468
3469static struct ref_iterator *files_reflog_iterator_begin(struct ref_store *ref_store)
3470{
3471        struct files_ref_store *refs =
3472                files_downcast(ref_store, 0, "reflog_iterator_begin");
3473        struct files_reflog_iterator *iter = xcalloc(1, sizeof(*iter));
3474        struct ref_iterator *ref_iterator = &iter->base;
3475        struct strbuf sb = STRBUF_INIT;
3476
3477        base_ref_iterator_init(ref_iterator, &files_reflog_iterator_vtable);
3478        files_reflog_path(refs, &sb, NULL);
3479        iter->dir_iterator = dir_iterator_begin(sb.buf);
3480        strbuf_release(&sb);
3481        return ref_iterator;
3482}
3483
3484static int ref_update_reject_duplicates(struct string_list *refnames,
3485                                        struct strbuf *err)
3486{
3487        int i, n = refnames->nr;
3488
3489        assert(err);
3490
3491        for (i = 1; i < n; i++)
3492                if (!strcmp(refnames->items[i - 1].string, refnames->items[i].string)) {
3493                        strbuf_addf(err,
3494                                    "multiple updates for ref '%s' not allowed.",
3495                                    refnames->items[i].string);
3496                        return 1;
3497                }
3498        return 0;
3499}
3500
3501/*
3502 * If update is a direct update of head_ref (the reference pointed to
3503 * by HEAD), then add an extra REF_LOG_ONLY update for HEAD.
3504 */
3505static int split_head_update(struct ref_update *update,
3506                             struct ref_transaction *transaction,
3507                             const char *head_ref,
3508                             struct string_list *affected_refnames,
3509                             struct strbuf *err)
3510{
3511        struct string_list_item *item;
3512        struct ref_update *new_update;
3513
3514        if ((update->flags & REF_LOG_ONLY) ||
3515            (update->flags & REF_ISPRUNING) ||
3516            (update->flags & REF_UPDATE_VIA_HEAD))
3517                return 0;
3518
3519        if (strcmp(update->refname, head_ref))
3520                return 0;
3521
3522        /*
3523         * First make sure that HEAD is not already in the
3524         * transaction. This insertion is O(N) in the transaction
3525         * size, but it happens at most once per transaction.
3526         */
3527        item = string_list_insert(affected_refnames, "HEAD");
3528        if (item->util) {
3529                /* An entry already existed */
3530                strbuf_addf(err,
3531                            "multiple updates for 'HEAD' (including one "
3532                            "via its referent '%s') are not allowed",
3533                            update->refname);
3534                return TRANSACTION_NAME_CONFLICT;
3535        }
3536
3537        new_update = ref_transaction_add_update(
3538                        transaction, "HEAD",
3539                        update->flags | REF_LOG_ONLY | REF_NODEREF,
3540                        update->new_sha1, update->old_sha1,
3541                        update->msg);
3542
3543        item->util = new_update;
3544
3545        return 0;
3546}
3547
3548/*
3549 * update is for a symref that points at referent and doesn't have
3550 * REF_NODEREF set. Split it into two updates:
3551 * - The original update, but with REF_LOG_ONLY and REF_NODEREF set
3552 * - A new, separate update for the referent reference
3553 * Note that the new update will itself be subject to splitting when
3554 * the iteration gets to it.
3555 */
3556static int split_symref_update(struct files_ref_store *refs,
3557                               struct ref_update *update,
3558                               const char *referent,
3559                               struct ref_transaction *transaction,
3560                               struct string_list *affected_refnames,
3561                               struct strbuf *err)
3562{
3563        struct string_list_item *item;
3564        struct ref_update *new_update;
3565        unsigned int new_flags;
3566
3567        /*
3568         * First make sure that referent is not already in the
3569         * transaction. This insertion is O(N) in the transaction
3570         * size, but it happens at most once per symref in a
3571         * transaction.
3572         */
3573        item = string_list_insert(affected_refnames, referent);
3574        if (item->util) {
3575                /* An entry already existed */
3576                strbuf_addf(err,
3577                            "multiple updates for '%s' (including one "
3578                            "via symref '%s') are not allowed",
3579                            referent, update->refname);
3580                return TRANSACTION_NAME_CONFLICT;
3581        }
3582
3583        new_flags = update->flags;
3584        if (!strcmp(update->refname, "HEAD")) {
3585                /*
3586                 * Record that the new update came via HEAD, so that
3587                 * when we process it, split_head_update() doesn't try
3588                 * to add another reflog update for HEAD. Note that
3589                 * this bit will be propagated if the new_update
3590                 * itself needs to be split.
3591                 */
3592                new_flags |= REF_UPDATE_VIA_HEAD;
3593        }
3594
3595        new_update = ref_transaction_add_update(
3596                        transaction, referent, new_flags,
3597                        update->new_sha1, update->old_sha1,
3598                        update->msg);
3599
3600        new_update->parent_update = update;
3601
3602        /*
3603         * Change the symbolic ref update to log only. Also, it
3604         * doesn't need to check its old SHA-1 value, as that will be
3605         * done when new_update is processed.
3606         */
3607        update->flags |= REF_LOG_ONLY | REF_NODEREF;
3608        update->flags &= ~REF_HAVE_OLD;
3609
3610        item->util = new_update;
3611
3612        return 0;
3613}
3614
3615/*
3616 * Return the refname under which update was originally requested.
3617 */
3618static const char *original_update_refname(struct ref_update *update)
3619{
3620        while (update->parent_update)
3621                update = update->parent_update;
3622
3623        return update->refname;
3624}
3625
3626/*
3627 * Check whether the REF_HAVE_OLD and old_oid values stored in update
3628 * are consistent with oid, which is the reference's current value. If
3629 * everything is OK, return 0; otherwise, write an error message to
3630 * err and return -1.
3631 */
3632static int check_old_oid(struct ref_update *update, struct object_id *oid,
3633                         struct strbuf *err)
3634{
3635        if (!(update->flags & REF_HAVE_OLD) ||
3636                   !hashcmp(oid->hash, update->old_sha1))
3637                return 0;
3638
3639        if (is_null_sha1(update->old_sha1))
3640                strbuf_addf(err, "cannot lock ref '%s': "
3641                            "reference already exists",
3642                            original_update_refname(update));
3643        else if (is_null_oid(oid))
3644                strbuf_addf(err, "cannot lock ref '%s': "
3645                            "reference is missing but expected %s",
3646                            original_update_refname(update),
3647                            sha1_to_hex(update->old_sha1));
3648        else
3649                strbuf_addf(err, "cannot lock ref '%s': "
3650                            "is at %s but expected %s",
3651                            original_update_refname(update),
3652                            oid_to_hex(oid),
3653                            sha1_to_hex(update->old_sha1));
3654
3655        return -1;
3656}
3657
3658/*
3659 * Prepare for carrying out update:
3660 * - Lock the reference referred to by update.
3661 * - Read the reference under lock.
3662 * - Check that its old SHA-1 value (if specified) is correct, and in
3663 *   any case record it in update->lock->old_oid for later use when
3664 *   writing the reflog.
3665 * - If it is a symref update without REF_NODEREF, split it up into a
3666 *   REF_LOG_ONLY update of the symref and add a separate update for
3667 *   the referent to transaction.
3668 * - If it is an update of head_ref, add a corresponding REF_LOG_ONLY
3669 *   update of HEAD.
3670 */
3671static int lock_ref_for_update(struct files_ref_store *refs,
3672                               struct ref_update *update,
3673                               struct ref_transaction *transaction,
3674                               const char *head_ref,
3675                               struct string_list *affected_refnames,
3676                               struct strbuf *err)
3677{
3678        struct strbuf referent = STRBUF_INIT;
3679        int mustexist = (update->flags & REF_HAVE_OLD) &&
3680                !is_null_sha1(update->old_sha1);
3681        int ret;
3682        struct ref_lock *lock;
3683
3684        files_assert_main_repository(refs, "lock_ref_for_update");
3685
3686        if ((update->flags & REF_HAVE_NEW) && is_null_sha1(update->new_sha1))
3687                update->flags |= REF_DELETING;
3688
3689        if (head_ref) {
3690                ret = split_head_update(update, transaction, head_ref,
3691                                        affected_refnames, err);
3692                if (ret)
3693                        return ret;
3694        }
3695
3696        ret = lock_raw_ref(refs, update->refname, mustexist,
3697                           affected_refnames, NULL,
3698                           &lock, &referent,
3699                           &update->type, err);
3700        if (ret) {
3701                char *reason;
3702
3703                reason = strbuf_detach(err, NULL);
3704                strbuf_addf(err, "cannot lock ref '%s': %s",
3705                            original_update_refname(update), reason);
3706                free(reason);
3707                return ret;
3708        }
3709
3710        update->backend_data = lock;
3711
3712        if (update->type & REF_ISSYMREF) {
3713                if (update->flags & REF_NODEREF) {
3714                        /*
3715                         * We won't be reading the referent as part of
3716                         * the transaction, so we have to read it here
3717                         * to record and possibly check old_sha1:
3718                         */
3719                        if (read_ref_full(referent.buf, 0,
3720                                          lock->old_oid.hash, NULL)) {
3721                                if (update->flags & REF_HAVE_OLD) {
3722                                        strbuf_addf(err, "cannot lock ref '%s': "
3723                                                    "error reading reference",
3724                                                    original_update_refname(update));
3725                                        return -1;
3726                                }
3727                        } else if (check_old_oid(update, &lock->old_oid, err)) {
3728                                return TRANSACTION_GENERIC_ERROR;
3729                        }
3730                } else {
3731                        /*
3732                         * Create a new update for the reference this
3733                         * symref is pointing at. Also, we will record
3734                         * and verify old_sha1 for this update as part
3735                         * of processing the split-off update, so we
3736                         * don't have to do it here.
3737                         */
3738                        ret = split_symref_update(refs, update,
3739                                                  referent.buf, transaction,
3740                                                  affected_refnames, err);
3741                        if (ret)
3742                                return ret;
3743                }
3744        } else {
3745                struct ref_update *parent_update;
3746
3747                if (check_old_oid(update, &lock->old_oid, err))
3748                        return TRANSACTION_GENERIC_ERROR;
3749
3750                /*
3751                 * If this update is happening indirectly because of a
3752                 * symref update, record the old SHA-1 in the parent
3753                 * update:
3754                 */
3755                for (parent_update = update->parent_update;
3756                     parent_update;
3757                     parent_update = parent_update->parent_update) {
3758                        struct ref_lock *parent_lock = parent_update->backend_data;
3759                        oidcpy(&parent_lock->old_oid, &lock->old_oid);
3760                }
3761        }
3762
3763        if ((update->flags & REF_HAVE_NEW) &&
3764            !(update->flags & REF_DELETING) &&
3765            !(update->flags & REF_LOG_ONLY)) {
3766                if (!(update->type & REF_ISSYMREF) &&
3767                    !hashcmp(lock->old_oid.hash, update->new_sha1)) {
3768                        /*
3769                         * The reference already has the desired
3770                         * value, so we don't need to write it.
3771                         */
3772                } else if (write_ref_to_lockfile(lock, update->new_sha1,
3773                                                 err)) {
3774                        char *write_err = strbuf_detach(err, NULL);
3775
3776                        /*
3777                         * The lock was freed upon failure of
3778                         * write_ref_to_lockfile():
3779                         */
3780                        update->backend_data = NULL;
3781                        strbuf_addf(err,
3782                                    "cannot update ref '%s': %s",
3783                                    update->refname, write_err);
3784                        free(write_err);
3785                        return TRANSACTION_GENERIC_ERROR;
3786                } else {
3787                        update->flags |= REF_NEEDS_COMMIT;
3788                }
3789        }
3790        if (!(update->flags & REF_NEEDS_COMMIT)) {
3791                /*
3792                 * We didn't call write_ref_to_lockfile(), so
3793                 * the lockfile is still open. Close it to
3794                 * free up the file descriptor:
3795                 */
3796                if (close_ref(lock)) {
3797                        strbuf_addf(err, "couldn't close '%s.lock'",
3798                                    update->refname);
3799                        return TRANSACTION_GENERIC_ERROR;
3800                }
3801        }
3802        return 0;
3803}
3804
3805static int files_transaction_commit(struct ref_store *ref_store,
3806                                    struct ref_transaction *transaction,
3807                                    struct strbuf *err)
3808{
3809        struct files_ref_store *refs =
3810                files_downcast(ref_store, 0, "ref_transaction_commit");
3811        int ret = 0, i;
3812        struct string_list refs_to_delete = STRING_LIST_INIT_NODUP;
3813        struct string_list_item *ref_to_delete;
3814        struct string_list affected_refnames = STRING_LIST_INIT_NODUP;
3815        char *head_ref = NULL;
3816        int head_type;
3817        struct object_id head_oid;
3818        struct strbuf sb = STRBUF_INIT;
3819
3820        assert(err);
3821
3822        if (transaction->state != REF_TRANSACTION_OPEN)
3823                die("BUG: commit called for transaction that is not open");
3824
3825        if (!transaction->nr) {
3826                transaction->state = REF_TRANSACTION_CLOSED;
3827                return 0;
3828        }
3829
3830        /*
3831         * Fail if a refname appears more than once in the
3832         * transaction. (If we end up splitting up any updates using
3833         * split_symref_update() or split_head_update(), those
3834         * functions will check that the new updates don't have the
3835         * same refname as any existing ones.)
3836         */
3837        for (i = 0; i < transaction->nr; i++) {
3838                struct ref_update *update = transaction->updates[i];
3839                struct string_list_item *item =
3840                        string_list_append(&affected_refnames, update->refname);
3841
3842                /*
3843                 * We store a pointer to update in item->util, but at
3844                 * the moment we never use the value of this field
3845                 * except to check whether it is non-NULL.
3846                 */
3847                item->util = update;
3848        }
3849        string_list_sort(&affected_refnames);
3850        if (ref_update_reject_duplicates(&affected_refnames, err)) {
3851                ret = TRANSACTION_GENERIC_ERROR;
3852                goto cleanup;
3853        }
3854
3855        /*
3856         * Special hack: If a branch is updated directly and HEAD
3857         * points to it (may happen on the remote side of a push
3858         * for example) then logically the HEAD reflog should be
3859         * updated too.
3860         *
3861         * A generic solution would require reverse symref lookups,
3862         * but finding all symrefs pointing to a given branch would be
3863         * rather costly for this rare event (the direct update of a
3864         * branch) to be worth it. So let's cheat and check with HEAD
3865         * only, which should cover 99% of all usage scenarios (even
3866         * 100% of the default ones).
3867         *
3868         * So if HEAD is a symbolic reference, then record the name of
3869         * the reference that it points to. If we see an update of
3870         * head_ref within the transaction, then split_head_update()
3871         * arranges for the reflog of HEAD to be updated, too.
3872         */
3873        head_ref = resolve_refdup("HEAD", RESOLVE_REF_NO_RECURSE,
3874                                  head_oid.hash, &head_type);
3875
3876        if (head_ref && !(head_type & REF_ISSYMREF)) {
3877                free(head_ref);
3878                head_ref = NULL;
3879        }
3880
3881        /*
3882         * Acquire all locks, verify old values if provided, check
3883         * that new values are valid, and write new values to the
3884         * lockfiles, ready to be activated. Only keep one lockfile
3885         * open at a time to avoid running out of file descriptors.
3886         */
3887        for (i = 0; i < transaction->nr; i++) {
3888                struct ref_update *update = transaction->updates[i];
3889
3890                ret = lock_ref_for_update(refs, update, transaction,
3891                                          head_ref, &affected_refnames, err);
3892                if (ret)
3893                        goto cleanup;
3894        }
3895
3896        /* Perform updates first so live commits remain referenced */
3897        for (i = 0; i < transaction->nr; i++) {
3898                struct ref_update *update = transaction->updates[i];
3899                struct ref_lock *lock = update->backend_data;
3900
3901                if (update->flags & REF_NEEDS_COMMIT ||
3902                    update->flags & REF_LOG_ONLY) {
3903                        if (files_log_ref_write(refs,
3904                                                lock->ref_name,
3905                                                lock->old_oid.hash,
3906                                                update->new_sha1,
3907                                                update->msg, update->flags,
3908                                                err)) {
3909                                char *old_msg = strbuf_detach(err, NULL);
3910
3911                                strbuf_addf(err, "cannot update the ref '%s': %s",
3912                                            lock->ref_name, old_msg);
3913                                free(old_msg);
3914                                unlock_ref(lock);
3915                                update->backend_data = NULL;
3916                                ret = TRANSACTION_GENERIC_ERROR;
3917                                goto cleanup;
3918                        }
3919                }
3920                if (update->flags & REF_NEEDS_COMMIT) {
3921                        clear_loose_ref_cache(refs);
3922                        if (commit_ref(lock)) {
3923                                strbuf_addf(err, "couldn't set '%s'", lock->ref_name);
3924                                unlock_ref(lock);
3925                                update->backend_data = NULL;
3926                                ret = TRANSACTION_GENERIC_ERROR;
3927                                goto cleanup;
3928                        }
3929                }
3930        }
3931        /* Perform deletes now that updates are safely completed */
3932        for (i = 0; i < transaction->nr; i++) {
3933                struct ref_update *update = transaction->updates[i];
3934                struct ref_lock *lock = update->backend_data;
3935
3936                if (update->flags & REF_DELETING &&
3937                    !(update->flags & REF_LOG_ONLY)) {
3938                        if (!(update->type & REF_ISPACKED) ||
3939                            update->type & REF_ISSYMREF) {
3940                                /* It is a loose reference. */
3941                                strbuf_reset(&sb);
3942                                files_ref_path(refs, &sb, lock->ref_name);
3943                                if (unlink_or_msg(sb.buf, err)) {
3944                                        ret = TRANSACTION_GENERIC_ERROR;
3945                                        goto cleanup;
3946                                }
3947                                update->flags |= REF_DELETED_LOOSE;
3948                        }
3949
3950                        if (!(update->flags & REF_ISPRUNING))
3951                                string_list_append(&refs_to_delete,
3952                                                   lock->ref_name);
3953                }
3954        }
3955
3956        if (repack_without_refs(refs, &refs_to_delete, err)) {
3957                ret = TRANSACTION_GENERIC_ERROR;
3958                goto cleanup;
3959        }
3960
3961        /* Delete the reflogs of any references that were deleted: */
3962        for_each_string_list_item(ref_to_delete, &refs_to_delete) {
3963                strbuf_reset(&sb);
3964                files_reflog_path(refs, &sb, ref_to_delete->string);
3965                if (!unlink_or_warn(sb.buf))
3966                        try_remove_empty_parents(refs, ref_to_delete->string,
3967                                                 REMOVE_EMPTY_PARENTS_REFLOG);
3968        }
3969
3970        clear_loose_ref_cache(refs);
3971
3972cleanup:
3973        strbuf_release(&sb);
3974        transaction->state = REF_TRANSACTION_CLOSED;
3975
3976        for (i = 0; i < transaction->nr; i++) {
3977                struct ref_update *update = transaction->updates[i];
3978                struct ref_lock *lock = update->backend_data;
3979
3980                if (lock)
3981                        unlock_ref(lock);
3982
3983                if (update->flags & REF_DELETED_LOOSE) {
3984                        /*
3985                         * The loose reference was deleted. Delete any
3986                         * empty parent directories. (Note that this
3987                         * can only work because we have already
3988                         * removed the lockfile.)
3989                         */
3990                        try_remove_empty_parents(refs, update->refname,
3991                                                 REMOVE_EMPTY_PARENTS_REF);
3992                }
3993        }
3994
3995        string_list_clear(&refs_to_delete, 0);
3996        free(head_ref);
3997        string_list_clear(&affected_refnames, 0);
3998
3999        return ret;
4000}
4001
4002static int ref_present(const char *refname,
4003                       const struct object_id *oid, int flags, void *cb_data)
4004{
4005        struct string_list *affected_refnames = cb_data;
4006
4007        return string_list_has_string(affected_refnames, refname);
4008}
4009
4010static int files_initial_transaction_commit(struct ref_store *ref_store,
4011                                            struct ref_transaction *transaction,
4012                                            struct strbuf *err)
4013{
4014        struct files_ref_store *refs =
4015                files_downcast(ref_store, 0, "initial_ref_transaction_commit");
4016        int ret = 0, i;
4017        struct string_list affected_refnames = STRING_LIST_INIT_NODUP;
4018
4019        assert(err);
4020
4021        if (transaction->state != REF_TRANSACTION_OPEN)
4022                die("BUG: commit called for transaction that is not open");
4023
4024        /* Fail if a refname appears more than once in the transaction: */
4025        for (i = 0; i < transaction->nr; i++)
4026                string_list_append(&affected_refnames,
4027                                   transaction->updates[i]->refname);
4028        string_list_sort(&affected_refnames);
4029        if (ref_update_reject_duplicates(&affected_refnames, err)) {
4030                ret = TRANSACTION_GENERIC_ERROR;
4031                goto cleanup;
4032        }
4033
4034        /*
4035         * It's really undefined to call this function in an active
4036         * repository or when there are existing references: we are
4037         * only locking and changing packed-refs, so (1) any
4038         * simultaneous processes might try to change a reference at
4039         * the same time we do, and (2) any existing loose versions of
4040         * the references that we are setting would have precedence
4041         * over our values. But some remote helpers create the remote
4042         * "HEAD" and "master" branches before calling this function,
4043         * so here we really only check that none of the references
4044         * that we are creating already exists.
4045         */
4046        if (for_each_rawref(ref_present, &affected_refnames))
4047                die("BUG: initial ref transaction called with existing refs");
4048
4049        for (i = 0; i < transaction->nr; i++) {
4050                struct ref_update *update = transaction->updates[i];
4051
4052                if ((update->flags & REF_HAVE_OLD) &&
4053                    !is_null_sha1(update->old_sha1))
4054                        die("BUG: initial ref transaction with old_sha1 set");
4055                if (verify_refname_available(update->refname,
4056                                             &affected_refnames, NULL,
4057                                             err)) {
4058                        ret = TRANSACTION_NAME_CONFLICT;
4059                        goto cleanup;
4060                }
4061        }
4062
4063        if (lock_packed_refs(refs, 0)) {
4064                strbuf_addf(err, "unable to lock packed-refs file: %s",
4065                            strerror(errno));
4066                ret = TRANSACTION_GENERIC_ERROR;
4067                goto cleanup;
4068        }
4069
4070        for (i = 0; i < transaction->nr; i++) {
4071                struct ref_update *update = transaction->updates[i];
4072
4073                if ((update->flags & REF_HAVE_NEW) &&
4074                    !is_null_sha1(update->new_sha1))
4075                        add_packed_ref(refs, update->refname, update->new_sha1);
4076        }
4077
4078        if (commit_packed_refs(refs)) {
4079                strbuf_addf(err, "unable to commit packed-refs file: %s",
4080                            strerror(errno));
4081                ret = TRANSACTION_GENERIC_ERROR;
4082                goto cleanup;
4083        }
4084
4085cleanup:
4086        transaction->state = REF_TRANSACTION_CLOSED;
4087        string_list_clear(&affected_refnames, 0);
4088        return ret;
4089}
4090
4091struct expire_reflog_cb {
4092        unsigned int flags;
4093        reflog_expiry_should_prune_fn *should_prune_fn;
4094        void *policy_cb;
4095        FILE *newlog;
4096        struct object_id last_kept_oid;
4097};
4098
4099static int expire_reflog_ent(struct object_id *ooid, struct object_id *noid,
4100                             const char *email, unsigned long timestamp, int tz,
4101                             const char *message, void *cb_data)
4102{
4103        struct expire_reflog_cb *cb = cb_data;
4104        struct expire_reflog_policy_cb *policy_cb = cb->policy_cb;
4105
4106        if (cb->flags & EXPIRE_REFLOGS_REWRITE)
4107                ooid = &cb->last_kept_oid;
4108
4109        if ((*cb->should_prune_fn)(ooid->hash, noid->hash, email, timestamp, tz,
4110                                   message, policy_cb)) {
4111                if (!cb->newlog)
4112                        printf("would prune %s", message);
4113                else if (cb->flags & EXPIRE_REFLOGS_VERBOSE)
4114                        printf("prune %s", message);
4115        } else {
4116                if (cb->newlog) {
4117                        fprintf(cb->newlog, "%s %s %s %lu %+05d\t%s",
4118                                oid_to_hex(ooid), oid_to_hex(noid),
4119                                email, timestamp, tz, message);
4120                        oidcpy(&cb->last_kept_oid, noid);
4121                }
4122                if (cb->flags & EXPIRE_REFLOGS_VERBOSE)
4123                        printf("keep %s", message);
4124        }
4125        return 0;
4126}
4127
4128static int files_reflog_expire(struct ref_store *ref_store,
4129                               const char *refname, const unsigned char *sha1,
4130                               unsigned int flags,
4131                               reflog_expiry_prepare_fn prepare_fn,
4132                               reflog_expiry_should_prune_fn should_prune_fn,
4133                               reflog_expiry_cleanup_fn cleanup_fn,
4134                               void *policy_cb_data)
4135{
4136        struct files_ref_store *refs =
4137                files_downcast(ref_store, 0, "reflog_expire");
4138        static struct lock_file reflog_lock;
4139        struct expire_reflog_cb cb;
4140        struct ref_lock *lock;
4141        struct strbuf log_file_sb = STRBUF_INIT;
4142        char *log_file;
4143        int status = 0;
4144        int type;
4145        struct strbuf err = STRBUF_INIT;
4146
4147        memset(&cb, 0, sizeof(cb));
4148        cb.flags = flags;
4149        cb.policy_cb = policy_cb_data;
4150        cb.should_prune_fn = should_prune_fn;
4151
4152        /*
4153         * The reflog file is locked by holding the lock on the
4154         * reference itself, plus we might need to update the
4155         * reference if --updateref was specified:
4156         */
4157        lock = lock_ref_sha1_basic(refs, refname, sha1,
4158                                   NULL, NULL, REF_NODEREF,
4159                                   &type, &err);
4160        if (!lock) {
4161                error("cannot lock ref '%s': %s", refname, err.buf);
4162                strbuf_release(&err);
4163                return -1;
4164        }
4165        if (!reflog_exists(refname)) {
4166                unlock_ref(lock);
4167                return 0;
4168        }
4169
4170        files_reflog_path(refs, &log_file_sb, refname);
4171        log_file = strbuf_detach(&log_file_sb, NULL);
4172        if (!(flags & EXPIRE_REFLOGS_DRY_RUN)) {
4173                /*
4174                 * Even though holding $GIT_DIR/logs/$reflog.lock has
4175                 * no locking implications, we use the lock_file
4176                 * machinery here anyway because it does a lot of the
4177                 * work we need, including cleaning up if the program
4178                 * exits unexpectedly.
4179                 */
4180                if (hold_lock_file_for_update(&reflog_lock, log_file, 0) < 0) {
4181                        struct strbuf err = STRBUF_INIT;
4182                        unable_to_lock_message(log_file, errno, &err);
4183                        error("%s", err.buf);
4184                        strbuf_release(&err);
4185                        goto failure;
4186                }
4187                cb.newlog = fdopen_lock_file(&reflog_lock, "w");
4188                if (!cb.newlog) {
4189                        error("cannot fdopen %s (%s)",
4190                              get_lock_file_path(&reflog_lock), strerror(errno));
4191                        goto failure;
4192                }
4193        }
4194
4195        (*prepare_fn)(refname, sha1, cb.policy_cb);
4196        for_each_reflog_ent(refname, expire_reflog_ent, &cb);
4197        (*cleanup_fn)(cb.policy_cb);
4198
4199        if (!(flags & EXPIRE_REFLOGS_DRY_RUN)) {
4200                /*
4201                 * It doesn't make sense to adjust a reference pointed
4202                 * to by a symbolic ref based on expiring entries in
4203                 * the symbolic reference's reflog. Nor can we update
4204                 * a reference if there are no remaining reflog
4205                 * entries.
4206                 */
4207                int update = (flags & EXPIRE_REFLOGS_UPDATE_REF) &&
4208                        !(type & REF_ISSYMREF) &&
4209                        !is_null_oid(&cb.last_kept_oid);
4210
4211                if (close_lock_file(&reflog_lock)) {
4212                        status |= error("couldn't write %s: %s", log_file,
4213                                        strerror(errno));
4214                } else if (update &&
4215                           (write_in_full(get_lock_file_fd(lock->lk),
4216                                oid_to_hex(&cb.last_kept_oid), GIT_SHA1_HEXSZ) != GIT_SHA1_HEXSZ ||
4217                            write_str_in_full(get_lock_file_fd(lock->lk), "\n") != 1 ||
4218                            close_ref(lock) < 0)) {
4219                        status |= error("couldn't write %s",
4220                                        get_lock_file_path(lock->lk));
4221                        rollback_lock_file(&reflog_lock);
4222                } else if (commit_lock_file(&reflog_lock)) {
4223                        status |= error("unable to write reflog '%s' (%s)",
4224                                        log_file, strerror(errno));
4225                } else if (update && commit_ref(lock)) {
4226                        status |= error("couldn't set %s", lock->ref_name);
4227                }
4228        }
4229        free(log_file);
4230        unlock_ref(lock);
4231        return status;
4232
4233 failure:
4234        rollback_lock_file(&reflog_lock);
4235        free(log_file);
4236        unlock_ref(lock);
4237        return -1;
4238}
4239
4240static int files_init_db(struct ref_store *ref_store, struct strbuf *err)
4241{
4242        struct files_ref_store *refs =
4243                files_downcast(ref_store, 0, "init_db");
4244        struct strbuf sb = STRBUF_INIT;
4245
4246        /*
4247         * Create .git/refs/{heads,tags}
4248         */
4249        files_ref_path(refs, &sb, "refs/heads");
4250        safe_create_dir(sb.buf, 1);
4251
4252        strbuf_reset(&sb);
4253        files_ref_path(refs, &sb, "refs/tags");
4254        safe_create_dir(sb.buf, 1);
4255
4256        strbuf_release(&sb);
4257        return 0;
4258}
4259
4260struct ref_storage_be refs_be_files = {
4261        NULL,
4262        "files",
4263        files_ref_store_create,
4264        files_init_db,
4265        files_transaction_commit,
4266        files_initial_transaction_commit,
4267
4268        files_pack_refs,
4269        files_peel_ref,
4270        files_create_symref,
4271        files_delete_refs,
4272        files_rename_ref,
4273
4274        files_ref_iterator_begin,
4275        files_read_raw_ref,
4276        files_verify_refname_available,
4277
4278        files_reflog_iterator_begin,
4279        files_for_each_reflog_ent,
4280        files_for_each_reflog_ent_reverse,
4281        files_reflog_exists,
4282        files_create_reflog,
4283        files_delete_reflog,
4284        files_reflog_expire
4285};