epoch.con commit cvsexportcommit: add some examples to the documentation (1506fc3)
   1/*
   2 * Copyright (c) 2005, Jon Seymour
   3 *
   4 * For more information about epoch theory on which this module is based,
   5 * refer to http://blackcubes.dyndns.org/epoch/. That web page defines
   6 * terms such as "epoch" and "minimal, non-linear epoch" and provides rationales
   7 * for some of the algorithms used here.
   8 *
   9 */
  10#include <stdlib.h>
  11
  12/* Provides arbitrary precision integers required to accurately represent
  13 * fractional mass: */
  14#include <openssl/bn.h>
  15
  16#include "cache.h"
  17#include "commit.h"
  18#include "epoch.h"
  19
  20struct fraction {
  21        BIGNUM numerator;
  22        BIGNUM denominator;
  23};
  24
  25#define HAS_EXACTLY_ONE_PARENT(n) ((n)->parents && !(n)->parents->next)
  26
  27static BN_CTX *context = NULL;
  28static struct fraction *one = NULL;
  29static struct fraction *zero = NULL;
  30
  31static BN_CTX *get_BN_CTX(void)
  32{
  33        if (!context) {
  34                context = BN_CTX_new();
  35        }
  36        return context;
  37}
  38
  39static struct fraction *new_zero(void)
  40{
  41        struct fraction *result = xmalloc(sizeof(*result));
  42        BN_init(&result->numerator);
  43        BN_init(&result->denominator);
  44        BN_zero(&result->numerator);
  45        BN_one(&result->denominator);
  46        return result;
  47}
  48
  49static void clear_fraction(struct fraction *fraction)
  50{
  51        BN_clear(&fraction->numerator);
  52        BN_clear(&fraction->denominator);
  53}
  54
  55static struct fraction *divide(struct fraction *result, struct fraction *fraction, int divisor)
  56{
  57        BIGNUM bn_divisor;
  58
  59        BN_init(&bn_divisor);
  60        BN_set_word(&bn_divisor, divisor);
  61
  62        BN_copy(&result->numerator, &fraction->numerator);
  63        BN_mul(&result->denominator, &fraction->denominator, &bn_divisor, get_BN_CTX());
  64
  65        BN_clear(&bn_divisor);
  66        return result;
  67}
  68
  69static struct fraction *init_fraction(struct fraction *fraction)
  70{
  71        BN_init(&fraction->numerator);
  72        BN_init(&fraction->denominator);
  73        BN_zero(&fraction->numerator);
  74        BN_one(&fraction->denominator);
  75        return fraction;
  76}
  77
  78static struct fraction *get_one(void)
  79{
  80        if (!one) {
  81                one = new_zero();
  82                BN_one(&one->numerator);
  83        }
  84        return one;
  85}
  86
  87static struct fraction *get_zero(void)
  88{
  89        if (!zero) {
  90                zero = new_zero();
  91        }
  92        return zero;
  93}
  94
  95static struct fraction *copy(struct fraction *to, struct fraction *from)
  96{
  97        BN_copy(&to->numerator, &from->numerator);
  98        BN_copy(&to->denominator, &from->denominator);
  99        return to;
 100}
 101
 102static struct fraction *add(struct fraction *result, struct fraction *left, struct fraction *right)
 103{
 104        BIGNUM a, b, gcd;
 105
 106        BN_init(&a);
 107        BN_init(&b);
 108        BN_init(&gcd);
 109
 110        BN_mul(&a, &left->numerator, &right->denominator, get_BN_CTX());
 111        BN_mul(&b, &left->denominator, &right->numerator, get_BN_CTX());
 112        BN_mul(&result->denominator, &left->denominator, &right->denominator, get_BN_CTX());
 113        BN_add(&result->numerator, &a, &b);
 114
 115        BN_gcd(&gcd, &result->denominator, &result->numerator, get_BN_CTX());
 116        BN_div(&result->denominator, NULL, &result->denominator, &gcd, get_BN_CTX());
 117        BN_div(&result->numerator, NULL, &result->numerator, &gcd, get_BN_CTX());
 118
 119        BN_clear(&a);
 120        BN_clear(&b);
 121        BN_clear(&gcd);
 122
 123        return result;
 124}
 125
 126static int compare(struct fraction *left, struct fraction *right)
 127{
 128        BIGNUM a, b;
 129        int result;
 130
 131        BN_init(&a);
 132        BN_init(&b);
 133
 134        BN_mul(&a, &left->numerator, &right->denominator, get_BN_CTX());
 135        BN_mul(&b, &left->denominator, &right->numerator, get_BN_CTX());
 136
 137        result = BN_cmp(&a, &b);
 138
 139        BN_clear(&a);
 140        BN_clear(&b);
 141
 142        return result;
 143}
 144
 145struct mass_counter {
 146        struct fraction seen;
 147        struct fraction pending;
 148};
 149
 150static struct mass_counter *new_mass_counter(struct commit *commit, struct fraction *pending)
 151{
 152        struct mass_counter *mass_counter = xmalloc(sizeof(*mass_counter));
 153        memset(mass_counter, 0, sizeof(*mass_counter));
 154
 155        init_fraction(&mass_counter->seen);
 156        init_fraction(&mass_counter->pending);
 157
 158        copy(&mass_counter->pending, pending);
 159        copy(&mass_counter->seen, get_zero());
 160
 161        if (commit->object.util) {
 162                die("multiple attempts to initialize mass counter for %s",
 163                    sha1_to_hex(commit->object.sha1));
 164        }
 165
 166        commit->object.util = mass_counter;
 167
 168        return mass_counter;
 169}
 170
 171static void free_mass_counter(struct mass_counter *counter)
 172{
 173        clear_fraction(&counter->seen);
 174        clear_fraction(&counter->pending);
 175        free(counter);
 176}
 177
 178/*
 179 * Finds the base commit of a list of commits.
 180 *
 181 * One property of the commit being searched for is that every commit reachable
 182 * from the base commit is reachable from the commits in the starting list only
 183 * via paths that include the base commit.
 184 *
 185 * This algorithm uses a conservation of mass approach to find the base commit.
 186 *
 187 * We start by injecting one unit of mass into the graph at each
 188 * of the commits in the starting list. Injecting mass into a commit
 189 * is achieved by adding to its pending mass counter and, if it is not already
 190 * enqueued, enqueuing the commit in a list of pending commits, in latest
 191 * commit date first order.
 192 *
 193 * The algorithm then proceeds to visit each commit in the pending queue.
 194 * Upon each visit, the pending mass is added to the mass already seen for that
 195 * commit and then divided into N equal portions, where N is the number of
 196 * parents of the commit being visited. The divided portions are then injected
 197 * into each of the parents.
 198 *
 199 * The algorithm continues until we discover a commit which has seen all the
 200 * mass originally injected or until we run out of things to do.
 201 *
 202 * If we find a commit that has seen all the original mass, we have found
 203 * the common base of all the commits in the starting list.
 204 *
 205 * The algorithm does _not_ depend on accurate timestamps for correct operation.
 206 * However, reasonably sane (e.g. non-random) timestamps are required in order
 207 * to prevent an exponential performance characteristic. The occasional
 208 * timestamp inaccuracy will not dramatically affect performance but may
 209 * result in more nodes being processed than strictly necessary.
 210 *
 211 * This procedure sets *boundary to the address of the base commit. It returns
 212 * non-zero if, and only if, there was a problem parsing one of the
 213 * commits discovered during the traversal.
 214 */
 215static int find_base_for_list(struct commit_list *list, struct commit **boundary)
 216{
 217        int ret = 0;
 218        struct commit_list *cleaner = NULL;
 219        struct commit_list *pending = NULL;
 220        struct fraction injected;
 221        init_fraction(&injected);
 222        *boundary = NULL;
 223
 224        for (; list; list = list->next) {
 225                struct commit *item = list->item;
 226
 227                if (!item->object.util) {
 228                        new_mass_counter(list->item, get_one());
 229                        add(&injected, &injected, get_one());
 230
 231                        commit_list_insert(list->item, &cleaner);
 232                        commit_list_insert(list->item, &pending);
 233                }
 234        }
 235
 236        while (!*boundary && pending && !ret) {
 237                struct commit *latest = pop_commit(&pending);
 238                struct mass_counter *latest_node = (struct mass_counter *) latest->object.util;
 239                int num_parents;
 240
 241                if ((ret = parse_commit(latest)))
 242                        continue;
 243                add(&latest_node->seen, &latest_node->seen, &latest_node->pending);
 244
 245                num_parents = count_parents(latest);
 246                if (num_parents) {
 247                        struct fraction distribution;
 248                        struct commit_list *parents;
 249
 250                        divide(init_fraction(&distribution), &latest_node->pending, num_parents);
 251
 252                        for (parents = latest->parents; parents; parents = parents->next) {
 253                                struct commit *parent = parents->item;
 254                                struct mass_counter *parent_node = (struct mass_counter *) parent->object.util;
 255
 256                                if (!parent_node) {
 257                                        parent_node = new_mass_counter(parent, &distribution);
 258                                        insert_by_date(parent, &pending);
 259                                        commit_list_insert(parent, &cleaner);
 260                                } else {
 261                                        if (!compare(&parent_node->pending, get_zero()))
 262                                                insert_by_date(parent, &pending);
 263                                        add(&parent_node->pending, &parent_node->pending, &distribution);
 264                                }
 265                        }
 266
 267                        clear_fraction(&distribution);
 268                }
 269
 270                if (!compare(&latest_node->seen, &injected))
 271                        *boundary = latest;
 272                copy(&latest_node->pending, get_zero());
 273        }
 274
 275        while (cleaner) {
 276                struct commit *next = pop_commit(&cleaner);
 277                free_mass_counter((struct mass_counter *) next->object.util);
 278                next->object.util = NULL;
 279        }
 280
 281        if (pending)
 282                free_commit_list(pending);
 283
 284        clear_fraction(&injected);
 285        return ret;
 286}
 287
 288
 289/*
 290 * Finds the base of an minimal, non-linear epoch, headed at head, by
 291 * applying the find_base_for_list to a list consisting of the parents
 292 */
 293static int find_base(struct commit *head, struct commit **boundary)
 294{
 295        int ret = 0;
 296        struct commit_list *pending = NULL;
 297        struct commit_list *next;
 298
 299        for (next = head->parents; next; next = next->next) {
 300                commit_list_insert(next->item, &pending);
 301        }
 302        ret = find_base_for_list(pending, boundary);
 303        free_commit_list(pending);
 304
 305        return ret;
 306}
 307
 308/*
 309 * This procedure traverses to the boundary of the first epoch in the epoch
 310 * sequence of the epoch headed at head_of_epoch. This is either the end of
 311 * the maximal linear epoch or the base of a minimal non-linear epoch.
 312 *
 313 * The queue of pending nodes is sorted in reverse date order and each node
 314 * is currently in the queue at most once.
 315 */
 316static int find_next_epoch_boundary(struct commit *head_of_epoch, struct commit **boundary)
 317{
 318        int ret;
 319        struct commit *item = head_of_epoch;
 320
 321        ret = parse_commit(item);
 322        if (ret)
 323                return ret;
 324
 325        if (HAS_EXACTLY_ONE_PARENT(item)) {
 326                /*
 327                 * We are at the start of a maximimal linear epoch.
 328                 * Traverse to the end.
 329                 */
 330                while (HAS_EXACTLY_ONE_PARENT(item) && !ret) {
 331                        item = item->parents->item;
 332                        ret = parse_commit(item);
 333                }
 334                *boundary = item;
 335
 336        } else {
 337                /*
 338                 * Otherwise, we are at the start of a minimal, non-linear
 339                 * epoch - find the common base of all parents.
 340                 */
 341                ret = find_base(item, boundary);
 342        }
 343
 344        return ret;
 345}
 346
 347/*
 348 * Returns non-zero if parent is known to be a parent of child.
 349 */
 350static int is_parent_of(struct commit *parent, struct commit *child)
 351{
 352        struct commit_list *parents;
 353        for (parents = child->parents; parents; parents = parents->next) {
 354                if (!memcmp(parent->object.sha1, parents->item->object.sha1,
 355                            sizeof(parents->item->object.sha1)))
 356                        return 1;
 357        }
 358        return 0;
 359}
 360
 361/*
 362 * Pushes an item onto the merge order stack. If the top of the stack is
 363 * marked as being a possible "break", we check to see whether it actually
 364 * is a break.
 365 */
 366static void push_onto_merge_order_stack(struct commit_list **stack, struct commit *item)
 367{
 368        struct commit_list *top = *stack;
 369        if (top && (top->item->object.flags & DISCONTINUITY)) {
 370                if (is_parent_of(top->item, item)) {
 371                        top->item->object.flags &= ~DISCONTINUITY;
 372                }
 373        }
 374        commit_list_insert(item, stack);
 375}
 376
 377/*
 378 * Marks all interesting, visited commits reachable from this commit
 379 * as uninteresting. We stop recursing when we reach the epoch boundary,
 380 * an unvisited node or a node that has already been marking uninteresting.
 381 *
 382 * This doesn't actually mark all ancestors between the start node and the
 383 * epoch boundary uninteresting, but does ensure that they will eventually
 384 * be marked uninteresting when the main sort_first_epoch() traversal
 385 * eventually reaches them.
 386 */
 387static void mark_ancestors_uninteresting(struct commit *commit)
 388{
 389        unsigned int flags = commit->object.flags;
 390        int visited = flags & VISITED;
 391        int boundary = flags & BOUNDARY;
 392        int uninteresting = flags & UNINTERESTING;
 393        struct commit_list *next;
 394
 395        commit->object.flags |= UNINTERESTING;
 396
 397        /*
 398         * We only need to recurse if
 399         *      we are not on the boundary and
 400         *      we have not already been marked uninteresting and
 401         *      we have already been visited.
 402         *
 403         * The main sort_first_epoch traverse will mark unreachable
 404         * all uninteresting, unvisited parents as they are visited
 405         * so there is no need to duplicate that traversal here.
 406         *
 407         * Similarly, if we are already marked uninteresting
 408         * then either all ancestors have already been marked
 409         * uninteresting or will be once the sort_first_epoch
 410         * traverse reaches them.
 411         */
 412
 413        if (uninteresting || boundary || !visited)
 414                return;
 415
 416        for (next = commit->parents; next; next = next->next)
 417                mark_ancestors_uninteresting(next->item);
 418}
 419
 420/*
 421 * Sorts the nodes of the first epoch of the epoch sequence of the epoch headed at head
 422 * into merge order.
 423 */
 424static void sort_first_epoch(struct commit *head, struct commit_list **stack)
 425{
 426        struct commit_list *parents;
 427
 428        head->object.flags |= VISITED;
 429
 430        /*
 431         * TODO: By sorting the parents in a different order, we can alter the
 432         * merge order to show contemporaneous changes in parallel branches
 433         * occurring after "local" changes. This is useful for a developer
 434         * when a developer wants to see all changes that were incorporated
 435         * into the same merge as her own changes occur after her own
 436         * changes.
 437         */
 438
 439        for (parents = head->parents; parents; parents = parents->next) {
 440                struct commit *parent = parents->item;
 441
 442                if (head->object.flags & UNINTERESTING) {
 443                        /*
 444                         * Propagates the uninteresting bit to all parents.
 445                         * if we have already visited this parent, then
 446                         * the uninteresting bit will be propagated to each
 447                         * reachable commit that is still not marked
 448                         * uninteresting and won't otherwise be reached.
 449                         */
 450                        mark_ancestors_uninteresting(parent);
 451                }
 452
 453                if (!(parent->object.flags & VISITED)) {
 454                        if (parent->object.flags & BOUNDARY) {
 455                                if (*stack) {
 456                                        die("something else is on the stack - %s",
 457                                            sha1_to_hex((*stack)->item->object.sha1));
 458                                }
 459                                push_onto_merge_order_stack(stack, parent);
 460                                parent->object.flags |= VISITED;
 461
 462                        } else {
 463                                sort_first_epoch(parent, stack);
 464                                if (parents) {
 465                                        /*
 466                                         * This indicates a possible
 467                                         * discontinuity it may not be be
 468                                         * actual discontinuity if the head
 469                                         * of parent N happens to be the tail
 470                                         * of parent N+1.
 471                                         *
 472                                         * The next push onto the stack will
 473                                         * resolve the question.
 474                                         */
 475                                        (*stack)->item->object.flags |= DISCONTINUITY;
 476                                }
 477                        }
 478                }
 479        }
 480
 481        push_onto_merge_order_stack(stack, head);
 482}
 483
 484/*
 485 * Emit the contents of the stack.
 486 *
 487 * The stack is freed and replaced by NULL.
 488 *
 489 * Sets the return value to STOP if no further output should be generated.
 490 */
 491static int emit_stack(struct commit_list **stack, emitter_func emitter, int include_last)
 492{
 493        unsigned int seen = 0;
 494        int action = CONTINUE;
 495
 496        while (*stack && (action != STOP)) {
 497                struct commit *next = pop_commit(stack);
 498                seen |= next->object.flags;
 499                if (*stack || include_last) {
 500                        if (!*stack) 
 501                                next->object.flags |= BOUNDARY;
 502                        action = emitter(next);
 503                }
 504        }
 505
 506        if (*stack) {
 507                free_commit_list(*stack);
 508                *stack = NULL;
 509        }
 510
 511        return (action == STOP || (seen & UNINTERESTING)) ? STOP : CONTINUE;
 512}
 513
 514/*
 515 * Sorts an arbitrary epoch into merge order by sorting each epoch
 516 * of its epoch sequence into order.
 517 *
 518 * Note: this algorithm currently leaves traces of its execution in the
 519 * object flags of nodes it discovers. This should probably be fixed.
 520 */
 521static int sort_in_merge_order(struct commit *head_of_epoch, emitter_func emitter)
 522{
 523        struct commit *next = head_of_epoch;
 524        int ret = 0;
 525        int action = CONTINUE;
 526
 527        ret = parse_commit(head_of_epoch);
 528
 529        next->object.flags |= BOUNDARY;
 530
 531        while (next && next->parents && !ret && (action != STOP)) {
 532                struct commit *base = NULL;
 533
 534                ret = find_next_epoch_boundary(next, &base);
 535                if (ret)
 536                        return ret;
 537                next->object.flags |= BOUNDARY;
 538                if (base)
 539                        base->object.flags |= BOUNDARY;
 540
 541                if (HAS_EXACTLY_ONE_PARENT(next)) {
 542                        while (HAS_EXACTLY_ONE_PARENT(next)
 543                               && (action != STOP)
 544                               && !ret) {
 545                                if (next->object.flags & UNINTERESTING) {
 546                                        action = STOP;
 547                                } else {
 548                                        action = emitter(next);
 549                                }
 550                                if (action != STOP) {
 551                                        next = next->parents->item;
 552                                        ret = parse_commit(next);
 553                                }
 554                        }
 555
 556                } else {
 557                        struct commit_list *stack = NULL;
 558                        sort_first_epoch(next, &stack);
 559                        action = emit_stack(&stack, emitter, (base == NULL));
 560                        next = base;
 561                }
 562        }
 563
 564        if (next && (action != STOP) && !ret) {
 565                emitter(next);
 566        }
 567
 568        return ret;
 569}
 570
 571/*
 572 * Sorts the nodes reachable from a starting list in merge order, we
 573 * first find the base for the starting list and then sort all nodes
 574 * in this subgraph using the sort_first_epoch algorithm. Once we have
 575 * reached the base we can continue sorting using sort_in_merge_order.
 576 */
 577int sort_list_in_merge_order(struct commit_list *list, emitter_func emitter)
 578{
 579        struct commit_list *stack = NULL;
 580        struct commit *base;
 581        int ret = 0;
 582        int action = CONTINUE;
 583        struct commit_list *reversed = NULL;
 584
 585        for (; list; list = list->next)
 586                commit_list_insert(list->item, &reversed);
 587
 588        if (!reversed)
 589                return ret;
 590        else if (!reversed->next) {
 591                /*
 592                 * If there is only one element in the list, we can sort it
 593                 * using sort_in_merge_order.
 594                 */
 595                base = reversed->item;
 596        } else {
 597                /*
 598                 * Otherwise, we search for the base of the list.
 599                 */
 600                ret = find_base_for_list(reversed, &base);
 601                if (ret)
 602                        return ret;
 603                if (base)
 604                        base->object.flags |= BOUNDARY;
 605
 606                while (reversed) {
 607                        struct commit * next = pop_commit(&reversed);
 608
 609                        if (!(next->object.flags & VISITED) && next!=base) {
 610                                sort_first_epoch(next, &stack);
 611                                if (reversed) {
 612                                        /*
 613                                         * If we have more commits 
 614                                         * to push, then the first
 615                                         * push for the next parent may 
 616                                         * (or may * not) represent a 
 617                                         * discontinuity with respect
 618                                         * to the parent currently on 
 619                                         * the top of the stack.
 620                                         *
 621                                         * Mark it for checking here, 
 622                                         * and check it with the next 
 623                                         * push. See sort_first_epoch()
 624                                         * for more details.
 625                                         */
 626                                        stack->item->object.flags |= DISCONTINUITY;
 627                                }
 628                        }
 629                }
 630
 631                action = emit_stack(&stack, emitter, (base==NULL));
 632        }
 633
 634        if (base && (action != STOP)) {
 635                ret = sort_in_merge_order(base, emitter);
 636        }
 637
 638        return ret;
 639}