blame.con commit blame: add a fingerprint heuristic to match ignored lines (1d028dc)
   1#include "cache.h"
   2#include "refs.h"
   3#include "object-store.h"
   4#include "cache-tree.h"
   5#include "mergesort.h"
   6#include "diff.h"
   7#include "diffcore.h"
   8#include "tag.h"
   9#include "blame.h"
  10#include "alloc.h"
  11#include "commit-slab.h"
  12
  13define_commit_slab(blame_suspects, struct blame_origin *);
  14static struct blame_suspects blame_suspects;
  15
  16struct blame_origin *get_blame_suspects(struct commit *commit)
  17{
  18        struct blame_origin **result;
  19
  20        result = blame_suspects_peek(&blame_suspects, commit);
  21
  22        return result ? *result : NULL;
  23}
  24
  25static void set_blame_suspects(struct commit *commit, struct blame_origin *origin)
  26{
  27        *blame_suspects_at(&blame_suspects, commit) = origin;
  28}
  29
  30void blame_origin_decref(struct blame_origin *o)
  31{
  32        if (o && --o->refcnt <= 0) {
  33                struct blame_origin *p, *l = NULL;
  34                if (o->previous)
  35                        blame_origin_decref(o->previous);
  36                free(o->file.ptr);
  37                /* Should be present exactly once in commit chain */
  38                for (p = get_blame_suspects(o->commit); p; l = p, p = p->next) {
  39                        if (p == o) {
  40                                if (l)
  41                                        l->next = p->next;
  42                                else
  43                                        set_blame_suspects(o->commit, p->next);
  44                                free(o);
  45                                return;
  46                        }
  47                }
  48                die("internal error in blame_origin_decref");
  49        }
  50}
  51
  52/*
  53 * Given a commit and a path in it, create a new origin structure.
  54 * The callers that add blame to the scoreboard should use
  55 * get_origin() to obtain shared, refcounted copy instead of calling
  56 * this function directly.
  57 */
  58static struct blame_origin *make_origin(struct commit *commit, const char *path)
  59{
  60        struct blame_origin *o;
  61        FLEX_ALLOC_STR(o, path, path);
  62        o->commit = commit;
  63        o->refcnt = 1;
  64        o->next = get_blame_suspects(commit);
  65        set_blame_suspects(commit, o);
  66        return o;
  67}
  68
  69/*
  70 * Locate an existing origin or create a new one.
  71 * This moves the origin to front position in the commit util list.
  72 */
  73static struct blame_origin *get_origin(struct commit *commit, const char *path)
  74{
  75        struct blame_origin *o, *l;
  76
  77        for (o = get_blame_suspects(commit), l = NULL; o; l = o, o = o->next) {
  78                if (!strcmp(o->path, path)) {
  79                        /* bump to front */
  80                        if (l) {
  81                                l->next = o->next;
  82                                o->next = get_blame_suspects(commit);
  83                                set_blame_suspects(commit, o);
  84                        }
  85                        return blame_origin_incref(o);
  86                }
  87        }
  88        return make_origin(commit, path);
  89}
  90
  91
  92
  93static void verify_working_tree_path(struct repository *r,
  94                                     struct commit *work_tree, const char *path)
  95{
  96        struct commit_list *parents;
  97        int pos;
  98
  99        for (parents = work_tree->parents; parents; parents = parents->next) {
 100                const struct object_id *commit_oid = &parents->item->object.oid;
 101                struct object_id blob_oid;
 102                unsigned mode;
 103
 104                if (!get_tree_entry(commit_oid, path, &blob_oid, &mode) &&
 105                    oid_object_info(r, &blob_oid, NULL) == OBJ_BLOB)
 106                        return;
 107        }
 108
 109        pos = index_name_pos(r->index, path, strlen(path));
 110        if (pos >= 0)
 111                ; /* path is in the index */
 112        else if (-1 - pos < r->index->cache_nr &&
 113                 !strcmp(r->index->cache[-1 - pos]->name, path))
 114                ; /* path is in the index, unmerged */
 115        else
 116                die("no such path '%s' in HEAD", path);
 117}
 118
 119static struct commit_list **append_parent(struct repository *r,
 120                                          struct commit_list **tail,
 121                                          const struct object_id *oid)
 122{
 123        struct commit *parent;
 124
 125        parent = lookup_commit_reference(r, oid);
 126        if (!parent)
 127                die("no such commit %s", oid_to_hex(oid));
 128        return &commit_list_insert(parent, tail)->next;
 129}
 130
 131static void append_merge_parents(struct repository *r,
 132                                 struct commit_list **tail)
 133{
 134        int merge_head;
 135        struct strbuf line = STRBUF_INIT;
 136
 137        merge_head = open(git_path_merge_head(r), O_RDONLY);
 138        if (merge_head < 0) {
 139                if (errno == ENOENT)
 140                        return;
 141                die("cannot open '%s' for reading",
 142                    git_path_merge_head(r));
 143        }
 144
 145        while (!strbuf_getwholeline_fd(&line, merge_head, '\n')) {
 146                struct object_id oid;
 147                if (line.len < GIT_SHA1_HEXSZ || get_oid_hex(line.buf, &oid))
 148                        die("unknown line in '%s': %s",
 149                            git_path_merge_head(r), line.buf);
 150                tail = append_parent(r, tail, &oid);
 151        }
 152        close(merge_head);
 153        strbuf_release(&line);
 154}
 155
 156/*
 157 * This isn't as simple as passing sb->buf and sb->len, because we
 158 * want to transfer ownership of the buffer to the commit (so we
 159 * must use detach).
 160 */
 161static void set_commit_buffer_from_strbuf(struct repository *r,
 162                                          struct commit *c,
 163                                          struct strbuf *sb)
 164{
 165        size_t len;
 166        void *buf = strbuf_detach(sb, &len);
 167        set_commit_buffer(r, c, buf, len);
 168}
 169
 170/*
 171 * Prepare a dummy commit that represents the work tree (or staged) item.
 172 * Note that annotating work tree item never works in the reverse.
 173 */
 174static struct commit *fake_working_tree_commit(struct repository *r,
 175                                               struct diff_options *opt,
 176                                               const char *path,
 177                                               const char *contents_from)
 178{
 179        struct commit *commit;
 180        struct blame_origin *origin;
 181        struct commit_list **parent_tail, *parent;
 182        struct object_id head_oid;
 183        struct strbuf buf = STRBUF_INIT;
 184        const char *ident;
 185        time_t now;
 186        int len;
 187        struct cache_entry *ce;
 188        unsigned mode;
 189        struct strbuf msg = STRBUF_INIT;
 190
 191        read_index(r->index);
 192        time(&now);
 193        commit = alloc_commit_node(r);
 194        commit->object.parsed = 1;
 195        commit->date = now;
 196        parent_tail = &commit->parents;
 197
 198        if (!resolve_ref_unsafe("HEAD", RESOLVE_REF_READING, &head_oid, NULL))
 199                die("no such ref: HEAD");
 200
 201        parent_tail = append_parent(r, parent_tail, &head_oid);
 202        append_merge_parents(r, parent_tail);
 203        verify_working_tree_path(r, commit, path);
 204
 205        origin = make_origin(commit, path);
 206
 207        ident = fmt_ident("Not Committed Yet", "not.committed.yet", NULL, 0);
 208        strbuf_addstr(&msg, "tree 0000000000000000000000000000000000000000\n");
 209        for (parent = commit->parents; parent; parent = parent->next)
 210                strbuf_addf(&msg, "parent %s\n",
 211                            oid_to_hex(&parent->item->object.oid));
 212        strbuf_addf(&msg,
 213                    "author %s\n"
 214                    "committer %s\n\n"
 215                    "Version of %s from %s\n",
 216                    ident, ident, path,
 217                    (!contents_from ? path :
 218                     (!strcmp(contents_from, "-") ? "standard input" : contents_from)));
 219        set_commit_buffer_from_strbuf(r, commit, &msg);
 220
 221        if (!contents_from || strcmp("-", contents_from)) {
 222                struct stat st;
 223                const char *read_from;
 224                char *buf_ptr;
 225                unsigned long buf_len;
 226
 227                if (contents_from) {
 228                        if (stat(contents_from, &st) < 0)
 229                                die_errno("Cannot stat '%s'", contents_from);
 230                        read_from = contents_from;
 231                }
 232                else {
 233                        if (lstat(path, &st) < 0)
 234                                die_errno("Cannot lstat '%s'", path);
 235                        read_from = path;
 236                }
 237                mode = canon_mode(st.st_mode);
 238
 239                switch (st.st_mode & S_IFMT) {
 240                case S_IFREG:
 241                        if (opt->flags.allow_textconv &&
 242                            textconv_object(r, read_from, mode, &null_oid, 0, &buf_ptr, &buf_len))
 243                                strbuf_attach(&buf, buf_ptr, buf_len, buf_len + 1);
 244                        else if (strbuf_read_file(&buf, read_from, st.st_size) != st.st_size)
 245                                die_errno("cannot open or read '%s'", read_from);
 246                        break;
 247                case S_IFLNK:
 248                        if (strbuf_readlink(&buf, read_from, st.st_size) < 0)
 249                                die_errno("cannot readlink '%s'", read_from);
 250                        break;
 251                default:
 252                        die("unsupported file type %s", read_from);
 253                }
 254        }
 255        else {
 256                /* Reading from stdin */
 257                mode = 0;
 258                if (strbuf_read(&buf, 0, 0) < 0)
 259                        die_errno("failed to read from stdin");
 260        }
 261        convert_to_git(r->index, path, buf.buf, buf.len, &buf, 0);
 262        origin->file.ptr = buf.buf;
 263        origin->file.size = buf.len;
 264        pretend_object_file(buf.buf, buf.len, OBJ_BLOB, &origin->blob_oid);
 265
 266        /*
 267         * Read the current index, replace the path entry with
 268         * origin->blob_sha1 without mucking with its mode or type
 269         * bits; we are not going to write this index out -- we just
 270         * want to run "diff-index --cached".
 271         */
 272        discard_index(r->index);
 273        read_index(r->index);
 274
 275        len = strlen(path);
 276        if (!mode) {
 277                int pos = index_name_pos(r->index, path, len);
 278                if (0 <= pos)
 279                        mode = r->index->cache[pos]->ce_mode;
 280                else
 281                        /* Let's not bother reading from HEAD tree */
 282                        mode = S_IFREG | 0644;
 283        }
 284        ce = make_empty_cache_entry(r->index, len);
 285        oidcpy(&ce->oid, &origin->blob_oid);
 286        memcpy(ce->name, path, len);
 287        ce->ce_flags = create_ce_flags(0);
 288        ce->ce_namelen = len;
 289        ce->ce_mode = create_ce_mode(mode);
 290        add_index_entry(r->index, ce,
 291                        ADD_CACHE_OK_TO_ADD | ADD_CACHE_OK_TO_REPLACE);
 292
 293        cache_tree_invalidate_path(r->index, path);
 294
 295        return commit;
 296}
 297
 298
 299
 300static int diff_hunks(mmfile_t *file_a, mmfile_t *file_b,
 301                      xdl_emit_hunk_consume_func_t hunk_func, void *cb_data, int xdl_opts)
 302{
 303        xpparam_t xpp = {0};
 304        xdemitconf_t xecfg = {0};
 305        xdemitcb_t ecb = {NULL};
 306
 307        xpp.flags = xdl_opts;
 308        xecfg.hunk_func = hunk_func;
 309        ecb.priv = cb_data;
 310        return xdi_diff(file_a, file_b, &xpp, &xecfg, &ecb);
 311}
 312
 313static const char *get_next_line(const char *start, const char *end)
 314{
 315        const char *nl = memchr(start, '\n', end - start);
 316
 317        return nl ? nl + 1 : end;
 318}
 319
 320static int find_line_starts(int **line_starts, const char *buf,
 321                            unsigned long len)
 322{
 323        const char *end = buf + len;
 324        const char *p;
 325        int *lineno;
 326        int num = 0;
 327
 328        for (p = buf; p < end; p = get_next_line(p, end))
 329                num++;
 330
 331        ALLOC_ARRAY(*line_starts, num + 1);
 332        lineno = *line_starts;
 333
 334        for (p = buf; p < end; p = get_next_line(p, end))
 335                *lineno++ = p - buf;
 336
 337        *lineno = len;
 338
 339        return num;
 340}
 341
 342struct fingerprint_entry;
 343
 344/* A fingerprint is intended to loosely represent a string, such that two
 345 * fingerprints can be quickly compared to give an indication of the similarity
 346 * of the strings that they represent.
 347 *
 348 * A fingerprint is represented as a multiset of the lower-cased byte pairs in
 349 * the string that it represents. Whitespace is added at each end of the
 350 * string. Whitespace pairs are ignored. Whitespace is converted to '\0'.
 351 * For example, the string "Darth   Radar" will be converted to the following
 352 * fingerprint:
 353 * {"\0d", "da", "da", "ar", "ar", "rt", "th", "h\0", "\0r", "ra", "ad", "r\0"}
 354 *
 355 * The similarity between two fingerprints is the size of the intersection of
 356 * their multisets, including repeated elements. See fingerprint_similarity for
 357 * examples.
 358 *
 359 * For ease of implementation, the fingerprint is implemented as a map
 360 * of byte pairs to the count of that byte pair in the string, instead of
 361 * allowing repeated elements in a set.
 362 */
 363struct fingerprint {
 364        struct hashmap map;
 365        /* As we know the maximum number of entries in advance, it's
 366         * convenient to store the entries in a single array instead of having
 367         * the hashmap manage the memory.
 368         */
 369        struct fingerprint_entry *entries;
 370};
 371
 372/* A byte pair in a fingerprint. Stores the number of times the byte pair
 373 * occurs in the string that the fingerprint represents.
 374 */
 375struct fingerprint_entry {
 376        /* The hashmap entry - the hash represents the byte pair in its
 377         * entirety so we don't need to store the byte pair separately.
 378         */
 379        struct hashmap_entry entry;
 380        /* The number of times the byte pair occurs in the string that the
 381         * fingerprint represents.
 382         */
 383        int count;
 384};
 385
 386/* See `struct fingerprint` for an explanation of what a fingerprint is.
 387 * \param result the fingerprint of the string is stored here. This must be
 388 *               freed later using free_fingerprint.
 389 * \param line_begin the start of the string
 390 * \param line_end the end of the string
 391 */
 392static void get_fingerprint(struct fingerprint *result,
 393                            const char *line_begin,
 394                            const char *line_end)
 395{
 396        unsigned int hash, c0 = 0, c1;
 397        const char *p;
 398        int max_map_entry_count = 1 + line_end - line_begin;
 399        struct fingerprint_entry *entry = xcalloc(max_map_entry_count,
 400                sizeof(struct fingerprint_entry));
 401        struct fingerprint_entry *found_entry;
 402
 403        hashmap_init(&result->map, NULL, NULL, max_map_entry_count);
 404        result->entries = entry;
 405        for (p = line_begin; p <= line_end; ++p, c0 = c1) {
 406                /* Always terminate the string with whitespace.
 407                 * Normalise whitespace to 0, and normalise letters to
 408                 * lower case. This won't work for multibyte characters but at
 409                 * worst will match some unrelated characters.
 410                 */
 411                if ((p == line_end) || isspace(*p))
 412                        c1 = 0;
 413                else
 414                        c1 = tolower(*p);
 415                hash = c0 | (c1 << 8);
 416                /* Ignore whitespace pairs */
 417                if (hash == 0)
 418                        continue;
 419                hashmap_entry_init(entry, hash);
 420
 421                found_entry = hashmap_get(&result->map, entry, NULL);
 422                if (found_entry) {
 423                        found_entry->count += 1;
 424                } else {
 425                        entry->count = 1;
 426                        hashmap_add(&result->map, entry);
 427                        ++entry;
 428                }
 429        }
 430}
 431
 432static void free_fingerprint(struct fingerprint *f)
 433{
 434        hashmap_free(&f->map, 0);
 435        free(f->entries);
 436}
 437
 438/* Calculates the similarity between two fingerprints as the size of the
 439 * intersection of their multisets, including repeated elements. See
 440 * `struct fingerprint` for an explanation of the fingerprint representation.
 441 * The similarity between "cat mat" and "father rather" is 2 because "at" is
 442 * present twice in both strings while the similarity between "tim" and "mit"
 443 * is 0.
 444 */
 445static int fingerprint_similarity(struct fingerprint *a, struct fingerprint *b)
 446{
 447        int intersection = 0;
 448        struct hashmap_iter iter;
 449        const struct fingerprint_entry *entry_a, *entry_b;
 450
 451        hashmap_iter_init(&b->map, &iter);
 452
 453        while ((entry_b = hashmap_iter_next(&iter))) {
 454                if ((entry_a = hashmap_get(&a->map, entry_b, NULL))) {
 455                        intersection += entry_a->count < entry_b->count ?
 456                                        entry_a->count : entry_b->count;
 457                }
 458        }
 459        return intersection;
 460}
 461
 462/* Subtracts byte-pair elements in B from A, modifying A in place.
 463 */
 464static void fingerprint_subtract(struct fingerprint *a, struct fingerprint *b)
 465{
 466        struct hashmap_iter iter;
 467        struct fingerprint_entry *entry_a;
 468        const struct fingerprint_entry *entry_b;
 469
 470        hashmap_iter_init(&b->map, &iter);
 471
 472        while ((entry_b = hashmap_iter_next(&iter))) {
 473                if ((entry_a = hashmap_get(&a->map, entry_b, NULL))) {
 474                        if (entry_a->count <= entry_b->count)
 475                                hashmap_remove(&a->map, entry_b, NULL);
 476                        else
 477                                entry_a->count -= entry_b->count;
 478                }
 479        }
 480}
 481
 482/* Calculate fingerprints for a series of lines.
 483 * Puts the fingerprints in the fingerprints array, which must have been
 484 * preallocated to allow storing line_count elements.
 485 */
 486static void get_line_fingerprints(struct fingerprint *fingerprints,
 487                                  const char *content, const int *line_starts,
 488                                  long first_line, long line_count)
 489{
 490        int i;
 491        const char *linestart, *lineend;
 492
 493        line_starts += first_line;
 494        for (i = 0; i < line_count; ++i) {
 495                linestart = content + line_starts[i];
 496                lineend = content + line_starts[i + 1];
 497                get_fingerprint(fingerprints + i, linestart, lineend);
 498        }
 499}
 500
 501static void free_line_fingerprints(struct fingerprint *fingerprints,
 502                                   int nr_fingerprints)
 503{
 504        int i;
 505
 506        for (i = 0; i < nr_fingerprints; i++)
 507                free_fingerprint(&fingerprints[i]);
 508}
 509
 510/* This contains the data necessary to linearly map a line number in one half
 511 * of a diff chunk to the line in the other half of the diff chunk that is
 512 * closest in terms of its position as a fraction of the length of the chunk.
 513 */
 514struct line_number_mapping {
 515        int destination_start, destination_length,
 516                source_start, source_length;
 517};
 518
 519/* Given a line number in one range, offset and scale it to map it onto the
 520 * other range.
 521 * Essentially this mapping is a simple linear equation but the calculation is
 522 * more complicated to allow performing it with integer operations.
 523 * Another complication is that if a line could map onto many lines in the
 524 * destination range then we want to choose the line at the center of those
 525 * possibilities.
 526 * Example: if the chunk is 2 lines long in A and 10 lines long in B then the
 527 * first 5 lines in B will map onto the first line in the A chunk, while the
 528 * last 5 lines will all map onto the second line in the A chunk.
 529 * Example: if the chunk is 10 lines long in A and 2 lines long in B then line
 530 * 0 in B will map onto line 2 in A, and line 1 in B will map onto line 7 in A.
 531 */
 532static int map_line_number(int line_number,
 533        const struct line_number_mapping *mapping)
 534{
 535        return ((line_number - mapping->source_start) * 2 + 1) *
 536               mapping->destination_length /
 537               (mapping->source_length * 2) +
 538               mapping->destination_start;
 539}
 540
 541/* Get a pointer to the element storing the similarity between a line in A
 542 * and a line in B.
 543 *
 544 * The similarities are stored in a 2-dimensional array. Each "row" in the
 545 * array contains the similarities for a line in B. The similarities stored in
 546 * a row are the similarities between the line in B and the nearby lines in A.
 547 * To keep the length of each row the same, it is padded out with values of -1
 548 * where the search range extends beyond the lines in A.
 549 * For example, if max_search_distance_a is 2 and the two sides of a diff chunk
 550 * look like this:
 551 * a | m
 552 * b | n
 553 * c | o
 554 * d | p
 555 * e | q
 556 * Then the similarity array will contain:
 557 * [-1, -1, am, bm, cm,
 558 *  -1, an, bn, cn, dn,
 559 *  ao, bo, co, do, eo,
 560 *  bp, cp, dp, ep, -1,
 561 *  cq, dq, eq, -1, -1]
 562 * Where similarities are denoted either by -1 for invalid, or the
 563 * concatenation of the two lines in the diff being compared.
 564 *
 565 * \param similarities array of similarities between lines in A and B
 566 * \param line_a the index of the line in A, in the same frame of reference as
 567 *      closest_line_a.
 568 * \param local_line_b the index of the line in B, relative to the first line
 569 *                     in B that similarities represents.
 570 * \param closest_line_a the index of the line in A that is deemed to be
 571 *                       closest to local_line_b. This must be in the same
 572 *                       frame of reference as line_a. This value defines
 573 *                       where similarities is centered for the line in B.
 574 * \param max_search_distance_a maximum distance in lines from the closest line
 575 *                              in A for other lines in A for which
 576 *                              similarities may be calculated.
 577 */
 578static int *get_similarity(int *similarities,
 579                           int line_a, int local_line_b,
 580                           int closest_line_a, int max_search_distance_a)
 581{
 582        assert(abs(line_a - closest_line_a) <=
 583               max_search_distance_a);
 584        return similarities + line_a - closest_line_a +
 585               max_search_distance_a +
 586               local_line_b * (max_search_distance_a * 2 + 1);
 587}
 588
 589#define CERTAIN_NOTHING_MATCHES -2
 590#define CERTAINTY_NOT_CALCULATED -1
 591
 592/* Given a line in B, first calculate its similarities with nearby lines in A
 593 * if not already calculated, then identify the most similar and second most
 594 * similar lines. The "certainty" is calculated based on those two
 595 * similarities.
 596 *
 597 * \param start_a the index of the first line of the chunk in A
 598 * \param length_a the length in lines of the chunk in A
 599 * \param local_line_b the index of the line in B, relative to the first line
 600 *                     in the chunk.
 601 * \param fingerprints_a array of fingerprints for the chunk in A
 602 * \param fingerprints_b array of fingerprints for the chunk in B
 603 * \param similarities 2-dimensional array of similarities between lines in A
 604 *                     and B. See get_similarity() for more details.
 605 * \param certainties array of values indicating how strongly a line in B is
 606 *                    matched with some line in A.
 607 * \param second_best_result array of absolute indices in A for the second
 608 *                           closest match of a line in B.
 609 * \param result array of absolute indices in A for the closest match of a line
 610 *               in B.
 611 * \param max_search_distance_a maximum distance in lines from the closest line
 612 *                              in A for other lines in A for which
 613 *                              similarities may be calculated.
 614 * \param map_line_number_in_b_to_a parameter to map_line_number().
 615 */
 616static void find_best_line_matches(
 617        int start_a,
 618        int length_a,
 619        int start_b,
 620        int local_line_b,
 621        struct fingerprint *fingerprints_a,
 622        struct fingerprint *fingerprints_b,
 623        int *similarities,
 624        int *certainties,
 625        int *second_best_result,
 626        int *result,
 627        const int max_search_distance_a,
 628        const struct line_number_mapping *map_line_number_in_b_to_a)
 629{
 630
 631        int i, search_start, search_end, closest_local_line_a, *similarity,
 632                best_similarity = 0, second_best_similarity = 0,
 633                best_similarity_index = 0, second_best_similarity_index = 0;
 634
 635        /* certainty has already been calculated so no need to redo the work */
 636        if (certainties[local_line_b] != CERTAINTY_NOT_CALCULATED)
 637                return;
 638
 639        closest_local_line_a = map_line_number(
 640                local_line_b + start_b, map_line_number_in_b_to_a) - start_a;
 641
 642        search_start = closest_local_line_a - max_search_distance_a;
 643        if (search_start < 0)
 644                search_start = 0;
 645
 646        search_end = closest_local_line_a + max_search_distance_a + 1;
 647        if (search_end > length_a)
 648                search_end = length_a;
 649
 650        for (i = search_start; i < search_end; ++i) {
 651                similarity = get_similarity(similarities,
 652                                            i, local_line_b,
 653                                            closest_local_line_a,
 654                                            max_search_distance_a);
 655                if (*similarity == -1) {
 656                        /* This value will never exceed 10 but assert just in
 657                         * case
 658                         */
 659                        assert(abs(i - closest_local_line_a) < 1000);
 660                        /* scale the similarity by (1000 - distance from
 661                         * closest line) to act as a tie break between lines
 662                         * that otherwise are equally similar.
 663                         */
 664                        *similarity = fingerprint_similarity(
 665                                fingerprints_b + local_line_b,
 666                                fingerprints_a + i) *
 667                                (1000 - abs(i - closest_local_line_a));
 668                }
 669                if (*similarity > best_similarity) {
 670                        second_best_similarity = best_similarity;
 671                        second_best_similarity_index = best_similarity_index;
 672                        best_similarity = *similarity;
 673                        best_similarity_index = i;
 674                } else if (*similarity > second_best_similarity) {
 675                        second_best_similarity = *similarity;
 676                        second_best_similarity_index = i;
 677                }
 678        }
 679
 680        if (best_similarity == 0) {
 681                /* this line definitely doesn't match with anything. Mark it
 682                 * with this special value so it doesn't get invalidated and
 683                 * won't be recalculated.
 684                 */
 685                certainties[local_line_b] = CERTAIN_NOTHING_MATCHES;
 686                result[local_line_b] = -1;
 687        } else {
 688                /* Calculate the certainty with which this line matches.
 689                 * If the line matches well with two lines then that reduces
 690                 * the certainty. However we still want to prioritise matching
 691                 * a line that matches very well with two lines over matching a
 692                 * line that matches poorly with one line, hence doubling
 693                 * best_similarity.
 694                 * This means that if we have
 695                 * line X that matches only one line with a score of 3,
 696                 * line Y that matches two lines equally with a score of 5,
 697                 * and line Z that matches only one line with a score or 2,
 698                 * then the lines in order of certainty are X, Y, Z.
 699                 */
 700                certainties[local_line_b] = best_similarity * 2 -
 701                        second_best_similarity;
 702
 703                /* We keep both the best and second best results to allow us to
 704                 * check at a later stage of the matching process whether the
 705                 * result needs to be invalidated.
 706                 */
 707                result[local_line_b] = start_a + best_similarity_index;
 708                second_best_result[local_line_b] =
 709                        start_a + second_best_similarity_index;
 710        }
 711}
 712
 713/*
 714 * This finds the line that we can match with the most confidence, and
 715 * uses it as a partition. It then calls itself on the lines on either side of
 716 * that partition. In this way we avoid lines appearing out of order, and
 717 * retain a sensible line ordering.
 718 * \param start_a index of the first line in A with which lines in B may be
 719 *                compared.
 720 * \param start_b index of the first line in B for which matching should be
 721 *                done.
 722 * \param length_a number of lines in A with which lines in B may be compared.
 723 * \param length_b number of lines in B for which matching should be done.
 724 * \param fingerprints_a mutable array of fingerprints in A. The first element
 725 *                       corresponds to the line at start_a.
 726 * \param fingerprints_b array of fingerprints in B. The first element
 727 *                       corresponds to the line at start_b.
 728 * \param similarities 2-dimensional array of similarities between lines in A
 729 *                     and B. See get_similarity() for more details.
 730 * \param certainties array of values indicating how strongly a line in B is
 731 *                    matched with some line in A.
 732 * \param second_best_result array of absolute indices in A for the second
 733 *                           closest match of a line in B.
 734 * \param result array of absolute indices in A for the closest match of a line
 735 *               in B.
 736 * \param max_search_distance_a maximum distance in lines from the closest line
 737 *                            in A for other lines in A for which
 738 *                            similarities may be calculated.
 739 * \param max_search_distance_b an upper bound on the greatest possible
 740 *                            distance between lines in B such that they will
 741 *                              both be compared with the same line in A
 742 *                            according to max_search_distance_a.
 743 * \param map_line_number_in_b_to_a parameter to map_line_number().
 744 */
 745static void fuzzy_find_matching_lines_recurse(
 746        int start_a, int start_b,
 747        int length_a, int length_b,
 748        struct fingerprint *fingerprints_a,
 749        struct fingerprint *fingerprints_b,
 750        int *similarities,
 751        int *certainties,
 752        int *second_best_result,
 753        int *result,
 754        int max_search_distance_a,
 755        int max_search_distance_b,
 756        const struct line_number_mapping *map_line_number_in_b_to_a)
 757{
 758        int i, invalidate_min, invalidate_max, offset_b,
 759                second_half_start_a, second_half_start_b,
 760                second_half_length_a, second_half_length_b,
 761                most_certain_line_a, most_certain_local_line_b = -1,
 762                most_certain_line_certainty = -1,
 763                closest_local_line_a;
 764
 765        for (i = 0; i < length_b; ++i) {
 766                find_best_line_matches(start_a,
 767                                       length_a,
 768                                       start_b,
 769                                       i,
 770                                       fingerprints_a,
 771                                       fingerprints_b,
 772                                       similarities,
 773                                       certainties,
 774                                       second_best_result,
 775                                       result,
 776                                       max_search_distance_a,
 777                                       map_line_number_in_b_to_a);
 778
 779                if (certainties[i] > most_certain_line_certainty) {
 780                        most_certain_line_certainty = certainties[i];
 781                        most_certain_local_line_b = i;
 782                }
 783        }
 784
 785        /* No matches. */
 786        if (most_certain_local_line_b == -1)
 787                return;
 788
 789        most_certain_line_a = result[most_certain_local_line_b];
 790
 791        /*
 792         * Subtract the most certain line's fingerprint in B from the matched
 793         * fingerprint in A. This means that other lines in B can't also match
 794         * the same parts of the line in A.
 795         */
 796        fingerprint_subtract(fingerprints_a + most_certain_line_a - start_a,
 797                             fingerprints_b + most_certain_local_line_b);
 798
 799        /* Invalidate results that may be affected by the choice of most
 800         * certain line.
 801         */
 802        invalidate_min = most_certain_local_line_b - max_search_distance_b;
 803        invalidate_max = most_certain_local_line_b + max_search_distance_b + 1;
 804        if (invalidate_min < 0)
 805                invalidate_min = 0;
 806        if (invalidate_max > length_b)
 807                invalidate_max = length_b;
 808
 809        /* As the fingerprint in A has changed, discard previously calculated
 810         * similarity values with that fingerprint.
 811         */
 812        for (i = invalidate_min; i < invalidate_max; ++i) {
 813                closest_local_line_a = map_line_number(
 814                        i + start_b, map_line_number_in_b_to_a) - start_a;
 815
 816                /* Check that the lines in A and B are close enough that there
 817                 * is a similarity value for them.
 818                 */
 819                if (abs(most_certain_line_a - start_a - closest_local_line_a) >
 820                        max_search_distance_a) {
 821                        continue;
 822                }
 823
 824                *get_similarity(similarities, most_certain_line_a - start_a,
 825                                i, closest_local_line_a,
 826                                max_search_distance_a) = -1;
 827        }
 828
 829        /* More invalidating of results that may be affected by the choice of
 830         * most certain line.
 831         * Discard the matches for lines in B that are currently matched with a
 832         * line in A such that their ordering contradicts the ordering imposed
 833         * by the choice of most certain line.
 834         */
 835        for (i = most_certain_local_line_b - 1; i >= invalidate_min; --i) {
 836                /* In this loop we discard results for lines in B that are
 837                 * before most-certain-line-B but are matched with a line in A
 838                 * that is after most-certain-line-A.
 839                 */
 840                if (certainties[i] >= 0 &&
 841                    (result[i] >= most_certain_line_a ||
 842                     second_best_result[i] >= most_certain_line_a)) {
 843                        certainties[i] = CERTAINTY_NOT_CALCULATED;
 844                }
 845        }
 846        for (i = most_certain_local_line_b + 1; i < invalidate_max; ++i) {
 847                /* In this loop we discard results for lines in B that are
 848                 * after most-certain-line-B but are matched with a line in A
 849                 * that is before most-certain-line-A.
 850                 */
 851                if (certainties[i] >= 0 &&
 852                    (result[i] <= most_certain_line_a ||
 853                     second_best_result[i] <= most_certain_line_a)) {
 854                        certainties[i] = CERTAINTY_NOT_CALCULATED;
 855                }
 856        }
 857
 858        /* Repeat the matching process for lines before the most certain line.
 859         */
 860        if (most_certain_local_line_b > 0) {
 861                fuzzy_find_matching_lines_recurse(
 862                        start_a, start_b,
 863                        most_certain_line_a + 1 - start_a,
 864                        most_certain_local_line_b,
 865                        fingerprints_a, fingerprints_b, similarities,
 866                        certainties, second_best_result, result,
 867                        max_search_distance_a,
 868                        max_search_distance_b,
 869                        map_line_number_in_b_to_a);
 870        }
 871        /* Repeat the matching process for lines after the most certain line.
 872         */
 873        if (most_certain_local_line_b + 1 < length_b) {
 874                second_half_start_a = most_certain_line_a;
 875                offset_b = most_certain_local_line_b + 1;
 876                second_half_start_b = start_b + offset_b;
 877                second_half_length_a =
 878                        length_a + start_a - second_half_start_a;
 879                second_half_length_b =
 880                        length_b + start_b - second_half_start_b;
 881                fuzzy_find_matching_lines_recurse(
 882                        second_half_start_a, second_half_start_b,
 883                        second_half_length_a, second_half_length_b,
 884                        fingerprints_a + second_half_start_a - start_a,
 885                        fingerprints_b + offset_b,
 886                        similarities +
 887                                offset_b * (max_search_distance_a * 2 + 1),
 888                        certainties + offset_b,
 889                        second_best_result + offset_b, result + offset_b,
 890                        max_search_distance_a,
 891                        max_search_distance_b,
 892                        map_line_number_in_b_to_a);
 893        }
 894}
 895
 896/* Find the lines in the parent line range that most closely match the lines in
 897 * the target line range. This is accomplished by matching fingerprints in each
 898 * blame_origin, and choosing the best matches that preserve the line ordering.
 899 * See struct fingerprint for details of fingerprint matching, and
 900 * fuzzy_find_matching_lines_recurse for details of preserving line ordering.
 901 *
 902 * The performance is believed to be O(n log n) in the typical case and O(n^2)
 903 * in a pathological case, where n is the number of lines in the target range.
 904 */
 905static int *fuzzy_find_matching_lines(struct blame_origin *parent,
 906                                      struct blame_origin *target,
 907                                      int tlno, int parent_slno, int same,
 908                                      int parent_len)
 909{
 910        /* We use the terminology "A" for the left hand side of the diff AKA
 911         * parent, and "B" for the right hand side of the diff AKA target. */
 912        int start_a = parent_slno;
 913        int length_a = parent_len;
 914        int start_b = tlno;
 915        int length_b = same - tlno;
 916
 917        struct line_number_mapping map_line_number_in_b_to_a = {
 918                start_a, length_a, start_b, length_b
 919        };
 920
 921        struct fingerprint *fingerprints_a = parent->fingerprints;
 922        struct fingerprint *fingerprints_b = target->fingerprints;
 923
 924        int i, *result, *second_best_result,
 925                *certainties, *similarities, similarity_count;
 926
 927        /*
 928         * max_search_distance_a means that given a line in B, compare it to
 929         * the line in A that is closest to its position, and the lines in A
 930         * that are no greater than max_search_distance_a lines away from the
 931         * closest line in A.
 932         *
 933         * max_search_distance_b is an upper bound on the greatest possible
 934         * distance between lines in B such that they will both be compared
 935         * with the same line in A according to max_search_distance_a.
 936         */
 937        int max_search_distance_a = 10, max_search_distance_b;
 938
 939        if (length_a <= 0)
 940                return NULL;
 941
 942        if (max_search_distance_a >= length_a)
 943                max_search_distance_a = length_a ? length_a - 1 : 0;
 944
 945        max_search_distance_b = ((2 * max_search_distance_a + 1) * length_b
 946                                 - 1) / length_a;
 947
 948        result = xcalloc(sizeof(int), length_b);
 949        second_best_result = xcalloc(sizeof(int), length_b);
 950        certainties = xcalloc(sizeof(int), length_b);
 951
 952        /* See get_similarity() for details of similarities. */
 953        similarity_count = length_b * (max_search_distance_a * 2 + 1);
 954        similarities = xcalloc(sizeof(int), similarity_count);
 955
 956        for (i = 0; i < length_b; ++i) {
 957                result[i] = -1;
 958                second_best_result[i] = -1;
 959                certainties[i] = CERTAINTY_NOT_CALCULATED;
 960        }
 961
 962        for (i = 0; i < similarity_count; ++i)
 963                similarities[i] = -1;
 964
 965        fuzzy_find_matching_lines_recurse(start_a, start_b,
 966                                          length_a, length_b,
 967                                          fingerprints_a + start_a,
 968                                          fingerprints_b + start_b,
 969                                          similarities,
 970                                          certainties,
 971                                          second_best_result,
 972                                          result,
 973                                          max_search_distance_a,
 974                                          max_search_distance_b,
 975                                          &map_line_number_in_b_to_a);
 976
 977        free(similarities);
 978        free(certainties);
 979        free(second_best_result);
 980
 981        return result;
 982}
 983
 984static void fill_origin_fingerprints(struct blame_origin *o, mmfile_t *file)
 985{
 986        int *line_starts;
 987
 988        if (o->fingerprints)
 989                return;
 990        o->num_lines = find_line_starts(&line_starts, o->file.ptr,
 991                                        o->file.size);
 992        /* TODO: Will fill in fingerprints in a future commit */
 993        free(line_starts);
 994}
 995
 996static void drop_origin_fingerprints(struct blame_origin *o)
 997{
 998}
 999
1000/*
1001 * Given an origin, prepare mmfile_t structure to be used by the
1002 * diff machinery
1003 */
1004static void fill_origin_blob(struct diff_options *opt,
1005                             struct blame_origin *o, mmfile_t *file,
1006                             int *num_read_blob, int fill_fingerprints)
1007{
1008        if (!o->file.ptr) {
1009                enum object_type type;
1010                unsigned long file_size;
1011
1012                (*num_read_blob)++;
1013                if (opt->flags.allow_textconv &&
1014                    textconv_object(opt->repo, o->path, o->mode,
1015                                    &o->blob_oid, 1, &file->ptr, &file_size))
1016                        ;
1017                else
1018                        file->ptr = read_object_file(&o->blob_oid, &type,
1019                                                     &file_size);
1020                file->size = file_size;
1021
1022                if (!file->ptr)
1023                        die("Cannot read blob %s for path %s",
1024                            oid_to_hex(&o->blob_oid),
1025                            o->path);
1026                o->file = *file;
1027        }
1028        else
1029                *file = o->file;
1030        if (fill_fingerprints)
1031                fill_origin_fingerprints(o, file);
1032}
1033
1034static void drop_origin_blob(struct blame_origin *o)
1035{
1036        FREE_AND_NULL(o->file.ptr);
1037        drop_origin_fingerprints(o);
1038}
1039
1040/*
1041 * Any merge of blames happens on lists of blames that arrived via
1042 * different parents in a single suspect.  In this case, we want to
1043 * sort according to the suspect line numbers as opposed to the final
1044 * image line numbers.  The function body is somewhat longish because
1045 * it avoids unnecessary writes.
1046 */
1047
1048static struct blame_entry *blame_merge(struct blame_entry *list1,
1049                                       struct blame_entry *list2)
1050{
1051        struct blame_entry *p1 = list1, *p2 = list2,
1052                **tail = &list1;
1053
1054        if (!p1)
1055                return p2;
1056        if (!p2)
1057                return p1;
1058
1059        if (p1->s_lno <= p2->s_lno) {
1060                do {
1061                        tail = &p1->next;
1062                        if ((p1 = *tail) == NULL) {
1063                                *tail = p2;
1064                                return list1;
1065                        }
1066                } while (p1->s_lno <= p2->s_lno);
1067        }
1068        for (;;) {
1069                *tail = p2;
1070                do {
1071                        tail = &p2->next;
1072                        if ((p2 = *tail) == NULL)  {
1073                                *tail = p1;
1074                                return list1;
1075                        }
1076                } while (p1->s_lno > p2->s_lno);
1077                *tail = p1;
1078                do {
1079                        tail = &p1->next;
1080                        if ((p1 = *tail) == NULL) {
1081                                *tail = p2;
1082                                return list1;
1083                        }
1084                } while (p1->s_lno <= p2->s_lno);
1085        }
1086}
1087
1088static void *get_next_blame(const void *p)
1089{
1090        return ((struct blame_entry *)p)->next;
1091}
1092
1093static void set_next_blame(void *p1, void *p2)
1094{
1095        ((struct blame_entry *)p1)->next = p2;
1096}
1097
1098/*
1099 * Final image line numbers are all different, so we don't need a
1100 * three-way comparison here.
1101 */
1102
1103static int compare_blame_final(const void *p1, const void *p2)
1104{
1105        return ((struct blame_entry *)p1)->lno > ((struct blame_entry *)p2)->lno
1106                ? 1 : -1;
1107}
1108
1109static int compare_blame_suspect(const void *p1, const void *p2)
1110{
1111        const struct blame_entry *s1 = p1, *s2 = p2;
1112        /*
1113         * to allow for collating suspects, we sort according to the
1114         * respective pointer value as the primary sorting criterion.
1115         * The actual relation is pretty unimportant as long as it
1116         * establishes a total order.  Comparing as integers gives us
1117         * that.
1118         */
1119        if (s1->suspect != s2->suspect)
1120                return (intptr_t)s1->suspect > (intptr_t)s2->suspect ? 1 : -1;
1121        if (s1->s_lno == s2->s_lno)
1122                return 0;
1123        return s1->s_lno > s2->s_lno ? 1 : -1;
1124}
1125
1126void blame_sort_final(struct blame_scoreboard *sb)
1127{
1128        sb->ent = llist_mergesort(sb->ent, get_next_blame, set_next_blame,
1129                                  compare_blame_final);
1130}
1131
1132static int compare_commits_by_reverse_commit_date(const void *a,
1133                                                  const void *b,
1134                                                  void *c)
1135{
1136        return -compare_commits_by_commit_date(a, b, c);
1137}
1138
1139/*
1140 * For debugging -- origin is refcounted, and this asserts that
1141 * we do not underflow.
1142 */
1143static void sanity_check_refcnt(struct blame_scoreboard *sb)
1144{
1145        int baa = 0;
1146        struct blame_entry *ent;
1147
1148        for (ent = sb->ent; ent; ent = ent->next) {
1149                /* Nobody should have zero or negative refcnt */
1150                if (ent->suspect->refcnt <= 0) {
1151                        fprintf(stderr, "%s in %s has negative refcnt %d\n",
1152                                ent->suspect->path,
1153                                oid_to_hex(&ent->suspect->commit->object.oid),
1154                                ent->suspect->refcnt);
1155                        baa = 1;
1156                }
1157        }
1158        if (baa)
1159                sb->on_sanity_fail(sb, baa);
1160}
1161
1162/*
1163 * If two blame entries that are next to each other came from
1164 * contiguous lines in the same origin (i.e. <commit, path> pair),
1165 * merge them together.
1166 */
1167void blame_coalesce(struct blame_scoreboard *sb)
1168{
1169        struct blame_entry *ent, *next;
1170
1171        for (ent = sb->ent; ent && (next = ent->next); ent = next) {
1172                if (ent->suspect == next->suspect &&
1173                    ent->s_lno + ent->num_lines == next->s_lno &&
1174                    ent->ignored == next->ignored &&
1175                    ent->unblamable == next->unblamable) {
1176                        ent->num_lines += next->num_lines;
1177                        ent->next = next->next;
1178                        blame_origin_decref(next->suspect);
1179                        free(next);
1180                        ent->score = 0;
1181                        next = ent; /* again */
1182                }
1183        }
1184
1185        if (sb->debug) /* sanity */
1186                sanity_check_refcnt(sb);
1187}
1188
1189/*
1190 * Merge the given sorted list of blames into a preexisting origin.
1191 * If there were no previous blames to that commit, it is entered into
1192 * the commit priority queue of the score board.
1193 */
1194
1195static void queue_blames(struct blame_scoreboard *sb, struct blame_origin *porigin,
1196                         struct blame_entry *sorted)
1197{
1198        if (porigin->suspects)
1199                porigin->suspects = blame_merge(porigin->suspects, sorted);
1200        else {
1201                struct blame_origin *o;
1202                for (o = get_blame_suspects(porigin->commit); o; o = o->next) {
1203                        if (o->suspects) {
1204                                porigin->suspects = sorted;
1205                                return;
1206                        }
1207                }
1208                porigin->suspects = sorted;
1209                prio_queue_put(&sb->commits, porigin->commit);
1210        }
1211}
1212
1213/*
1214 * Fill the blob_sha1 field of an origin if it hasn't, so that later
1215 * call to fill_origin_blob() can use it to locate the data.  blob_sha1
1216 * for an origin is also used to pass the blame for the entire file to
1217 * the parent to detect the case where a child's blob is identical to
1218 * that of its parent's.
1219 *
1220 * This also fills origin->mode for corresponding tree path.
1221 */
1222static int fill_blob_sha1_and_mode(struct repository *r,
1223                                   struct blame_origin *origin)
1224{
1225        if (!is_null_oid(&origin->blob_oid))
1226                return 0;
1227        if (get_tree_entry(&origin->commit->object.oid, origin->path, &origin->blob_oid, &origin->mode))
1228                goto error_out;
1229        if (oid_object_info(r, &origin->blob_oid, NULL) != OBJ_BLOB)
1230                goto error_out;
1231        return 0;
1232 error_out:
1233        oidclr(&origin->blob_oid);
1234        origin->mode = S_IFINVALID;
1235        return -1;
1236}
1237
1238/*
1239 * We have an origin -- check if the same path exists in the
1240 * parent and return an origin structure to represent it.
1241 */
1242static struct blame_origin *find_origin(struct repository *r,
1243                                        struct commit *parent,
1244                                        struct blame_origin *origin)
1245{
1246        struct blame_origin *porigin;
1247        struct diff_options diff_opts;
1248        const char *paths[2];
1249
1250        /* First check any existing origins */
1251        for (porigin = get_blame_suspects(parent); porigin; porigin = porigin->next)
1252                if (!strcmp(porigin->path, origin->path)) {
1253                        /*
1254                         * The same path between origin and its parent
1255                         * without renaming -- the most common case.
1256                         */
1257                        return blame_origin_incref (porigin);
1258                }
1259
1260        /* See if the origin->path is different between parent
1261         * and origin first.  Most of the time they are the
1262         * same and diff-tree is fairly efficient about this.
1263         */
1264        repo_diff_setup(r, &diff_opts);
1265        diff_opts.flags.recursive = 1;
1266        diff_opts.detect_rename = 0;
1267        diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
1268        paths[0] = origin->path;
1269        paths[1] = NULL;
1270
1271        parse_pathspec(&diff_opts.pathspec,
1272                       PATHSPEC_ALL_MAGIC & ~PATHSPEC_LITERAL,
1273                       PATHSPEC_LITERAL_PATH, "", paths);
1274        diff_setup_done(&diff_opts);
1275
1276        if (is_null_oid(&origin->commit->object.oid))
1277                do_diff_cache(get_commit_tree_oid(parent), &diff_opts);
1278        else
1279                diff_tree_oid(get_commit_tree_oid(parent),
1280                              get_commit_tree_oid(origin->commit),
1281                              "", &diff_opts);
1282        diffcore_std(&diff_opts);
1283
1284        if (!diff_queued_diff.nr) {
1285                /* The path is the same as parent */
1286                porigin = get_origin(parent, origin->path);
1287                oidcpy(&porigin->blob_oid, &origin->blob_oid);
1288                porigin->mode = origin->mode;
1289        } else {
1290                /*
1291                 * Since origin->path is a pathspec, if the parent
1292                 * commit had it as a directory, we will see a whole
1293                 * bunch of deletion of files in the directory that we
1294                 * do not care about.
1295                 */
1296                int i;
1297                struct diff_filepair *p = NULL;
1298                for (i = 0; i < diff_queued_diff.nr; i++) {
1299                        const char *name;
1300                        p = diff_queued_diff.queue[i];
1301                        name = p->one->path ? p->one->path : p->two->path;
1302                        if (!strcmp(name, origin->path))
1303                                break;
1304                }
1305                if (!p)
1306                        die("internal error in blame::find_origin");
1307                switch (p->status) {
1308                default:
1309                        die("internal error in blame::find_origin (%c)",
1310                            p->status);
1311                case 'M':
1312                        porigin = get_origin(parent, origin->path);
1313                        oidcpy(&porigin->blob_oid, &p->one->oid);
1314                        porigin->mode = p->one->mode;
1315                        break;
1316                case 'A':
1317                case 'T':
1318                        /* Did not exist in parent, or type changed */
1319                        break;
1320                }
1321        }
1322        diff_flush(&diff_opts);
1323        clear_pathspec(&diff_opts.pathspec);
1324        return porigin;
1325}
1326
1327/*
1328 * We have an origin -- find the path that corresponds to it in its
1329 * parent and return an origin structure to represent it.
1330 */
1331static struct blame_origin *find_rename(struct repository *r,
1332                                        struct commit *parent,
1333                                        struct blame_origin *origin)
1334{
1335        struct blame_origin *porigin = NULL;
1336        struct diff_options diff_opts;
1337        int i;
1338
1339        repo_diff_setup(r, &diff_opts);
1340        diff_opts.flags.recursive = 1;
1341        diff_opts.detect_rename = DIFF_DETECT_RENAME;
1342        diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
1343        diff_opts.single_follow = origin->path;
1344        diff_setup_done(&diff_opts);
1345
1346        if (is_null_oid(&origin->commit->object.oid))
1347                do_diff_cache(get_commit_tree_oid(parent), &diff_opts);
1348        else
1349                diff_tree_oid(get_commit_tree_oid(parent),
1350                              get_commit_tree_oid(origin->commit),
1351                              "", &diff_opts);
1352        diffcore_std(&diff_opts);
1353
1354        for (i = 0; i < diff_queued_diff.nr; i++) {
1355                struct diff_filepair *p = diff_queued_diff.queue[i];
1356                if ((p->status == 'R' || p->status == 'C') &&
1357                    !strcmp(p->two->path, origin->path)) {
1358                        porigin = get_origin(parent, p->one->path);
1359                        oidcpy(&porigin->blob_oid, &p->one->oid);
1360                        porigin->mode = p->one->mode;
1361                        break;
1362                }
1363        }
1364        diff_flush(&diff_opts);
1365        clear_pathspec(&diff_opts.pathspec);
1366        return porigin;
1367}
1368
1369/*
1370 * Append a new blame entry to a given output queue.
1371 */
1372static void add_blame_entry(struct blame_entry ***queue,
1373                            const struct blame_entry *src)
1374{
1375        struct blame_entry *e = xmalloc(sizeof(*e));
1376        memcpy(e, src, sizeof(*e));
1377        blame_origin_incref(e->suspect);
1378
1379        e->next = **queue;
1380        **queue = e;
1381        *queue = &e->next;
1382}
1383
1384/*
1385 * src typically is on-stack; we want to copy the information in it to
1386 * a malloced blame_entry that gets added to the given queue.  The
1387 * origin of dst loses a refcnt.
1388 */
1389static void dup_entry(struct blame_entry ***queue,
1390                      struct blame_entry *dst, struct blame_entry *src)
1391{
1392        blame_origin_incref(src->suspect);
1393        blame_origin_decref(dst->suspect);
1394        memcpy(dst, src, sizeof(*src));
1395        dst->next = **queue;
1396        **queue = dst;
1397        *queue = &dst->next;
1398}
1399
1400const char *blame_nth_line(struct blame_scoreboard *sb, long lno)
1401{
1402        return sb->final_buf + sb->lineno[lno];
1403}
1404
1405/*
1406 * It is known that lines between tlno to same came from parent, and e
1407 * has an overlap with that range.  it also is known that parent's
1408 * line plno corresponds to e's line tlno.
1409 *
1410 *                <---- e ----->
1411 *                   <------>
1412 *                   <------------>
1413 *             <------------>
1414 *             <------------------>
1415 *
1416 * Split e into potentially three parts; before this chunk, the chunk
1417 * to be blamed for the parent, and after that portion.
1418 */
1419static void split_overlap(struct blame_entry *split,
1420                          struct blame_entry *e,
1421                          int tlno, int plno, int same,
1422                          struct blame_origin *parent)
1423{
1424        int chunk_end_lno;
1425        int i;
1426        memset(split, 0, sizeof(struct blame_entry [3]));
1427
1428        for (i = 0; i < 3; i++) {
1429                split[i].ignored = e->ignored;
1430                split[i].unblamable = e->unblamable;
1431        }
1432
1433        if (e->s_lno < tlno) {
1434                /* there is a pre-chunk part not blamed on parent */
1435                split[0].suspect = blame_origin_incref(e->suspect);
1436                split[0].lno = e->lno;
1437                split[0].s_lno = e->s_lno;
1438                split[0].num_lines = tlno - e->s_lno;
1439                split[1].lno = e->lno + tlno - e->s_lno;
1440                split[1].s_lno = plno;
1441        }
1442        else {
1443                split[1].lno = e->lno;
1444                split[1].s_lno = plno + (e->s_lno - tlno);
1445        }
1446
1447        if (same < e->s_lno + e->num_lines) {
1448                /* there is a post-chunk part not blamed on parent */
1449                split[2].suspect = blame_origin_incref(e->suspect);
1450                split[2].lno = e->lno + (same - e->s_lno);
1451                split[2].s_lno = e->s_lno + (same - e->s_lno);
1452                split[2].num_lines = e->s_lno + e->num_lines - same;
1453                chunk_end_lno = split[2].lno;
1454        }
1455        else
1456                chunk_end_lno = e->lno + e->num_lines;
1457        split[1].num_lines = chunk_end_lno - split[1].lno;
1458
1459        /*
1460         * if it turns out there is nothing to blame the parent for,
1461         * forget about the splitting.  !split[1].suspect signals this.
1462         */
1463        if (split[1].num_lines < 1)
1464                return;
1465        split[1].suspect = blame_origin_incref(parent);
1466}
1467
1468/*
1469 * split_overlap() divided an existing blame e into up to three parts
1470 * in split.  Any assigned blame is moved to queue to
1471 * reflect the split.
1472 */
1473static void split_blame(struct blame_entry ***blamed,
1474                        struct blame_entry ***unblamed,
1475                        struct blame_entry *split,
1476                        struct blame_entry *e)
1477{
1478        if (split[0].suspect && split[2].suspect) {
1479                /* The first part (reuse storage for the existing entry e) */
1480                dup_entry(unblamed, e, &split[0]);
1481
1482                /* The last part -- me */
1483                add_blame_entry(unblamed, &split[2]);
1484
1485                /* ... and the middle part -- parent */
1486                add_blame_entry(blamed, &split[1]);
1487        }
1488        else if (!split[0].suspect && !split[2].suspect)
1489                /*
1490                 * The parent covers the entire area; reuse storage for
1491                 * e and replace it with the parent.
1492                 */
1493                dup_entry(blamed, e, &split[1]);
1494        else if (split[0].suspect) {
1495                /* me and then parent */
1496                dup_entry(unblamed, e, &split[0]);
1497                add_blame_entry(blamed, &split[1]);
1498        }
1499        else {
1500                /* parent and then me */
1501                dup_entry(blamed, e, &split[1]);
1502                add_blame_entry(unblamed, &split[2]);
1503        }
1504}
1505
1506/*
1507 * After splitting the blame, the origins used by the
1508 * on-stack blame_entry should lose one refcnt each.
1509 */
1510static void decref_split(struct blame_entry *split)
1511{
1512        int i;
1513
1514        for (i = 0; i < 3; i++)
1515                blame_origin_decref(split[i].suspect);
1516}
1517
1518/*
1519 * reverse_blame reverses the list given in head, appending tail.
1520 * That allows us to build lists in reverse order, then reverse them
1521 * afterwards.  This can be faster than building the list in proper
1522 * order right away.  The reason is that building in proper order
1523 * requires writing a link in the _previous_ element, while building
1524 * in reverse order just requires placing the list head into the
1525 * _current_ element.
1526 */
1527
1528static struct blame_entry *reverse_blame(struct blame_entry *head,
1529                                         struct blame_entry *tail)
1530{
1531        while (head) {
1532                struct blame_entry *next = head->next;
1533                head->next = tail;
1534                tail = head;
1535                head = next;
1536        }
1537        return tail;
1538}
1539
1540/*
1541 * Splits a blame entry into two entries at 'len' lines.  The original 'e'
1542 * consists of len lines, i.e. [e->lno, e->lno + len), and the second part,
1543 * which is returned, consists of the remainder: [e->lno + len, e->lno +
1544 * e->num_lines).  The caller needs to sort out the reference counting for the
1545 * new entry's suspect.
1546 */
1547static struct blame_entry *split_blame_at(struct blame_entry *e, int len,
1548                                          struct blame_origin *new_suspect)
1549{
1550        struct blame_entry *n = xcalloc(1, sizeof(struct blame_entry));
1551
1552        n->suspect = new_suspect;
1553        n->ignored = e->ignored;
1554        n->unblamable = e->unblamable;
1555        n->lno = e->lno + len;
1556        n->s_lno = e->s_lno + len;
1557        n->num_lines = e->num_lines - len;
1558        e->num_lines = len;
1559        e->score = 0;
1560        return n;
1561}
1562
1563struct blame_line_tracker {
1564        int is_parent;
1565        int s_lno;
1566};
1567
1568static int are_lines_adjacent(struct blame_line_tracker *first,
1569                              struct blame_line_tracker *second)
1570{
1571        return first->is_parent == second->is_parent &&
1572               first->s_lno + 1 == second->s_lno;
1573}
1574
1575/*
1576 * This cheap heuristic assigns lines in the chunk to their relative location in
1577 * the parent's chunk.  Any additional lines are left with the target.
1578 */
1579static void guess_line_blames(struct blame_origin *parent,
1580                              struct blame_origin *target,
1581                              int tlno, int offset, int same, int parent_len,
1582                              struct blame_line_tracker *line_blames)
1583{
1584        int i, best_idx, target_idx;
1585        int parent_slno = tlno + offset;
1586
1587        for (i = 0; i < same - tlno; i++) {
1588                target_idx = tlno + i;
1589                best_idx = target_idx + offset;
1590                if (best_idx < parent_slno + parent_len) {
1591                        line_blames[i].is_parent = 1;
1592                        line_blames[i].s_lno = best_idx;
1593                } else {
1594                        line_blames[i].is_parent = 0;
1595                        line_blames[i].s_lno = target_idx;
1596                }
1597        }
1598}
1599
1600/*
1601 * This decides which parts of a blame entry go to the parent (added to the
1602 * ignoredp list) and which stay with the target (added to the diffp list).  The
1603 * actual decision was made in a separate heuristic function, and those answers
1604 * for the lines in 'e' are in line_blames.  This consumes e, essentially
1605 * putting it on a list.
1606 *
1607 * Note that the blame entries on the ignoredp list are not necessarily sorted
1608 * with respect to the parent's line numbers yet.
1609 */
1610static void ignore_blame_entry(struct blame_entry *e,
1611                               struct blame_origin *parent,
1612                               struct blame_origin *target,
1613                               struct blame_entry **diffp,
1614                               struct blame_entry **ignoredp,
1615                               struct blame_line_tracker *line_blames)
1616{
1617        int entry_len, nr_lines, i;
1618
1619        /*
1620         * We carve new entries off the front of e.  Each entry comes from a
1621         * contiguous chunk of lines: adjacent lines from the same origin
1622         * (either the parent or the target).
1623         */
1624        entry_len = 1;
1625        nr_lines = e->num_lines;        /* e changes in the loop */
1626        for (i = 0; i < nr_lines; i++) {
1627                struct blame_entry *next = NULL;
1628
1629                /*
1630                 * We are often adjacent to the next line - only split the blame
1631                 * entry when we have to.
1632                 */
1633                if (i + 1 < nr_lines) {
1634                        if (are_lines_adjacent(&line_blames[i],
1635                                               &line_blames[i + 1])) {
1636                                entry_len++;
1637                                continue;
1638                        }
1639                        next = split_blame_at(e, entry_len,
1640                                              blame_origin_incref(e->suspect));
1641                }
1642                if (line_blames[i].is_parent) {
1643                        e->ignored = 1;
1644                        blame_origin_decref(e->suspect);
1645                        e->suspect = blame_origin_incref(parent);
1646                        e->s_lno = line_blames[i - entry_len + 1].s_lno;
1647                        e->next = *ignoredp;
1648                        *ignoredp = e;
1649                } else {
1650                        e->unblamable = 1;
1651                        /* e->s_lno is already in the target's address space. */
1652                        e->next = *diffp;
1653                        *diffp = e;
1654                }
1655                assert(e->num_lines == entry_len);
1656                e = next;
1657                entry_len = 1;
1658        }
1659        assert(!e);
1660}
1661
1662/*
1663 * Process one hunk from the patch between the current suspect for
1664 * blame_entry e and its parent.  This first blames any unfinished
1665 * entries before the chunk (which is where target and parent start
1666 * differing) on the parent, and then splits blame entries at the
1667 * start and at the end of the difference region.  Since use of -M and
1668 * -C options may lead to overlapping/duplicate source line number
1669 * ranges, all we can rely on from sorting/merging is the order of the
1670 * first suspect line number.
1671 *
1672 * tlno: line number in the target where this chunk begins
1673 * same: line number in the target where this chunk ends
1674 * offset: add to tlno to get the chunk starting point in the parent
1675 * parent_len: number of lines in the parent chunk
1676 */
1677static void blame_chunk(struct blame_entry ***dstq, struct blame_entry ***srcq,
1678                        int tlno, int offset, int same, int parent_len,
1679                        struct blame_origin *parent,
1680                        struct blame_origin *target, int ignore_diffs)
1681{
1682        struct blame_entry *e = **srcq;
1683        struct blame_entry *samep = NULL, *diffp = NULL, *ignoredp = NULL;
1684        struct blame_line_tracker *line_blames = NULL;
1685
1686        while (e && e->s_lno < tlno) {
1687                struct blame_entry *next = e->next;
1688                /*
1689                 * current record starts before differing portion.  If
1690                 * it reaches into it, we need to split it up and
1691                 * examine the second part separately.
1692                 */
1693                if (e->s_lno + e->num_lines > tlno) {
1694                        /* Move second half to a new record */
1695                        struct blame_entry *n;
1696
1697                        n = split_blame_at(e, tlno - e->s_lno, e->suspect);
1698                        /* Push new record to diffp */
1699                        n->next = diffp;
1700                        diffp = n;
1701                } else
1702                        blame_origin_decref(e->suspect);
1703                /* Pass blame for everything before the differing
1704                 * chunk to the parent */
1705                e->suspect = blame_origin_incref(parent);
1706                e->s_lno += offset;
1707                e->next = samep;
1708                samep = e;
1709                e = next;
1710        }
1711        /*
1712         * As we don't know how much of a common stretch after this
1713         * diff will occur, the currently blamed parts are all that we
1714         * can assign to the parent for now.
1715         */
1716
1717        if (samep) {
1718                **dstq = reverse_blame(samep, **dstq);
1719                *dstq = &samep->next;
1720        }
1721        /*
1722         * Prepend the split off portions: everything after e starts
1723         * after the blameable portion.
1724         */
1725        e = reverse_blame(diffp, e);
1726
1727        /*
1728         * Now retain records on the target while parts are different
1729         * from the parent.
1730         */
1731        samep = NULL;
1732        diffp = NULL;
1733
1734        if (ignore_diffs && same - tlno > 0) {
1735                line_blames = xcalloc(sizeof(struct blame_line_tracker),
1736                                      same - tlno);
1737                guess_line_blames(parent, target, tlno, offset, same,
1738                                  parent_len, line_blames);
1739        }
1740
1741        while (e && e->s_lno < same) {
1742                struct blame_entry *next = e->next;
1743
1744                /*
1745                 * If current record extends into sameness, need to split.
1746                 */
1747                if (e->s_lno + e->num_lines > same) {
1748                        /*
1749                         * Move second half to a new record to be
1750                         * processed by later chunks
1751                         */
1752                        struct blame_entry *n;
1753
1754                        n = split_blame_at(e, same - e->s_lno,
1755                                           blame_origin_incref(e->suspect));
1756                        /* Push new record to samep */
1757                        n->next = samep;
1758                        samep = n;
1759                }
1760                if (ignore_diffs) {
1761                        ignore_blame_entry(e, parent, target, &diffp, &ignoredp,
1762                                           line_blames + e->s_lno - tlno);
1763                } else {
1764                        e->next = diffp;
1765                        diffp = e;
1766                }
1767                e = next;
1768        }
1769        free(line_blames);
1770        if (ignoredp) {
1771                /*
1772                 * Note ignoredp is not sorted yet, and thus neither is dstq.
1773                 * That list must be sorted before we queue_blames().  We defer
1774                 * sorting until after all diff hunks are processed, so that
1775                 * guess_line_blames() can pick *any* line in the parent.  The
1776                 * slight drawback is that we end up sorting all blame entries
1777                 * passed to the parent, including those that are unrelated to
1778                 * changes made by the ignored commit.
1779                 */
1780                **dstq = reverse_blame(ignoredp, **dstq);
1781                *dstq = &ignoredp->next;
1782        }
1783        **srcq = reverse_blame(diffp, reverse_blame(samep, e));
1784        /* Move across elements that are in the unblamable portion */
1785        if (diffp)
1786                *srcq = &diffp->next;
1787}
1788
1789struct blame_chunk_cb_data {
1790        struct blame_origin *parent;
1791        struct blame_origin *target;
1792        long offset;
1793        int ignore_diffs;
1794        struct blame_entry **dstq;
1795        struct blame_entry **srcq;
1796};
1797
1798/* diff chunks are from parent to target */
1799static int blame_chunk_cb(long start_a, long count_a,
1800                          long start_b, long count_b, void *data)
1801{
1802        struct blame_chunk_cb_data *d = data;
1803        if (start_a - start_b != d->offset)
1804                die("internal error in blame::blame_chunk_cb");
1805        blame_chunk(&d->dstq, &d->srcq, start_b, start_a - start_b,
1806                    start_b + count_b, count_a, d->parent, d->target,
1807                    d->ignore_diffs);
1808        d->offset = start_a + count_a - (start_b + count_b);
1809        return 0;
1810}
1811
1812/*
1813 * We are looking at the origin 'target' and aiming to pass blame
1814 * for the lines it is suspected to its parent.  Run diff to find
1815 * which lines came from parent and pass blame for them.
1816 */
1817static void pass_blame_to_parent(struct blame_scoreboard *sb,
1818                                 struct blame_origin *target,
1819                                 struct blame_origin *parent, int ignore_diffs)
1820{
1821        mmfile_t file_p, file_o;
1822        struct blame_chunk_cb_data d;
1823        struct blame_entry *newdest = NULL;
1824
1825        if (!target->suspects)
1826                return; /* nothing remains for this target */
1827
1828        d.parent = parent;
1829        d.target = target;
1830        d.offset = 0;
1831        d.ignore_diffs = ignore_diffs;
1832        d.dstq = &newdest; d.srcq = &target->suspects;
1833
1834        fill_origin_blob(&sb->revs->diffopt, parent, &file_p,
1835                         &sb->num_read_blob, ignore_diffs);
1836        fill_origin_blob(&sb->revs->diffopt, target, &file_o,
1837                         &sb->num_read_blob, ignore_diffs);
1838        sb->num_get_patch++;
1839
1840        if (diff_hunks(&file_p, &file_o, blame_chunk_cb, &d, sb->xdl_opts))
1841                die("unable to generate diff (%s -> %s)",
1842                    oid_to_hex(&parent->commit->object.oid),
1843                    oid_to_hex(&target->commit->object.oid));
1844        /* The rest are the same as the parent */
1845        blame_chunk(&d.dstq, &d.srcq, INT_MAX, d.offset, INT_MAX, 0,
1846                    parent, target, 0);
1847        *d.dstq = NULL;
1848        if (ignore_diffs)
1849                newdest = llist_mergesort(newdest, get_next_blame,
1850                                          set_next_blame,
1851                                          compare_blame_suspect);
1852        queue_blames(sb, parent, newdest);
1853
1854        return;
1855}
1856
1857/*
1858 * The lines in blame_entry after splitting blames many times can become
1859 * very small and trivial, and at some point it becomes pointless to
1860 * blame the parents.  E.g. "\t\t}\n\t}\n\n" appears everywhere in any
1861 * ordinary C program, and it is not worth to say it was copied from
1862 * totally unrelated file in the parent.
1863 *
1864 * Compute how trivial the lines in the blame_entry are.
1865 */
1866unsigned blame_entry_score(struct blame_scoreboard *sb, struct blame_entry *e)
1867{
1868        unsigned score;
1869        const char *cp, *ep;
1870
1871        if (e->score)
1872                return e->score;
1873
1874        score = 1;
1875        cp = blame_nth_line(sb, e->lno);
1876        ep = blame_nth_line(sb, e->lno + e->num_lines);
1877        while (cp < ep) {
1878                unsigned ch = *((unsigned char *)cp);
1879                if (isalnum(ch))
1880                        score++;
1881                cp++;
1882        }
1883        e->score = score;
1884        return score;
1885}
1886
1887/*
1888 * best_so_far[] and potential[] are both a split of an existing blame_entry
1889 * that passes blame to the parent.  Maintain best_so_far the best split so
1890 * far, by comparing potential and best_so_far and copying potential into
1891 * bst_so_far as needed.
1892 */
1893static void copy_split_if_better(struct blame_scoreboard *sb,
1894                                 struct blame_entry *best_so_far,
1895                                 struct blame_entry *potential)
1896{
1897        int i;
1898
1899        if (!potential[1].suspect)
1900                return;
1901        if (best_so_far[1].suspect) {
1902                if (blame_entry_score(sb, &potential[1]) <
1903                    blame_entry_score(sb, &best_so_far[1]))
1904                        return;
1905        }
1906
1907        for (i = 0; i < 3; i++)
1908                blame_origin_incref(potential[i].suspect);
1909        decref_split(best_so_far);
1910        memcpy(best_so_far, potential, sizeof(struct blame_entry[3]));
1911}
1912
1913/*
1914 * We are looking at a part of the final image represented by
1915 * ent (tlno and same are offset by ent->s_lno).
1916 * tlno is where we are looking at in the final image.
1917 * up to (but not including) same match preimage.
1918 * plno is where we are looking at in the preimage.
1919 *
1920 * <-------------- final image ---------------------->
1921 *       <------ent------>
1922 *         ^tlno ^same
1923 *    <---------preimage----->
1924 *         ^plno
1925 *
1926 * All line numbers are 0-based.
1927 */
1928static void handle_split(struct blame_scoreboard *sb,
1929                         struct blame_entry *ent,
1930                         int tlno, int plno, int same,
1931                         struct blame_origin *parent,
1932                         struct blame_entry *split)
1933{
1934        if (ent->num_lines <= tlno)
1935                return;
1936        if (tlno < same) {
1937                struct blame_entry potential[3];
1938                tlno += ent->s_lno;
1939                same += ent->s_lno;
1940                split_overlap(potential, ent, tlno, plno, same, parent);
1941                copy_split_if_better(sb, split, potential);
1942                decref_split(potential);
1943        }
1944}
1945
1946struct handle_split_cb_data {
1947        struct blame_scoreboard *sb;
1948        struct blame_entry *ent;
1949        struct blame_origin *parent;
1950        struct blame_entry *split;
1951        long plno;
1952        long tlno;
1953};
1954
1955static int handle_split_cb(long start_a, long count_a,
1956                           long start_b, long count_b, void *data)
1957{
1958        struct handle_split_cb_data *d = data;
1959        handle_split(d->sb, d->ent, d->tlno, d->plno, start_b, d->parent,
1960                     d->split);
1961        d->plno = start_a + count_a;
1962        d->tlno = start_b + count_b;
1963        return 0;
1964}
1965
1966/*
1967 * Find the lines from parent that are the same as ent so that
1968 * we can pass blames to it.  file_p has the blob contents for
1969 * the parent.
1970 */
1971static void find_copy_in_blob(struct blame_scoreboard *sb,
1972                              struct blame_entry *ent,
1973                              struct blame_origin *parent,
1974                              struct blame_entry *split,
1975                              mmfile_t *file_p)
1976{
1977        const char *cp;
1978        mmfile_t file_o;
1979        struct handle_split_cb_data d;
1980
1981        memset(&d, 0, sizeof(d));
1982        d.sb = sb; d.ent = ent; d.parent = parent; d.split = split;
1983        /*
1984         * Prepare mmfile that contains only the lines in ent.
1985         */
1986        cp = blame_nth_line(sb, ent->lno);
1987        file_o.ptr = (char *) cp;
1988        file_o.size = blame_nth_line(sb, ent->lno + ent->num_lines) - cp;
1989
1990        /*
1991         * file_o is a part of final image we are annotating.
1992         * file_p partially may match that image.
1993         */
1994        memset(split, 0, sizeof(struct blame_entry [3]));
1995        if (diff_hunks(file_p, &file_o, handle_split_cb, &d, sb->xdl_opts))
1996                die("unable to generate diff (%s)",
1997                    oid_to_hex(&parent->commit->object.oid));
1998        /* remainder, if any, all match the preimage */
1999        handle_split(sb, ent, d.tlno, d.plno, ent->num_lines, parent, split);
2000}
2001
2002/* Move all blame entries from list *source that have a score smaller
2003 * than score_min to the front of list *small.
2004 * Returns a pointer to the link pointing to the old head of the small list.
2005 */
2006
2007static struct blame_entry **filter_small(struct blame_scoreboard *sb,
2008                                         struct blame_entry **small,
2009                                         struct blame_entry **source,
2010                                         unsigned score_min)
2011{
2012        struct blame_entry *p = *source;
2013        struct blame_entry *oldsmall = *small;
2014        while (p) {
2015                if (blame_entry_score(sb, p) <= score_min) {
2016                        *small = p;
2017                        small = &p->next;
2018                        p = *small;
2019                } else {
2020                        *source = p;
2021                        source = &p->next;
2022                        p = *source;
2023                }
2024        }
2025        *small = oldsmall;
2026        *source = NULL;
2027        return small;
2028}
2029
2030/*
2031 * See if lines currently target is suspected for can be attributed to
2032 * parent.
2033 */
2034static void find_move_in_parent(struct blame_scoreboard *sb,
2035                                struct blame_entry ***blamed,
2036                                struct blame_entry **toosmall,
2037                                struct blame_origin *target,
2038                                struct blame_origin *parent)
2039{
2040        struct blame_entry *e, split[3];
2041        struct blame_entry *unblamed = target->suspects;
2042        struct blame_entry *leftover = NULL;
2043        mmfile_t file_p;
2044
2045        if (!unblamed)
2046                return; /* nothing remains for this target */
2047
2048        fill_origin_blob(&sb->revs->diffopt, parent, &file_p,
2049                         &sb->num_read_blob, 0);
2050        if (!file_p.ptr)
2051                return;
2052
2053        /* At each iteration, unblamed has a NULL-terminated list of
2054         * entries that have not yet been tested for blame.  leftover
2055         * contains the reversed list of entries that have been tested
2056         * without being assignable to the parent.
2057         */
2058        do {
2059                struct blame_entry **unblamedtail = &unblamed;
2060                struct blame_entry *next;
2061                for (e = unblamed; e; e = next) {
2062                        next = e->next;
2063                        find_copy_in_blob(sb, e, parent, split, &file_p);
2064                        if (split[1].suspect &&
2065                            sb->move_score < blame_entry_score(sb, &split[1])) {
2066                                split_blame(blamed, &unblamedtail, split, e);
2067                        } else {
2068                                e->next = leftover;
2069                                leftover = e;
2070                        }
2071                        decref_split(split);
2072                }
2073                *unblamedtail = NULL;
2074                toosmall = filter_small(sb, toosmall, &unblamed, sb->move_score);
2075        } while (unblamed);
2076        target->suspects = reverse_blame(leftover, NULL);
2077}
2078
2079struct blame_list {
2080        struct blame_entry *ent;
2081        struct blame_entry split[3];
2082};
2083
2084/*
2085 * Count the number of entries the target is suspected for,
2086 * and prepare a list of entry and the best split.
2087 */
2088static struct blame_list *setup_blame_list(struct blame_entry *unblamed,
2089                                           int *num_ents_p)
2090{
2091        struct blame_entry *e;
2092        int num_ents, i;
2093        struct blame_list *blame_list = NULL;
2094
2095        for (e = unblamed, num_ents = 0; e; e = e->next)
2096                num_ents++;
2097        if (num_ents) {
2098                blame_list = xcalloc(num_ents, sizeof(struct blame_list));
2099                for (e = unblamed, i = 0; e; e = e->next)
2100                        blame_list[i++].ent = e;
2101        }
2102        *num_ents_p = num_ents;
2103        return blame_list;
2104}
2105
2106/*
2107 * For lines target is suspected for, see if we can find code movement
2108 * across file boundary from the parent commit.  porigin is the path
2109 * in the parent we already tried.
2110 */
2111static void find_copy_in_parent(struct blame_scoreboard *sb,
2112                                struct blame_entry ***blamed,
2113                                struct blame_entry **toosmall,
2114                                struct blame_origin *target,
2115                                struct commit *parent,
2116                                struct blame_origin *porigin,
2117                                int opt)
2118{
2119        struct diff_options diff_opts;
2120        int i, j;
2121        struct blame_list *blame_list;
2122        int num_ents;
2123        struct blame_entry *unblamed = target->suspects;
2124        struct blame_entry *leftover = NULL;
2125
2126        if (!unblamed)
2127                return; /* nothing remains for this target */
2128
2129        repo_diff_setup(sb->repo, &diff_opts);
2130        diff_opts.flags.recursive = 1;
2131        diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
2132
2133        diff_setup_done(&diff_opts);
2134
2135        /* Try "find copies harder" on new path if requested;
2136         * we do not want to use diffcore_rename() actually to
2137         * match things up; find_copies_harder is set only to
2138         * force diff_tree_oid() to feed all filepairs to diff_queue,
2139         * and this code needs to be after diff_setup_done(), which
2140         * usually makes find-copies-harder imply copy detection.
2141         */
2142        if ((opt & PICKAXE_BLAME_COPY_HARDEST)
2143            || ((opt & PICKAXE_BLAME_COPY_HARDER)
2144                && (!porigin || strcmp(target->path, porigin->path))))
2145                diff_opts.flags.find_copies_harder = 1;
2146
2147        if (is_null_oid(&target->commit->object.oid))
2148                do_diff_cache(get_commit_tree_oid(parent), &diff_opts);
2149        else
2150                diff_tree_oid(get_commit_tree_oid(parent),
2151                              get_commit_tree_oid(target->commit),
2152                              "", &diff_opts);
2153
2154        if (!diff_opts.flags.find_copies_harder)
2155                diffcore_std(&diff_opts);
2156
2157        do {
2158                struct blame_entry **unblamedtail = &unblamed;
2159                blame_list = setup_blame_list(unblamed, &num_ents);
2160
2161                for (i = 0; i < diff_queued_diff.nr; i++) {
2162                        struct diff_filepair *p = diff_queued_diff.queue[i];
2163                        struct blame_origin *norigin;
2164                        mmfile_t file_p;
2165                        struct blame_entry potential[3];
2166
2167                        if (!DIFF_FILE_VALID(p->one))
2168                                continue; /* does not exist in parent */
2169                        if (S_ISGITLINK(p->one->mode))
2170                                continue; /* ignore git links */
2171                        if (porigin && !strcmp(p->one->path, porigin->path))
2172                                /* find_move already dealt with this path */
2173                                continue;
2174
2175                        norigin = get_origin(parent, p->one->path);
2176                        oidcpy(&norigin->blob_oid, &p->one->oid);
2177                        norigin->mode = p->one->mode;
2178                        fill_origin_blob(&sb->revs->diffopt, norigin, &file_p,
2179                                         &sb->num_read_blob, 0);
2180                        if (!file_p.ptr)
2181                                continue;
2182
2183                        for (j = 0; j < num_ents; j++) {
2184                                find_copy_in_blob(sb, blame_list[j].ent,
2185                                                  norigin, potential, &file_p);
2186                                copy_split_if_better(sb, blame_list[j].split,
2187                                                     potential);
2188                                decref_split(potential);
2189                        }
2190                        blame_origin_decref(norigin);
2191                }
2192
2193                for (j = 0; j < num_ents; j++) {
2194                        struct blame_entry *split = blame_list[j].split;
2195                        if (split[1].suspect &&
2196                            sb->copy_score < blame_entry_score(sb, &split[1])) {
2197                                split_blame(blamed, &unblamedtail, split,
2198                                            blame_list[j].ent);
2199                        } else {
2200                                blame_list[j].ent->next = leftover;
2201                                leftover = blame_list[j].ent;
2202                        }
2203                        decref_split(split);
2204                }
2205                free(blame_list);
2206                *unblamedtail = NULL;
2207                toosmall = filter_small(sb, toosmall, &unblamed, sb->copy_score);
2208        } while (unblamed);
2209        target->suspects = reverse_blame(leftover, NULL);
2210        diff_flush(&diff_opts);
2211        clear_pathspec(&diff_opts.pathspec);
2212}
2213
2214/*
2215 * The blobs of origin and porigin exactly match, so everything
2216 * origin is suspected for can be blamed on the parent.
2217 */
2218static void pass_whole_blame(struct blame_scoreboard *sb,
2219                             struct blame_origin *origin, struct blame_origin *porigin)
2220{
2221        struct blame_entry *e, *suspects;
2222
2223        if (!porigin->file.ptr && origin->file.ptr) {
2224                /* Steal its file */
2225                porigin->file = origin->file;
2226                origin->file.ptr = NULL;
2227        }
2228        suspects = origin->suspects;
2229        origin->suspects = NULL;
2230        for (e = suspects; e; e = e->next) {
2231                blame_origin_incref(porigin);
2232                blame_origin_decref(e->suspect);
2233                e->suspect = porigin;
2234        }
2235        queue_blames(sb, porigin, suspects);
2236}
2237
2238/*
2239 * We pass blame from the current commit to its parents.  We keep saying
2240 * "parent" (and "porigin"), but what we mean is to find scapegoat to
2241 * exonerate ourselves.
2242 */
2243static struct commit_list *first_scapegoat(struct rev_info *revs, struct commit *commit,
2244                                        int reverse)
2245{
2246        if (!reverse) {
2247                if (revs->first_parent_only &&
2248                    commit->parents &&
2249                    commit->parents->next) {
2250                        free_commit_list(commit->parents->next);
2251                        commit->parents->next = NULL;
2252                }
2253                return commit->parents;
2254        }
2255        return lookup_decoration(&revs->children, &commit->object);
2256}
2257
2258static int num_scapegoats(struct rev_info *revs, struct commit *commit, int reverse)
2259{
2260        struct commit_list *l = first_scapegoat(revs, commit, reverse);
2261        return commit_list_count(l);
2262}
2263
2264/* Distribute collected unsorted blames to the respected sorted lists
2265 * in the various origins.
2266 */
2267static void distribute_blame(struct blame_scoreboard *sb, struct blame_entry *blamed)
2268{
2269        blamed = llist_mergesort(blamed, get_next_blame, set_next_blame,
2270                                 compare_blame_suspect);
2271        while (blamed)
2272        {
2273                struct blame_origin *porigin = blamed->suspect;
2274                struct blame_entry *suspects = NULL;
2275                do {
2276                        struct blame_entry *next = blamed->next;
2277                        blamed->next = suspects;
2278                        suspects = blamed;
2279                        blamed = next;
2280                } while (blamed && blamed->suspect == porigin);
2281                suspects = reverse_blame(suspects, NULL);
2282                queue_blames(sb, porigin, suspects);
2283        }
2284}
2285
2286#define MAXSG 16
2287
2288static void pass_blame(struct blame_scoreboard *sb, struct blame_origin *origin, int opt)
2289{
2290        struct rev_info *revs = sb->revs;
2291        int i, pass, num_sg;
2292        struct commit *commit = origin->commit;
2293        struct commit_list *sg;
2294        struct blame_origin *sg_buf[MAXSG];
2295        struct blame_origin *porigin, **sg_origin = sg_buf;
2296        struct blame_entry *toosmall = NULL;
2297        struct blame_entry *blames, **blametail = &blames;
2298
2299        num_sg = num_scapegoats(revs, commit, sb->reverse);
2300        if (!num_sg)
2301                goto finish;
2302        else if (num_sg < ARRAY_SIZE(sg_buf))
2303                memset(sg_buf, 0, sizeof(sg_buf));
2304        else
2305                sg_origin = xcalloc(num_sg, sizeof(*sg_origin));
2306
2307        /*
2308         * The first pass looks for unrenamed path to optimize for
2309         * common cases, then we look for renames in the second pass.
2310         */
2311        for (pass = 0; pass < 2 - sb->no_whole_file_rename; pass++) {
2312                struct blame_origin *(*find)(struct repository *, struct commit *, struct blame_origin *);
2313                find = pass ? find_rename : find_origin;
2314
2315                for (i = 0, sg = first_scapegoat(revs, commit, sb->reverse);
2316                     i < num_sg && sg;
2317                     sg = sg->next, i++) {
2318                        struct commit *p = sg->item;
2319                        int j, same;
2320
2321                        if (sg_origin[i])
2322                                continue;
2323                        if (parse_commit(p))
2324                                continue;
2325                        porigin = find(sb->repo, p, origin);
2326                        if (!porigin)
2327                                continue;
2328                        if (oideq(&porigin->blob_oid, &origin->blob_oid)) {
2329                                pass_whole_blame(sb, origin, porigin);
2330                                blame_origin_decref(porigin);
2331                                goto finish;
2332                        }
2333                        for (j = same = 0; j < i; j++)
2334                                if (sg_origin[j] &&
2335                                    oideq(&sg_origin[j]->blob_oid, &porigin->blob_oid)) {
2336                                        same = 1;
2337                                        break;
2338                                }
2339                        if (!same)
2340                                sg_origin[i] = porigin;
2341                        else
2342                                blame_origin_decref(porigin);
2343                }
2344        }
2345
2346        sb->num_commits++;
2347        for (i = 0, sg = first_scapegoat(revs, commit, sb->reverse);
2348             i < num_sg && sg;
2349             sg = sg->next, i++) {
2350                struct blame_origin *porigin = sg_origin[i];
2351                if (!porigin)
2352                        continue;
2353                if (!origin->previous) {
2354                        blame_origin_incref(porigin);
2355                        origin->previous = porigin;
2356                }
2357                pass_blame_to_parent(sb, origin, porigin, 0);
2358                if (!origin->suspects)
2359                        goto finish;
2360        }
2361
2362        /*
2363         * Pass remaining suspects for ignored commits to their parents.
2364         */
2365        if (oidset_contains(&sb->ignore_list, &commit->object.oid)) {
2366                for (i = 0, sg = first_scapegoat(revs, commit, sb->reverse);
2367                     i < num_sg && sg;
2368                     sg = sg->next, i++) {
2369                        struct blame_origin *porigin = sg_origin[i];
2370
2371                        if (!porigin)
2372                                continue;
2373                        pass_blame_to_parent(sb, origin, porigin, 1);
2374                        if (!origin->suspects)
2375                                goto finish;
2376                }
2377        }
2378
2379        /*
2380         * Optionally find moves in parents' files.
2381         */
2382        if (opt & PICKAXE_BLAME_MOVE) {
2383                filter_small(sb, &toosmall, &origin->suspects, sb->move_score);
2384                if (origin->suspects) {
2385                        for (i = 0, sg = first_scapegoat(revs, commit, sb->reverse);
2386                             i < num_sg && sg;
2387                             sg = sg->next, i++) {
2388                                struct blame_origin *porigin = sg_origin[i];
2389                                if (!porigin)
2390                                        continue;
2391                                find_move_in_parent(sb, &blametail, &toosmall, origin, porigin);
2392                                if (!origin->suspects)
2393                                        break;
2394                        }
2395                }
2396        }
2397
2398        /*
2399         * Optionally find copies from parents' files.
2400         */
2401        if (opt & PICKAXE_BLAME_COPY) {
2402                if (sb->copy_score > sb->move_score)
2403                        filter_small(sb, &toosmall, &origin->suspects, sb->copy_score);
2404                else if (sb->copy_score < sb->move_score) {
2405                        origin->suspects = blame_merge(origin->suspects, toosmall);
2406                        toosmall = NULL;
2407                        filter_small(sb, &toosmall, &origin->suspects, sb->copy_score);
2408                }
2409                if (!origin->suspects)
2410                        goto finish;
2411
2412                for (i = 0, sg = first_scapegoat(revs, commit, sb->reverse);
2413                     i < num_sg && sg;
2414                     sg = sg->next, i++) {
2415                        struct blame_origin *porigin = sg_origin[i];
2416                        find_copy_in_parent(sb, &blametail, &toosmall,
2417                                            origin, sg->item, porigin, opt);
2418                        if (!origin->suspects)
2419                                goto finish;
2420                }
2421        }
2422
2423finish:
2424        *blametail = NULL;
2425        distribute_blame(sb, blames);
2426        /*
2427         * prepend toosmall to origin->suspects
2428         *
2429         * There is no point in sorting: this ends up on a big
2430         * unsorted list in the caller anyway.
2431         */
2432        if (toosmall) {
2433                struct blame_entry **tail = &toosmall;
2434                while (*tail)
2435                        tail = &(*tail)->next;
2436                *tail = origin->suspects;
2437                origin->suspects = toosmall;
2438        }
2439        for (i = 0; i < num_sg; i++) {
2440                if (sg_origin[i]) {
2441                        drop_origin_blob(sg_origin[i]);
2442                        blame_origin_decref(sg_origin[i]);
2443                }
2444        }
2445        drop_origin_blob(origin);
2446        if (sg_buf != sg_origin)
2447                free(sg_origin);
2448}
2449
2450/*
2451 * The main loop -- while we have blobs with lines whose true origin
2452 * is still unknown, pick one blob, and allow its lines to pass blames
2453 * to its parents. */
2454void assign_blame(struct blame_scoreboard *sb, int opt)
2455{
2456        struct rev_info *revs = sb->revs;
2457        struct commit *commit = prio_queue_get(&sb->commits);
2458
2459        while (commit) {
2460                struct blame_entry *ent;
2461                struct blame_origin *suspect = get_blame_suspects(commit);
2462
2463                /* find one suspect to break down */
2464                while (suspect && !suspect->suspects)
2465                        suspect = suspect->next;
2466
2467                if (!suspect) {
2468                        commit = prio_queue_get(&sb->commits);
2469                        continue;
2470                }
2471
2472                assert(commit == suspect->commit);
2473
2474                /*
2475                 * We will use this suspect later in the loop,
2476                 * so hold onto it in the meantime.
2477                 */
2478                blame_origin_incref(suspect);
2479                parse_commit(commit);
2480                if (sb->reverse ||
2481                    (!(commit->object.flags & UNINTERESTING) &&
2482                     !(revs->max_age != -1 && commit->date < revs->max_age)))
2483                        pass_blame(sb, suspect, opt);
2484                else {
2485                        commit->object.flags |= UNINTERESTING;
2486                        if (commit->object.parsed)
2487                                mark_parents_uninteresting(commit);
2488                }
2489                /* treat root commit as boundary */
2490                if (!commit->parents && !sb->show_root)
2491                        commit->object.flags |= UNINTERESTING;
2492
2493                /* Take responsibility for the remaining entries */
2494                ent = suspect->suspects;
2495                if (ent) {
2496                        suspect->guilty = 1;
2497                        for (;;) {
2498                                struct blame_entry *next = ent->next;
2499                                if (sb->found_guilty_entry)
2500                                        sb->found_guilty_entry(ent, sb->found_guilty_entry_data);
2501                                if (next) {
2502                                        ent = next;
2503                                        continue;
2504                                }
2505                                ent->next = sb->ent;
2506                                sb->ent = suspect->suspects;
2507                                suspect->suspects = NULL;
2508                                break;
2509                        }
2510                }
2511                blame_origin_decref(suspect);
2512
2513                if (sb->debug) /* sanity */
2514                        sanity_check_refcnt(sb);
2515        }
2516}
2517
2518/*
2519 * To allow quick access to the contents of nth line in the
2520 * final image, prepare an index in the scoreboard.
2521 */
2522static int prepare_lines(struct blame_scoreboard *sb)
2523{
2524        sb->num_lines = find_line_starts(&sb->lineno, sb->final_buf,
2525                                         sb->final_buf_size);
2526        return sb->num_lines;
2527}
2528
2529static struct commit *find_single_final(struct rev_info *revs,
2530                                        const char **name_p)
2531{
2532        int i;
2533        struct commit *found = NULL;
2534        const char *name = NULL;
2535
2536        for (i = 0; i < revs->pending.nr; i++) {
2537                struct object *obj = revs->pending.objects[i].item;
2538                if (obj->flags & UNINTERESTING)
2539                        continue;
2540                obj = deref_tag(revs->repo, obj, NULL, 0);
2541                if (obj->type != OBJ_COMMIT)
2542                        die("Non commit %s?", revs->pending.objects[i].name);
2543                if (found)
2544                        die("More than one commit to dig from %s and %s?",
2545                            revs->pending.objects[i].name, name);
2546                found = (struct commit *)obj;
2547                name = revs->pending.objects[i].name;
2548        }
2549        if (name_p)
2550                *name_p = xstrdup_or_null(name);
2551        return found;
2552}
2553
2554static struct commit *dwim_reverse_initial(struct rev_info *revs,
2555                                           const char **name_p)
2556{
2557        /*
2558         * DWIM "git blame --reverse ONE -- PATH" as
2559         * "git blame --reverse ONE..HEAD -- PATH" but only do so
2560         * when it makes sense.
2561         */
2562        struct object *obj;
2563        struct commit *head_commit;
2564        struct object_id head_oid;
2565
2566        if (revs->pending.nr != 1)
2567                return NULL;
2568
2569        /* Is that sole rev a committish? */
2570        obj = revs->pending.objects[0].item;
2571        obj = deref_tag(revs->repo, obj, NULL, 0);
2572        if (obj->type != OBJ_COMMIT)
2573                return NULL;
2574
2575        /* Do we have HEAD? */
2576        if (!resolve_ref_unsafe("HEAD", RESOLVE_REF_READING, &head_oid, NULL))
2577                return NULL;
2578        head_commit = lookup_commit_reference_gently(revs->repo,
2579                                                     &head_oid, 1);
2580        if (!head_commit)
2581                return NULL;
2582
2583        /* Turn "ONE" into "ONE..HEAD" then */
2584        obj->flags |= UNINTERESTING;
2585        add_pending_object(revs, &head_commit->object, "HEAD");
2586
2587        if (name_p)
2588                *name_p = revs->pending.objects[0].name;
2589        return (struct commit *)obj;
2590}
2591
2592static struct commit *find_single_initial(struct rev_info *revs,
2593                                          const char **name_p)
2594{
2595        int i;
2596        struct commit *found = NULL;
2597        const char *name = NULL;
2598
2599        /*
2600         * There must be one and only one negative commit, and it must be
2601         * the boundary.
2602         */
2603        for (i = 0; i < revs->pending.nr; i++) {
2604                struct object *obj = revs->pending.objects[i].item;
2605                if (!(obj->flags & UNINTERESTING))
2606                        continue;
2607                obj = deref_tag(revs->repo, obj, NULL, 0);
2608                if (obj->type != OBJ_COMMIT)
2609                        die("Non commit %s?", revs->pending.objects[i].name);
2610                if (found)
2611                        die("More than one commit to dig up from, %s and %s?",
2612                            revs->pending.objects[i].name, name);
2613                found = (struct commit *) obj;
2614                name = revs->pending.objects[i].name;
2615        }
2616
2617        if (!name)
2618                found = dwim_reverse_initial(revs, &name);
2619        if (!name)
2620                die("No commit to dig up from?");
2621
2622        if (name_p)
2623                *name_p = xstrdup(name);
2624        return found;
2625}
2626
2627void init_scoreboard(struct blame_scoreboard *sb)
2628{
2629        memset(sb, 0, sizeof(struct blame_scoreboard));
2630        sb->move_score = BLAME_DEFAULT_MOVE_SCORE;
2631        sb->copy_score = BLAME_DEFAULT_COPY_SCORE;
2632}
2633
2634void setup_scoreboard(struct blame_scoreboard *sb,
2635                      const char *path,
2636                      struct blame_origin **orig)
2637{
2638        const char *final_commit_name = NULL;
2639        struct blame_origin *o;
2640        struct commit *final_commit = NULL;
2641        enum object_type type;
2642
2643        init_blame_suspects(&blame_suspects);
2644
2645        if (sb->reverse && sb->contents_from)
2646                die(_("--contents and --reverse do not blend well."));
2647
2648        if (!sb->repo)
2649                BUG("repo is NULL");
2650
2651        if (!sb->reverse) {
2652                sb->final = find_single_final(sb->revs, &final_commit_name);
2653                sb->commits.compare = compare_commits_by_commit_date;
2654        } else {
2655                sb->final = find_single_initial(sb->revs, &final_commit_name);
2656                sb->commits.compare = compare_commits_by_reverse_commit_date;
2657        }
2658
2659        if (sb->final && sb->contents_from)
2660                die(_("cannot use --contents with final commit object name"));
2661
2662        if (sb->reverse && sb->revs->first_parent_only)
2663                sb->revs->children.name = NULL;
2664
2665        if (!sb->final) {
2666                /*
2667                 * "--not A B -- path" without anything positive;
2668                 * do not default to HEAD, but use the working tree
2669                 * or "--contents".
2670                 */
2671                setup_work_tree();
2672                sb->final = fake_working_tree_commit(sb->repo,
2673                                                     &sb->revs->diffopt,
2674                                                     path, sb->contents_from);
2675                add_pending_object(sb->revs, &(sb->final->object), ":");
2676        }
2677
2678        if (sb->reverse && sb->revs->first_parent_only) {
2679                final_commit = find_single_final(sb->revs, NULL);
2680                if (!final_commit)
2681                        die(_("--reverse and --first-parent together require specified latest commit"));
2682        }
2683
2684        /*
2685         * If we have bottom, this will mark the ancestors of the
2686         * bottom commits we would reach while traversing as
2687         * uninteresting.
2688         */
2689        if (prepare_revision_walk(sb->revs))
2690                die(_("revision walk setup failed"));
2691
2692        if (sb->reverse && sb->revs->first_parent_only) {
2693                struct commit *c = final_commit;
2694
2695                sb->revs->children.name = "children";
2696                while (c->parents &&
2697                       !oideq(&c->object.oid, &sb->final->object.oid)) {
2698                        struct commit_list *l = xcalloc(1, sizeof(*l));
2699
2700                        l->item = c;
2701                        if (add_decoration(&sb->revs->children,
2702                                           &c->parents->item->object, l))
2703                                BUG("not unique item in first-parent chain");
2704                        c = c->parents->item;
2705                }
2706
2707                if (!oideq(&c->object.oid, &sb->final->object.oid))
2708                        die(_("--reverse --first-parent together require range along first-parent chain"));
2709        }
2710
2711        if (is_null_oid(&sb->final->object.oid)) {
2712                o = get_blame_suspects(sb->final);
2713                sb->final_buf = xmemdupz(o->file.ptr, o->file.size);
2714                sb->final_buf_size = o->file.size;
2715        }
2716        else {
2717                o = get_origin(sb->final, path);
2718                if (fill_blob_sha1_and_mode(sb->repo, o))
2719                        die(_("no such path %s in %s"), path, final_commit_name);
2720
2721                if (sb->revs->diffopt.flags.allow_textconv &&
2722                    textconv_object(sb->repo, path, o->mode, &o->blob_oid, 1, (char **) &sb->final_buf,
2723                                    &sb->final_buf_size))
2724                        ;
2725                else
2726                        sb->final_buf = read_object_file(&o->blob_oid, &type,
2727                                                         &sb->final_buf_size);
2728
2729                if (!sb->final_buf)
2730                        die(_("cannot read blob %s for path %s"),
2731                            oid_to_hex(&o->blob_oid),
2732                            path);
2733        }
2734        sb->num_read_blob++;
2735        prepare_lines(sb);
2736
2737        if (orig)
2738                *orig = o;
2739
2740        free((char *)final_commit_name);
2741}
2742
2743
2744
2745struct blame_entry *blame_entry_prepend(struct blame_entry *head,
2746                                        long start, long end,
2747                                        struct blame_origin *o)
2748{
2749        struct blame_entry *new_head = xcalloc(1, sizeof(struct blame_entry));
2750        new_head->lno = start;
2751        new_head->num_lines = end - start;
2752        new_head->suspect = o;
2753        new_head->s_lno = start;
2754        new_head->next = head;
2755        blame_origin_incref(o);
2756        return new_head;
2757}