cache-tree.con commit push: fix segfault when HEAD points nowhere (1d2c14d)
   1#include "cache.h"
   2#include "tree.h"
   3#include "tree-walk.h"
   4#include "cache-tree.h"
   5
   6#ifndef DEBUG
   7#define DEBUG 0
   8#endif
   9
  10struct cache_tree *cache_tree(void)
  11{
  12        struct cache_tree *it = xcalloc(1, sizeof(struct cache_tree));
  13        it->entry_count = -1;
  14        return it;
  15}
  16
  17void cache_tree_free(struct cache_tree **it_p)
  18{
  19        int i;
  20        struct cache_tree *it = *it_p;
  21
  22        if (!it)
  23                return;
  24        for (i = 0; i < it->subtree_nr; i++)
  25                if (it->down[i]) {
  26                        cache_tree_free(&it->down[i]->cache_tree);
  27                        free(it->down[i]);
  28                }
  29        free(it->down);
  30        free(it);
  31        *it_p = NULL;
  32}
  33
  34static int subtree_name_cmp(const char *one, int onelen,
  35                            const char *two, int twolen)
  36{
  37        if (onelen < twolen)
  38                return -1;
  39        if (twolen < onelen)
  40                return 1;
  41        return memcmp(one, two, onelen);
  42}
  43
  44static int subtree_pos(struct cache_tree *it, const char *path, int pathlen)
  45{
  46        struct cache_tree_sub **down = it->down;
  47        int lo, hi;
  48        lo = 0;
  49        hi = it->subtree_nr;
  50        while (lo < hi) {
  51                int mi = (lo + hi) / 2;
  52                struct cache_tree_sub *mdl = down[mi];
  53                int cmp = subtree_name_cmp(path, pathlen,
  54                                           mdl->name, mdl->namelen);
  55                if (!cmp)
  56                        return mi;
  57                if (cmp < 0)
  58                        hi = mi;
  59                else
  60                        lo = mi + 1;
  61        }
  62        return -lo-1;
  63}
  64
  65static struct cache_tree_sub *find_subtree(struct cache_tree *it,
  66                                           const char *path,
  67                                           int pathlen,
  68                                           int create)
  69{
  70        struct cache_tree_sub *down;
  71        int pos = subtree_pos(it, path, pathlen);
  72        if (0 <= pos)
  73                return it->down[pos];
  74        if (!create)
  75                return NULL;
  76
  77        pos = -pos-1;
  78        if (it->subtree_alloc <= it->subtree_nr) {
  79                it->subtree_alloc = alloc_nr(it->subtree_alloc);
  80                it->down = xrealloc(it->down, it->subtree_alloc *
  81                                    sizeof(*it->down));
  82        }
  83        it->subtree_nr++;
  84
  85        down = xmalloc(sizeof(*down) + pathlen + 1);
  86        down->cache_tree = NULL;
  87        down->namelen = pathlen;
  88        memcpy(down->name, path, pathlen);
  89        down->name[pathlen] = 0;
  90
  91        if (pos < it->subtree_nr)
  92                memmove(it->down + pos + 1,
  93                        it->down + pos,
  94                        sizeof(down) * (it->subtree_nr - pos - 1));
  95        it->down[pos] = down;
  96        return down;
  97}
  98
  99struct cache_tree_sub *cache_tree_sub(struct cache_tree *it, const char *path)
 100{
 101        int pathlen = strlen(path);
 102        return find_subtree(it, path, pathlen, 1);
 103}
 104
 105void cache_tree_invalidate_path(struct cache_tree *it, const char *path)
 106{
 107        /* a/b/c
 108         * ==> invalidate self
 109         * ==> find "a", have it invalidate "b/c"
 110         * a
 111         * ==> invalidate self
 112         * ==> if "a" exists as a subtree, remove it.
 113         */
 114        const char *slash;
 115        int namelen;
 116        struct cache_tree_sub *down;
 117
 118#if DEBUG
 119        fprintf(stderr, "cache-tree invalidate <%s>\n", path);
 120#endif
 121
 122        if (!it)
 123                return;
 124        slash = strchr(path, '/');
 125        it->entry_count = -1;
 126        if (!slash) {
 127                int pos;
 128                namelen = strlen(path);
 129                pos = subtree_pos(it, path, namelen);
 130                if (0 <= pos) {
 131                        cache_tree_free(&it->down[pos]->cache_tree);
 132                        free(it->down[pos]);
 133                        /* 0 1 2 3 4 5
 134                         *       ^     ^subtree_nr = 6
 135                         *       pos
 136                         * move 4 and 5 up one place (2 entries)
 137                         * 2 = 6 - 3 - 1 = subtree_nr - pos - 1
 138                         */
 139                        memmove(it->down+pos, it->down+pos+1,
 140                                sizeof(struct cache_tree_sub *) *
 141                                (it->subtree_nr - pos - 1));
 142                        it->subtree_nr--;
 143                }
 144                return;
 145        }
 146        namelen = slash - path;
 147        down = find_subtree(it, path, namelen, 0);
 148        if (down)
 149                cache_tree_invalidate_path(down->cache_tree, slash + 1);
 150}
 151
 152static int verify_cache(struct cache_entry **cache,
 153                        int entries, int flags)
 154{
 155        int i, funny;
 156        int silent = flags & WRITE_TREE_SILENT;
 157
 158        /* Verify that the tree is merged */
 159        funny = 0;
 160        for (i = 0; i < entries; i++) {
 161                struct cache_entry *ce = cache[i];
 162                if (ce_stage(ce)) {
 163                        if (silent)
 164                                return -1;
 165                        if (10 < ++funny) {
 166                                fprintf(stderr, "...\n");
 167                                break;
 168                        }
 169                        if (ce_stage(ce))
 170                                fprintf(stderr, "%s: unmerged (%s)\n",
 171                                        ce->name, sha1_to_hex(ce->sha1));
 172                        else
 173                                fprintf(stderr, "%s: not added yet\n",
 174                                        ce->name);
 175                }
 176        }
 177        if (funny)
 178                return -1;
 179
 180        /* Also verify that the cache does not have path and path/file
 181         * at the same time.  At this point we know the cache has only
 182         * stage 0 entries.
 183         */
 184        funny = 0;
 185        for (i = 0; i < entries - 1; i++) {
 186                /* path/file always comes after path because of the way
 187                 * the cache is sorted.  Also path can appear only once,
 188                 * which means conflicting one would immediately follow.
 189                 */
 190                const char *this_name = cache[i]->name;
 191                const char *next_name = cache[i+1]->name;
 192                int this_len = strlen(this_name);
 193                if (this_len < strlen(next_name) &&
 194                    strncmp(this_name, next_name, this_len) == 0 &&
 195                    next_name[this_len] == '/') {
 196                        if (10 < ++funny) {
 197                                fprintf(stderr, "...\n");
 198                                break;
 199                        }
 200                        fprintf(stderr, "You have both %s and %s\n",
 201                                this_name, next_name);
 202                }
 203        }
 204        if (funny)
 205                return -1;
 206        return 0;
 207}
 208
 209static void discard_unused_subtrees(struct cache_tree *it)
 210{
 211        struct cache_tree_sub **down = it->down;
 212        int nr = it->subtree_nr;
 213        int dst, src;
 214        for (dst = src = 0; src < nr; src++) {
 215                struct cache_tree_sub *s = down[src];
 216                if (s->used)
 217                        down[dst++] = s;
 218                else {
 219                        cache_tree_free(&s->cache_tree);
 220                        free(s);
 221                        it->subtree_nr--;
 222                }
 223        }
 224}
 225
 226int cache_tree_fully_valid(struct cache_tree *it)
 227{
 228        int i;
 229        if (!it)
 230                return 0;
 231        if (it->entry_count < 0 || !has_sha1_file(it->sha1))
 232                return 0;
 233        for (i = 0; i < it->subtree_nr; i++) {
 234                if (!cache_tree_fully_valid(it->down[i]->cache_tree))
 235                        return 0;
 236        }
 237        return 1;
 238}
 239
 240static int update_one(struct cache_tree *it,
 241                      struct cache_entry **cache,
 242                      int entries,
 243                      const char *base,
 244                      int baselen,
 245                      int flags)
 246{
 247        struct strbuf buffer;
 248        int missing_ok = flags & WRITE_TREE_MISSING_OK;
 249        int dryrun = flags & WRITE_TREE_DRY_RUN;
 250        int i;
 251
 252        if (0 <= it->entry_count && has_sha1_file(it->sha1))
 253                return it->entry_count;
 254
 255        /*
 256         * We first scan for subtrees and update them; we start by
 257         * marking existing subtrees -- the ones that are unmarked
 258         * should not be in the result.
 259         */
 260        for (i = 0; i < it->subtree_nr; i++)
 261                it->down[i]->used = 0;
 262
 263        /*
 264         * Find the subtrees and update them.
 265         */
 266        for (i = 0; i < entries; i++) {
 267                struct cache_entry *ce = cache[i];
 268                struct cache_tree_sub *sub;
 269                const char *path, *slash;
 270                int pathlen, sublen, subcnt;
 271
 272                path = ce->name;
 273                pathlen = ce_namelen(ce);
 274                if (pathlen <= baselen || memcmp(base, path, baselen))
 275                        break; /* at the end of this level */
 276
 277                slash = strchr(path + baselen, '/');
 278                if (!slash)
 279                        continue;
 280                /*
 281                 * a/bbb/c (base = a/, slash = /c)
 282                 * ==>
 283                 * path+baselen = bbb/c, sublen = 3
 284                 */
 285                sublen = slash - (path + baselen);
 286                sub = find_subtree(it, path + baselen, sublen, 1);
 287                if (!sub->cache_tree)
 288                        sub->cache_tree = cache_tree();
 289                subcnt = update_one(sub->cache_tree,
 290                                    cache + i, entries - i,
 291                                    path,
 292                                    baselen + sublen + 1,
 293                                    flags);
 294                if (subcnt < 0)
 295                        return subcnt;
 296                i += subcnt - 1;
 297                sub->used = 1;
 298        }
 299
 300        discard_unused_subtrees(it);
 301
 302        /*
 303         * Then write out the tree object for this level.
 304         */
 305        strbuf_init(&buffer, 8192);
 306
 307        for (i = 0; i < entries; i++) {
 308                struct cache_entry *ce = cache[i];
 309                struct cache_tree_sub *sub;
 310                const char *path, *slash;
 311                int pathlen, entlen;
 312                const unsigned char *sha1;
 313                unsigned mode;
 314
 315                path = ce->name;
 316                pathlen = ce_namelen(ce);
 317                if (pathlen <= baselen || memcmp(base, path, baselen))
 318                        break; /* at the end of this level */
 319
 320                slash = strchr(path + baselen, '/');
 321                if (slash) {
 322                        entlen = slash - (path + baselen);
 323                        sub = find_subtree(it, path + baselen, entlen, 0);
 324                        if (!sub)
 325                                die("cache-tree.c: '%.*s' in '%s' not found",
 326                                    entlen, path + baselen, path);
 327                        i += sub->cache_tree->entry_count - 1;
 328                        sha1 = sub->cache_tree->sha1;
 329                        mode = S_IFDIR;
 330                }
 331                else {
 332                        sha1 = ce->sha1;
 333                        mode = ce->ce_mode;
 334                        entlen = pathlen - baselen;
 335                }
 336                if (mode != S_IFGITLINK && !missing_ok && !has_sha1_file(sha1)) {
 337                        strbuf_release(&buffer);
 338                        return error("invalid object %06o %s for '%.*s'",
 339                                mode, sha1_to_hex(sha1), entlen+baselen, path);
 340                }
 341
 342                if (ce->ce_flags & (CE_REMOVE | CE_INTENT_TO_ADD))
 343                        continue; /* entry being removed or placeholder */
 344
 345                strbuf_grow(&buffer, entlen + 100);
 346                strbuf_addf(&buffer, "%o %.*s%c", mode, entlen, path + baselen, '\0');
 347                strbuf_add(&buffer, sha1, 20);
 348
 349#if DEBUG
 350                fprintf(stderr, "cache-tree update-one %o %.*s\n",
 351                        mode, entlen, path + baselen);
 352#endif
 353        }
 354
 355        if (dryrun)
 356                hash_sha1_file(buffer.buf, buffer.len, tree_type, it->sha1);
 357        else if (write_sha1_file(buffer.buf, buffer.len, tree_type, it->sha1)) {
 358                strbuf_release(&buffer);
 359                return -1;
 360        }
 361
 362        strbuf_release(&buffer);
 363        it->entry_count = i;
 364#if DEBUG
 365        fprintf(stderr, "cache-tree update-one (%d ent, %d subtree) %s\n",
 366                it->entry_count, it->subtree_nr,
 367                sha1_to_hex(it->sha1));
 368#endif
 369        return i;
 370}
 371
 372int cache_tree_update(struct cache_tree *it,
 373                      struct cache_entry **cache,
 374                      int entries,
 375                      int flags)
 376{
 377        int i;
 378        i = verify_cache(cache, entries, flags);
 379        if (i)
 380                return i;
 381        i = update_one(it, cache, entries, "", 0, flags);
 382        if (i < 0)
 383                return i;
 384        return 0;
 385}
 386
 387static void write_one(struct strbuf *buffer, struct cache_tree *it,
 388                      const char *path, int pathlen)
 389{
 390        int i;
 391
 392        /* One "cache-tree" entry consists of the following:
 393         * path (NUL terminated)
 394         * entry_count, subtree_nr ("%d %d\n")
 395         * tree-sha1 (missing if invalid)
 396         * subtree_nr "cache-tree" entries for subtrees.
 397         */
 398        strbuf_grow(buffer, pathlen + 100);
 399        strbuf_add(buffer, path, pathlen);
 400        strbuf_addf(buffer, "%c%d %d\n", 0, it->entry_count, it->subtree_nr);
 401
 402#if DEBUG
 403        if (0 <= it->entry_count)
 404                fprintf(stderr, "cache-tree <%.*s> (%d ent, %d subtree) %s\n",
 405                        pathlen, path, it->entry_count, it->subtree_nr,
 406                        sha1_to_hex(it->sha1));
 407        else
 408                fprintf(stderr, "cache-tree <%.*s> (%d subtree) invalid\n",
 409                        pathlen, path, it->subtree_nr);
 410#endif
 411
 412        if (0 <= it->entry_count) {
 413                strbuf_add(buffer, it->sha1, 20);
 414        }
 415        for (i = 0; i < it->subtree_nr; i++) {
 416                struct cache_tree_sub *down = it->down[i];
 417                if (i) {
 418                        struct cache_tree_sub *prev = it->down[i-1];
 419                        if (subtree_name_cmp(down->name, down->namelen,
 420                                             prev->name, prev->namelen) <= 0)
 421                                die("fatal - unsorted cache subtree");
 422                }
 423                write_one(buffer, down->cache_tree, down->name, down->namelen);
 424        }
 425}
 426
 427void cache_tree_write(struct strbuf *sb, struct cache_tree *root)
 428{
 429        write_one(sb, root, "", 0);
 430}
 431
 432static struct cache_tree *read_one(const char **buffer, unsigned long *size_p)
 433{
 434        const char *buf = *buffer;
 435        unsigned long size = *size_p;
 436        const char *cp;
 437        char *ep;
 438        struct cache_tree *it;
 439        int i, subtree_nr;
 440
 441        it = NULL;
 442        /* skip name, but make sure name exists */
 443        while (size && *buf) {
 444                size--;
 445                buf++;
 446        }
 447        if (!size)
 448                goto free_return;
 449        buf++; size--;
 450        it = cache_tree();
 451
 452        cp = buf;
 453        it->entry_count = strtol(cp, &ep, 10);
 454        if (cp == ep)
 455                goto free_return;
 456        cp = ep;
 457        subtree_nr = strtol(cp, &ep, 10);
 458        if (cp == ep)
 459                goto free_return;
 460        while (size && *buf && *buf != '\n') {
 461                size--;
 462                buf++;
 463        }
 464        if (!size)
 465                goto free_return;
 466        buf++; size--;
 467        if (0 <= it->entry_count) {
 468                if (size < 20)
 469                        goto free_return;
 470                hashcpy(it->sha1, (const unsigned char*)buf);
 471                buf += 20;
 472                size -= 20;
 473        }
 474
 475#if DEBUG
 476        if (0 <= it->entry_count)
 477                fprintf(stderr, "cache-tree <%s> (%d ent, %d subtree) %s\n",
 478                        *buffer, it->entry_count, subtree_nr,
 479                        sha1_to_hex(it->sha1));
 480        else
 481                fprintf(stderr, "cache-tree <%s> (%d subtrees) invalid\n",
 482                        *buffer, subtree_nr);
 483#endif
 484
 485        /*
 486         * Just a heuristic -- we do not add directories that often but
 487         * we do not want to have to extend it immediately when we do,
 488         * hence +2.
 489         */
 490        it->subtree_alloc = subtree_nr + 2;
 491        it->down = xcalloc(it->subtree_alloc, sizeof(struct cache_tree_sub *));
 492        for (i = 0; i < subtree_nr; i++) {
 493                /* read each subtree */
 494                struct cache_tree *sub;
 495                struct cache_tree_sub *subtree;
 496                const char *name = buf;
 497
 498                sub = read_one(&buf, &size);
 499                if (!sub)
 500                        goto free_return;
 501                subtree = cache_tree_sub(it, name);
 502                subtree->cache_tree = sub;
 503        }
 504        if (subtree_nr != it->subtree_nr)
 505                die("cache-tree: internal error");
 506        *buffer = buf;
 507        *size_p = size;
 508        return it;
 509
 510 free_return:
 511        cache_tree_free(&it);
 512        return NULL;
 513}
 514
 515struct cache_tree *cache_tree_read(const char *buffer, unsigned long size)
 516{
 517        if (buffer[0])
 518                return NULL; /* not the whole tree */
 519        return read_one(&buffer, &size);
 520}
 521
 522static struct cache_tree *cache_tree_find(struct cache_tree *it, const char *path)
 523{
 524        if (!it)
 525                return NULL;
 526        while (*path) {
 527                const char *slash;
 528                struct cache_tree_sub *sub;
 529
 530                slash = strchr(path, '/');
 531                if (!slash)
 532                        slash = path + strlen(path);
 533                /* between path and slash is the name of the
 534                 * subtree to look for.
 535                 */
 536                sub = find_subtree(it, path, slash - path, 0);
 537                if (!sub)
 538                        return NULL;
 539                it = sub->cache_tree;
 540                if (slash)
 541                        while (*slash && *slash == '/')
 542                                slash++;
 543                if (!slash || !*slash)
 544                        return it; /* prefix ended with slashes */
 545                path = slash;
 546        }
 547        return it;
 548}
 549
 550int write_cache_as_tree(unsigned char *sha1, int flags, const char *prefix)
 551{
 552        int entries, was_valid, newfd;
 553        struct lock_file *lock_file;
 554
 555        /*
 556         * We can't free this memory, it becomes part of a linked list
 557         * parsed atexit()
 558         */
 559        lock_file = xcalloc(1, sizeof(struct lock_file));
 560
 561        newfd = hold_locked_index(lock_file, 1);
 562
 563        entries = read_cache();
 564        if (entries < 0)
 565                return WRITE_TREE_UNREADABLE_INDEX;
 566        if (flags & WRITE_TREE_IGNORE_CACHE_TREE)
 567                cache_tree_free(&(active_cache_tree));
 568
 569        if (!active_cache_tree)
 570                active_cache_tree = cache_tree();
 571
 572        was_valid = cache_tree_fully_valid(active_cache_tree);
 573        if (!was_valid) {
 574                if (cache_tree_update(active_cache_tree,
 575                                      active_cache, active_nr,
 576                                      flags) < 0)
 577                        return WRITE_TREE_UNMERGED_INDEX;
 578                if (0 <= newfd) {
 579                        if (!write_cache(newfd, active_cache, active_nr) &&
 580                            !commit_lock_file(lock_file))
 581                                newfd = -1;
 582                }
 583                /* Not being able to write is fine -- we are only interested
 584                 * in updating the cache-tree part, and if the next caller
 585                 * ends up using the old index with unupdated cache-tree part
 586                 * it misses the work we did here, but that is just a
 587                 * performance penalty and not a big deal.
 588                 */
 589        }
 590
 591        if (prefix) {
 592                struct cache_tree *subtree =
 593                        cache_tree_find(active_cache_tree, prefix);
 594                if (!subtree)
 595                        return WRITE_TREE_PREFIX_ERROR;
 596                hashcpy(sha1, subtree->sha1);
 597        }
 598        else
 599                hashcpy(sha1, active_cache_tree->sha1);
 600
 601        if (0 <= newfd)
 602                rollback_lock_file(lock_file);
 603
 604        return 0;
 605}
 606
 607static void prime_cache_tree_rec(struct cache_tree *it, struct tree *tree)
 608{
 609        struct tree_desc desc;
 610        struct name_entry entry;
 611        int cnt;
 612
 613        hashcpy(it->sha1, tree->object.sha1);
 614        init_tree_desc(&desc, tree->buffer, tree->size);
 615        cnt = 0;
 616        while (tree_entry(&desc, &entry)) {
 617                if (!S_ISDIR(entry.mode))
 618                        cnt++;
 619                else {
 620                        struct cache_tree_sub *sub;
 621                        struct tree *subtree = lookup_tree(entry.sha1);
 622                        if (!subtree->object.parsed)
 623                                parse_tree(subtree);
 624                        sub = cache_tree_sub(it, entry.path);
 625                        sub->cache_tree = cache_tree();
 626                        prime_cache_tree_rec(sub->cache_tree, subtree);
 627                        cnt += sub->cache_tree->entry_count;
 628                }
 629        }
 630        it->entry_count = cnt;
 631}
 632
 633void prime_cache_tree(struct cache_tree **it, struct tree *tree)
 634{
 635        cache_tree_free(it);
 636        *it = cache_tree();
 637        prime_cache_tree_rec(*it, tree);
 638}
 639
 640/*
 641 * find the cache_tree that corresponds to the current level without
 642 * exploding the full path into textual form.  The root of the
 643 * cache tree is given as "root", and our current level is "info".
 644 * (1) When at root level, info->prev is NULL, so it is "root" itself.
 645 * (2) Otherwise, find the cache_tree that corresponds to one level
 646 *     above us, and find ourselves in there.
 647 */
 648static struct cache_tree *find_cache_tree_from_traversal(struct cache_tree *root,
 649                                                         struct traverse_info *info)
 650{
 651        struct cache_tree *our_parent;
 652
 653        if (!info->prev)
 654                return root;
 655        our_parent = find_cache_tree_from_traversal(root, info->prev);
 656        return cache_tree_find(our_parent, info->name.path);
 657}
 658
 659int cache_tree_matches_traversal(struct cache_tree *root,
 660                                 struct name_entry *ent,
 661                                 struct traverse_info *info)
 662{
 663        struct cache_tree *it;
 664
 665        it = find_cache_tree_from_traversal(root, info);
 666        it = cache_tree_find(it, ent->path);
 667        if (it && it->entry_count > 0 && !hashcmp(ent->sha1, it->sha1))
 668                return it->entry_count;
 669        return 0;
 670}
 671
 672int update_main_cache_tree(int flags)
 673{
 674        if (!the_index.cache_tree)
 675                the_index.cache_tree = cache_tree();
 676        return cache_tree_update(the_index.cache_tree,
 677                                 the_index.cache, the_index.cache_nr, flags);
 678}